Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):m109–m110. doi: 10.1107/S1600536810052682

Chloridobis(1,10-phenanthroline)zinc(II) tetra­chlorido(1,10-phenan­throline)bis­muthate(III) monohydrate

Chunlei Song a, Wenxiang Chai a,*, Li Song b, Yunyun Yang a, Jian Lin a
PMCID: PMC3050139  PMID: 21522522

Abstract

In the crystal structure of the title monohydrate salt, [ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2O, the ionic components are linked into three-dimensional supra­molecular channels by five pairs of C—H⋯Cl hydrogen bonds and π–π stacking inter­actions with an inter­planar distance of 3.643 (2) Å. The solvent water mol­ecules are lodged in the channels.

Related literature

For related bis­muth compounds, see: James et al. (2000); Jarraya et al. (1995); Bowmaker et al. (1998). For a related [Zn(phen)2Cl]+ coordinated cation structure, see: Yu & Zhang (2006). For supra­molecular systems containing halometallate groups as their main component, see: Mitzi & Brock (2001); Zhu et al. (2003); Papavassiliou et al. (1995); Pohl et al. (1994); Carmalt et al. (1995). For π–π inter­actions, see: Chandrasekhar et al. (2006). For hydrogen bonds, see: Desiraju & Steiner (1999).graphic file with name e-67-0m109-scheme1.jpg

.

Experimental

Crystal data

  • [ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2O

  • M r = 1010.25

  • Triclinic, Inline graphic

  • a = 9.748 (2) Å

  • b = 13.694 (4) Å

  • c = 14.249 (4) Å

  • α = 86.848 (7)°

  • β = 74.660 (5)°

  • γ = 80.692 (7)°

  • V = 1810.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.93 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.200, T max = 0.269

  • 13923 measured reflections

  • 8140 independent reflections

  • 7571 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.061

  • S = 1.03

  • 8140 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −1.03 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052682/bg2383sup1.cif

e-67-0m109-sup1.cif (31.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052682/bg2383Isup2.hkl

e-67-0m109-Isup2.hkl (398.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl3i 0.93 2.82 3.588 (4) 141
C6—H6⋯Cl4ii 0.93 2.82 3.637 (4) 147
C10—H10⋯Cl5iii 0.93 2.80 3.707 (4) 164
C15—H15⋯Cl1iv 0.93 2.69 3.579 (4) 160
C25—H25⋯Cl2v 0.93 2.80 3.506 (4) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (project 20803070) and the Natural Science Foundation of Zhejiang Province (project Y4100610).

supplementary crystallographic information

Comment

Supramolecular compounds are attractting much interest due to their importance for the study of biological systems and their potential applications in material research, as sensors, gas storage and catalysis, or as optoelectronic and magnetic devices. Recently, many supramolecular systems containing halometallate groups as their main component have been reported (Mitzi et al., 2001; Zhu et al., 2003; Papavassiliou et al., 1995; Pohl et al., 1994; Carmalt et al., 1995). Here, we present one of those supramolecular compounds [Zn(phen)2Cl][Bi(phen)Cl4].H2O (I), composed of an halometallate main anionic group ( [Bi(phen)Cl4]- , phen = C12H8N2 = 1,10-phenanthroline), a coordinated cation containing a transition-metal, ( [Zn(phen)2Cl]+ ) and a solvent H2O.

In compound (I), the Bi atom is located in a distorted octahedral enviroment of four chlorine atoms and two nitrogen atoms from the phen ligand. In this BiN2Cl4 octahedron, the Bi1—N1 = 2.505 (3) Å, Bi1—N2 = 2.474 (3) Å, Bi1—Cl1 = 2.7272 (10) Å, Bi1—Cl2 = 2.6708 (10) Å, Bi1—Cl3 = 2.7841 (12) Å, Bi1—Cl4 = 2.5853 (11) Å. All bond lengths are within commonly accepted values in the literature (James et al., 2000; Jarraya et al., 1995). The crystal structure of the [Bi(phen)I4]- salt has already been determined (Bowmaker et al., 1998), and the Bi atom therein is coordinated in a similar distorted octahedron by two N atoms and four I atoms.

The axial and equatorial I—Bi—I bond angles therein are 165.81 (3) and 111.59 (5)° as compared to Cl3—Bi1—Cl4 = 169.50 (4) and Cl1—Bi1—Cl2 = 117.18 (4)° , respectively. The large deviations of these bond angles from those in the perfect octahedron are probably derived from the inert electron pair effect of the Bi atom. A [Zn(phen)2Cl]+ cation balances charge in the salt. This coordinated cation has been reported elsewhere (Yu et al., 2006), with the Zn atom also located in a distorted trigonal-bipyramidal coordination.

In the crystal structure of I, hydrogen bonds and offset face-to face aromatic π-π stacking interactions lead to the formation of a three-dimensional supramolecular channel, and the solvent water molecules are located within. Firstly, the [Bi(phen)Cl4]- anion and [Zn(phen)2Cl]+ cations connect to each other by hydrogen bonding interactions (details listed in Table 1), and the result is the building up a supramolecular sheet. The hydrogen bonding data are in the normal range (Desiraju et al., 1999). Adjacent sheets are joined together by way of π-π stacking interactions between two phen ligands to form a three-dimensional framework (Chandrasekhar et al., 2006). The phen skeletons are arranged in a parallel fashion; ring 1 (N5/C25—C29) [symmetry code: (x, y, z)] of one cation stacks with ring 2 (C28—C33) [symmetry code: (1 - x, -y, 1 - z)] of a neighbouring cation with an interplanar distance of 3.643 (2) Å. As a result, through these π-π stacking interactions, the supramolecular sheets stack one by one to present a firm three-dimensional supramolecular channel, where the water molecules are located. Even if the water hydrogens could not be determined in the difference Fourier, the geometry around O1 strongly suggests H-bonding interactions between O1 and the neighbouring Cl atoms (O1···Cl3 : 3.3723 (7) Å ; O1···Cl5: 3.3776 (6) Å ).

Experimental

The title compound (I) was synthesized by hydrothermal reaction of ZnCl2 (136 mg, 1 mmol), Bi(NO3)3.5H2O (250 mg, 0.52 mmol), oxalic acid (380 mg, 3 mmol) and 1,10-phenanthroline monohydrate (400 mg, 2 mmol) in 5 mL water. The mixture was heated to 393 K at the rate of 20 K/h, and kept at this temperature for 2 days and then cooled to room temperature at the rate of 2 K/h. The yellow crystals of (I) were obtained in a yield of 18% (73 mg). Anal. Calc. for C36H26BiCl5N6OZn (%): C, 42.80; H, 2.59; N, 8.32; O, 1.58. Found: C, 42.96; H, 2.77; N, 8.23;O, 1.74. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement

All hydrogen atoms attached to C were added at calculated positions and refined using a riding model, (C-H: . Due to the presence of Bi in the structure, those pertaining to the hydration water O1 could not be found in the difference Fourier map and were not included in the model.

Figures

Fig. 1.

Fig. 1.

A view of the structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probabilithy level and H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

A packing diagram for I. The view shows a three-dimensional supramolecular channel along the a axis. The H atoms are shown as small spheres of arbitrary radii, and hydrogen bonds are indicated by dashed lines.

Crystal data

[ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2O Z = 2
Mr = 1010.25 F(000) = 980
Triclinic, P1 Dx = 1.854 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 9.748 (2) Å Cell parameters from 5205 reflections
b = 13.694 (4) Å θ = 2.1–27.5°
c = 14.249 (4) Å µ = 5.93 mm1
α = 86.848 (7)° T = 293 K
β = 74.660 (5)° Block, yellow
γ = 80.692 (7)° 0.40 × 0.30 × 0.30 mm
V = 1810.0 (8) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 8140 independent reflections
Radiation source: fine-focus sealed tube 7571 reflections with I > 2σ(I)
graphite Rint = 0.012
Detector resolution: 14.6306 pixels mm-1 θmax = 27.5°, θmin = 2.1°
CCD_Profile_fitting scans h = −12→12
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −17→17
Tmin = 0.200, Tmax = 0.269 l = −18→15
13923 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.035P)2 + 0.8909P] where P = (Fo2 + 2Fc2)/3
8140 reflections (Δ/σ)max = 0.003
451 parameters Δρmax = 1.76 e Å3
0 restraints Δρmin = −1.03 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Bi1 0.187173 (6) 0.746413 (5) 0.167412 (4) 0.03413 (2)
Zn1 0.78062 (2) 0.150812 (15) 0.327965 (15) 0.03602 (5)
Cl1 0.40709 (6) 0.82384 (5) 0.04129 (4) 0.06274 (16)
Cl3 0.35492 (8) 0.63095 (6) 0.27504 (5) 0.0836 (2)
Cl4 0.01178 (7) 0.82443 (4) 0.06630 (5) 0.07034 (15)
Cl5 0.62441 (5) 0.27909 (4) 0.29060 (5) 0.05442 (14)
Cl2 0.03588 (6) 0.85536 (4) 0.32106 (4) 0.06049 (15)
O1 0.4158 (4) 0.4571 (2) 0.4424 (2) 0.1368 (12)
N1 0.24551 (18) 0.60304 (12) 0.05446 (12) 0.0432 (4)
N2 0.01895 (17) 0.62449 (12) 0.21779 (12) 0.0430 (4)
N3 0.98388 (15) 0.12811 (11) 0.23401 (11) 0.0347 (4)
N4 0.89400 (17) 0.24614 (12) 0.39095 (12) 0.0404 (4)
N5 0.75232 (16) 0.04934 (12) 0.44323 (11) 0.0385 (4)
N6 0.68957 (17) 0.04085 (12) 0.27109 (11) 0.0412 (4)
C1 0.3532 (3) 0.59510 (18) −0.02525 (16) 0.0569 (6)
H1 0.4077 0.6462 −0.0419 0.068*
C2 0.3879 (3) 0.5125 (2) −0.08527 (18) 0.0699 (8)
H2 0.4652 0.5084 −0.1403 0.084*
C3 0.3071 (3) 0.43848 (18) −0.06212 (17) 0.0719 (7)
H3 0.3304 0.3826 −0.1008 0.086*
C4 0.1870 (3) 0.44578 (15) 0.02089 (16) 0.0568 (6)
C5 0.1617 (2) 0.53089 (14) 0.07824 (14) 0.0428 (5)
C6 0.0902 (3) 0.37504 (16) 0.04618 (19) 0.0721 (6)
H6 0.1071 0.3189 0.0084 0.087*
C7 −0.0242 (3) 0.38787 (16) 0.12303 (19) 0.0695 (6)
H7 −0.0870 0.3415 0.1366 0.083*
C8 −0.0520 (2) 0.47192 (15) 0.18510 (17) 0.0549 (5)
C9 0.0414 (2) 0.54307 (14) 0.16269 (14) 0.0420 (5)
C10 −0.1687 (3) 0.48762 (18) 0.2676 (2) 0.0683 (7)
H10 −0.2324 0.4419 0.2848 0.082*
C11 −0.1894 (3) 0.5695 (2) 0.3228 (2) 0.0694 (8)
H11 −0.2667 0.5801 0.3776 0.083*
C12 −0.0926 (2) 0.63737 (18) 0.29562 (18) 0.0554 (6)
H12 −0.1068 0.6933 0.3332 0.067*
C13 1.0301 (2) 0.06529 (15) 0.16107 (14) 0.0437 (5)
H13 0.9688 0.0232 0.1521 0.052*
C14 1.1661 (2) 0.05940 (17) 0.09739 (15) 0.0526 (6)
H14 1.1949 0.0137 0.0473 0.063*
C15 1.2568 (2) 0.12066 (18) 0.10860 (16) 0.0530 (6)
H15 1.3479 0.1176 0.0659 0.064*
C16 1.2123 (2) 0.18894 (15) 0.18524 (14) 0.0416 (5)
C17 1.07434 (18) 0.18846 (13) 0.24784 (12) 0.0331 (4)
C18 1.2984 (2) 0.25820 (17) 0.20192 (17) 0.0519 (6)
H18 1.3886 0.2605 0.1594 0.062*
C19 1.2519 (2) 0.31960 (16) 0.27741 (18) 0.0536 (6)
H19 1.3092 0.3650 0.2854 0.064*
C20 1.1157 (2) 0.31706 (14) 0.34626 (16) 0.0456 (5)
C21 1.02573 (18) 0.25202 (13) 0.33039 (13) 0.0358 (4)
C22 1.0659 (3) 0.37315 (16) 0.43134 (18) 0.0578 (6)
H22 1.1224 0.4159 0.4458 0.069*
C23 0.9347 (3) 0.36507 (16) 0.49287 (17) 0.0591 (6)
H23 0.9023 0.4011 0.5501 0.071*
C24 0.8495 (2) 0.30251 (16) 0.46956 (16) 0.0503 (6)
H24 0.7583 0.3001 0.5104 0.060*
C25 0.7844 (2) 0.05377 (17) 0.52733 (15) 0.0505 (6)
H25 0.8275 0.1065 0.5380 0.061*
C26 0.7559 (3) −0.01784 (19) 0.60065 (17) 0.0638 (7)
H26 0.7792 −0.0120 0.6591 0.077*
C27 0.6945 (3) −0.09541 (18) 0.58647 (17) 0.0606 (7)
H27 0.6725 −0.1421 0.6359 0.073*
C28 0.6640 (2) −0.10539 (15) 0.49649 (16) 0.0472 (6)
C29 0.69474 (18) −0.03026 (13) 0.42664 (14) 0.0369 (4)
C30 0.6035 (2) −0.18692 (17) 0.47345 (19) 0.0613 (7)
H30 0.5856 −0.2380 0.5187 0.074*
C31 0.5726 (2) −0.19043 (17) 0.3879 (2) 0.0610 (7)
H31 0.5316 −0.2435 0.3754 0.073*
C32 0.6008 (2) −0.11468 (15) 0.31452 (17) 0.0482 (6)
C33 0.66186 (18) −0.03468 (14) 0.33480 (14) 0.0378 (5)
C34 0.5661 (2) −0.11203 (18) 0.22484 (18) 0.0595 (6)
H34 0.5259 −0.1635 0.2081 0.071*
C35 0.5913 (2) −0.03448 (19) 0.16243 (17) 0.0596 (6)
H35 0.5667 −0.0320 0.1035 0.071*
C36 0.6542 (2) 0.04149 (17) 0.18741 (16) 0.0518 (6)
H36 0.6719 0.0941 0.1441 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Bi1 0.03586 (3) 0.03625 (3) 0.03228 (3) −0.00975 (2) −0.00893 (2) −0.00470 (2)
Zn1 0.03522 (9) 0.03824 (10) 0.03538 (10) −0.00949 (8) −0.00859 (8) 0.00157 (8)
Cl1 0.0602 (3) 0.0771 (3) 0.0524 (3) −0.0367 (2) −0.0012 (2) −0.0027 (2)
Cl3 0.0772 (4) 0.1053 (5) 0.0550 (3) 0.0289 (4) −0.0178 (3) −0.0103 (3)
Cl4 0.0946 (3) 0.0496 (3) 0.0893 (3) −0.0090 (3) −0.0637 (3) −0.0025 (2)
Cl5 0.0441 (2) 0.0436 (2) 0.0793 (3) −0.00778 (19) −0.0237 (2) 0.0085 (2)
Cl2 0.0624 (3) 0.0617 (3) 0.0540 (3) 0.0005 (2) −0.0108 (2) −0.0227 (2)
O1 0.147 (2) 0.143 (2) 0.117 (2) −0.033 (2) −0.0196 (19) −0.0161 (19)
N1 0.0500 (8) 0.0410 (8) 0.0382 (8) −0.0010 (7) −0.0127 (7) −0.0069 (6)
N2 0.0451 (8) 0.0410 (8) 0.0453 (8) −0.0138 (6) −0.0118 (7) 0.0009 (7)
N3 0.0368 (7) 0.0334 (7) 0.0332 (7) −0.0038 (6) −0.0088 (6) 0.0005 (6)
N4 0.0410 (7) 0.0396 (7) 0.0414 (8) −0.0051 (6) −0.0114 (6) −0.0062 (6)
N5 0.0396 (7) 0.0403 (8) 0.0351 (7) −0.0013 (6) −0.0119 (6) 0.0014 (6)
N6 0.0454 (7) 0.0444 (8) 0.0390 (8) −0.0134 (6) −0.0164 (6) 0.0018 (6)
C1 0.0560 (12) 0.0624 (13) 0.0489 (11) 0.0006 (10) −0.0109 (10) −0.0132 (10)
C2 0.0759 (15) 0.0763 (15) 0.0503 (12) 0.0219 (13) −0.0187 (11) −0.0278 (11)
C3 0.1028 (16) 0.0555 (12) 0.0625 (12) 0.0276 (12) −0.0483 (11) −0.0279 (10)
C4 0.0866 (12) 0.0337 (9) 0.0613 (10) 0.0111 (9) −0.0489 (9) −0.0104 (8)
C5 0.0569 (9) 0.0329 (8) 0.0471 (9) −0.0016 (7) −0.0315 (7) −0.0014 (7)
C6 0.1195 (14) 0.0295 (9) 0.0942 (13) 0.0001 (10) −0.0803 (11) −0.0059 (9)
C7 0.1020 (13) 0.0343 (9) 0.1019 (14) −0.0225 (9) −0.0745 (11) 0.0173 (10)
C8 0.0716 (10) 0.0383 (9) 0.0753 (11) −0.0222 (8) −0.0511 (9) 0.0218 (8)
C9 0.0506 (9) 0.0354 (8) 0.0496 (9) −0.0100 (7) −0.0295 (7) 0.0094 (7)
C10 0.0674 (11) 0.0634 (12) 0.0915 (15) −0.0389 (10) −0.0414 (11) 0.0387 (11)
C11 0.0554 (12) 0.0791 (15) 0.0740 (16) −0.0308 (11) −0.0097 (12) 0.0206 (13)
C12 0.0490 (10) 0.0583 (12) 0.0583 (13) −0.0170 (9) −0.0080 (10) 0.0022 (10)
C13 0.0487 (9) 0.0429 (9) 0.0400 (9) −0.0067 (8) −0.0118 (8) −0.0043 (8)
C14 0.0557 (11) 0.0562 (12) 0.0382 (10) −0.0004 (10) −0.0025 (9) −0.0071 (9)
C15 0.0394 (10) 0.0659 (13) 0.0440 (11) −0.0014 (10) 0.0011 (9) 0.0035 (10)
C16 0.0341 (8) 0.0483 (10) 0.0405 (9) −0.0041 (8) −0.0101 (7) 0.0107 (8)
C17 0.0340 (7) 0.0338 (8) 0.0329 (8) −0.0036 (6) −0.0134 (6) 0.0057 (6)
C18 0.0347 (8) 0.0642 (12) 0.0584 (12) −0.0164 (8) −0.0129 (8) 0.0159 (10)
C19 0.0462 (9) 0.0524 (11) 0.0710 (13) −0.0209 (8) −0.0251 (9) 0.0109 (10)
C20 0.0505 (9) 0.0366 (9) 0.0594 (11) −0.0109 (8) −0.0297 (8) 0.0038 (8)
C21 0.0367 (8) 0.0327 (8) 0.0414 (9) −0.0045 (7) −0.0171 (7) 0.0013 (7)
C22 0.0693 (11) 0.0424 (10) 0.0745 (13) −0.0137 (9) −0.0362 (10) −0.0084 (9)
C23 0.0770 (14) 0.0485 (11) 0.0558 (12) −0.0079 (10) −0.0216 (10) −0.0190 (9)
C24 0.0558 (11) 0.0478 (10) 0.0458 (10) −0.0064 (9) −0.0092 (9) −0.0114 (8)
C25 0.0591 (11) 0.0534 (11) 0.0411 (10) −0.0002 (9) −0.0219 (8) 0.0015 (9)
C26 0.0781 (14) 0.0688 (15) 0.0427 (11) 0.0056 (12) −0.0243 (10) 0.0070 (10)
C27 0.0637 (13) 0.0607 (13) 0.0459 (11) 0.0065 (11) −0.0078 (10) 0.0189 (10)
C28 0.0383 (9) 0.0436 (10) 0.0500 (11) 0.0023 (8) −0.0014 (8) 0.0089 (9)
C29 0.0285 (7) 0.0381 (9) 0.0391 (9) −0.0002 (7) −0.0036 (7) 0.0029 (7)
C30 0.0521 (11) 0.0488 (11) 0.0740 (15) −0.0122 (10) −0.0022 (11) 0.0196 (11)
C31 0.0511 (11) 0.0444 (10) 0.0840 (17) −0.0184 (9) −0.0058 (11) 0.0039 (11)
C32 0.0394 (9) 0.0416 (9) 0.0618 (12) −0.0105 (8) −0.0064 (9) −0.0055 (9)
C33 0.0293 (7) 0.0401 (9) 0.0419 (9) −0.0055 (7) −0.0053 (7) −0.0004 (7)
C34 0.0540 (10) 0.0629 (12) 0.0679 (13) −0.0198 (10) −0.0170 (10) −0.0164 (10)
C35 0.0634 (11) 0.0718 (13) 0.0526 (11) −0.0185 (11) −0.0236 (9) −0.0124 (10)
C36 0.0611 (11) 0.0574 (11) 0.0429 (10) −0.0173 (9) −0.0194 (9) 0.0016 (9)

Geometric parameters (Å, °)

Bi1—N2 2.4745 (17) C12—H12 0.9300
Bi1—N1 2.5041 (17) C13—C14 1.387 (3)
Bi1—Cl4 2.5853 (8) C13—H13 0.9300
Bi1—Cl2 2.6708 (8) C14—C15 1.356 (4)
Bi1—Cl1 2.7271 (7) C14—H14 0.9300
Bi1—Cl3 2.7838 (9) C15—C16 1.409 (3)
Zn1—N3 2.0635 (14) C15—H15 0.9300
Zn1—N5 2.0828 (16) C16—C17 1.404 (2)
Zn1—N6 2.1586 (18) C16—C18 1.431 (3)
Zn1—N4 2.2026 (18) C17—C21 1.432 (2)
Zn1—Cl5 2.2690 (7) C18—C19 1.337 (3)
N1—C1 1.323 (3) C18—H18 0.9300
N1—C5 1.355 (3) C19—C20 1.431 (3)
N2—C12 1.329 (3) C19—H19 0.9300
N2—C9 1.354 (3) C20—C22 1.402 (3)
N3—C13 1.322 (2) C20—C21 1.412 (3)
N3—C17 1.358 (2) C22—C23 1.363 (3)
N4—C24 1.330 (3) C22—H22 0.9300
N4—C21 1.356 (2) C23—C24 1.393 (3)
N5—C25 1.323 (3) C23—H23 0.9300
N5—C29 1.362 (3) C24—H24 0.9300
N6—C36 1.325 (3) C25—C26 1.397 (3)
N6—C33 1.351 (2) C25—H25 0.9300
C1—C2 1.398 (3) C26—C27 1.349 (4)
C1—H1 0.9300 C26—H26 0.9300
C2—C3 1.357 (4) C27—C28 1.409 (4)
C2—H2 0.9300 C27—H27 0.9300
C3—C4 1.422 (3) C28—C29 1.403 (3)
C3—H3 0.9300 C28—C30 1.434 (3)
C4—C5 1.411 (3) C29—C33 1.434 (3)
C4—C6 1.427 (3) C30—C31 1.336 (4)
C5—C9 1.436 (3) C30—H30 0.9300
C6—C7 1.336 (4) C31—C32 1.437 (3)
C6—H6 0.9300 C31—H31 0.9300
C7—C8 1.437 (3) C32—C34 1.403 (4)
C7—H7 0.9300 C32—C33 1.405 (3)
C8—C10 1.401 (3) C34—C35 1.358 (4)
C8—C9 1.407 (3) C34—H34 0.9300
C10—C11 1.363 (4) C35—C36 1.396 (3)
C10—H10 0.9300 C35—H35 0.9300
C11—C12 1.397 (3) C36—H36 0.9300
C11—H11 0.9300
N2—Bi1—N1 66.87 (6) N2—C12—C11 122.1 (2)
N2—Bi1—Cl4 84.27 (5) N2—C12—H12 119.0
N1—Bi1—Cl4 85.90 (5) C11—C12—H12 119.0
N2—Bi1—Cl2 88.88 (4) N3—C13—C14 122.8 (2)
N1—Bi1—Cl2 155.73 (4) N3—C13—H13 118.6
Cl4—Bi1—Cl2 91.03 (3) C14—C13—H13 118.6
N2—Bi1—Cl1 153.56 (4) C15—C14—C13 119.6 (2)
N1—Bi1—Cl1 86.95 (4) C15—C14—H14 120.2
Cl4—Bi1—Cl1 90.49 (3) C13—C14—H14 120.2
Cl2—Bi1—Cl1 117.18 (2) C14—C15—C16 119.66 (18)
N2—Bi1—Cl3 86.01 (5) C14—C15—H15 120.2
N1—Bi1—Cl3 86.63 (5) C16—C15—H15 120.2
Cl4—Bi1—Cl3 169.50 (2) C17—C16—C15 117.14 (19)
Cl2—Bi1—Cl3 92.75 (3) C17—C16—C18 118.88 (18)
Cl1—Bi1—Cl3 96.48 (3) C15—C16—C18 123.98 (18)
N3—Zn1—N5 113.48 (6) N3—C17—C16 122.25 (16)
N3—Zn1—N6 98.12 (6) N3—C17—C21 117.79 (15)
N5—Zn1—N6 78.81 (7) C16—C17—C21 119.95 (17)
N3—Zn1—N4 78.42 (6) C19—C18—C16 121.28 (18)
N5—Zn1—N4 96.10 (7) C19—C18—H18 119.4
N6—Zn1—N4 172.24 (6) C16—C18—H18 119.4
N3—Zn1—Cl5 116.25 (5) C18—C19—C20 121.5 (2)
N5—Zn1—Cl5 130.27 (4) C18—C19—H19 119.3
N6—Zn1—Cl5 93.82 (5) C20—C19—H19 119.3
N4—Zn1—Cl5 93.95 (5) C22—C20—C21 116.82 (18)
C1—N1—C5 119.74 (18) C22—C20—C19 124.3 (2)
C1—N1—Bi1 123.11 (15) C21—C20—C19 118.81 (19)
C5—N1—Bi1 117.14 (12) N4—C21—C20 122.70 (17)
C12—N2—C9 119.59 (18) N4—C21—C17 117.84 (17)
C12—N2—Bi1 122.15 (15) C20—C21—C17 119.46 (16)
C9—N2—Bi1 118.25 (12) C23—C22—C20 120.0 (2)
C13—N3—C17 118.48 (15) C23—C22—H22 120.0
C13—N3—Zn1 126.69 (14) C20—C22—H22 120.0
C17—N3—Zn1 114.75 (11) C22—C23—C24 119.6 (2)
C24—N4—C21 118.43 (18) C22—C23—H23 120.2
C24—N4—Zn1 131.04 (14) C24—C23—H23 120.2
C21—N4—Zn1 110.17 (12) N4—C24—C23 122.4 (2)
C25—N5—C29 118.35 (17) N4—C24—H24 118.8
C25—N5—Zn1 127.75 (15) C23—C24—H24 118.8
C29—N5—Zn1 113.89 (13) N5—C25—C26 122.4 (2)
C36—N6—C33 119.11 (18) N5—C25—H25 118.8
C36—N6—Zn1 128.84 (14) C26—C25—H25 118.8
C33—N6—Zn1 111.98 (13) C27—C26—C25 119.9 (2)
N1—C1—C2 122.3 (2) C27—C26—H26 120.1
N1—C1—H1 118.9 C25—C26—H26 120.1
C2—C1—H1 118.9 C26—C27—C28 119.7 (2)
C3—C2—C1 119.1 (2) C26—C27—H27 120.2
C3—C2—H2 120.5 C28—C27—H27 120.2
C1—C2—H2 120.5 C29—C28—C27 117.1 (2)
C2—C3—C4 120.4 (2) C29—C28—C30 119.1 (2)
C2—C3—H3 119.8 C27—C28—C30 123.7 (2)
C4—C3—H3 119.8 N5—C29—C28 122.45 (19)
C5—C4—C3 116.5 (2) N5—C29—C33 117.80 (16)
C5—C4—C6 119.4 (2) C28—C29—C33 119.74 (19)
C3—C4—C6 124.0 (2) C31—C30—C28 120.8 (2)
N1—C5—C4 121.85 (18) C31—C30—H30 119.6
N1—C5—C9 118.84 (17) C28—C30—H30 119.6
C4—C5—C9 119.29 (19) C30—C31—C32 122.0 (2)
C7—C6—C4 121.3 (2) C30—C31—H31 119.0
C7—C6—H6 119.4 C32—C31—H31 119.0
C4—C6—H6 119.4 C34—C32—C33 116.9 (2)
C6—C7—C8 121.3 (2) C34—C32—C31 124.8 (2)
C6—C7—H7 119.4 C33—C32—C31 118.3 (2)
C8—C7—H7 119.4 N6—C33—C32 122.45 (19)
C10—C8—C9 117.5 (2) N6—C33—C29 117.52 (17)
C10—C8—C7 123.4 (2) C32—C33—C29 120.03 (18)
C9—C8—C7 119.1 (2) C35—C34—C32 120.1 (2)
N2—C9—C8 121.52 (18) C35—C34—H34 119.9
N2—C9—C5 118.83 (17) C32—C34—H34 119.9
C8—C9—C5 119.63 (18) C34—C35—C36 119.5 (2)
C11—C10—C8 120.3 (2) C34—C35—H35 120.2
C11—C10—H10 119.8 C36—C35—H35 120.2
C8—C10—H10 119.8 N6—C36—C35 121.9 (2)
C10—C11—C12 119.0 (2) N6—C36—H36 119.0
C10—C11—H11 120.5 C35—C36—H36 119.0
C12—C11—H11 120.5
N2—Bi1—N1—C1 178.34 (19) C7—C8—C10—C11 −179.4 (2)
Cl4—Bi1—N1—C1 92.83 (17) C8—C10—C11—C12 0.1 (4)
Cl2—Bi1—N1—C1 176.22 (14) C9—N2—C12—C11 −0.4 (4)
Cl1—Bi1—N1—C1 2.12 (17) Bi1—N2—C12—C11 178.55 (19)
Cl3—Bi1—N1—C1 −94.56 (17) C10—C11—C12—N2 −0.1 (4)
N2—Bi1—N1—C5 −2.14 (14) C17—N3—C13—C14 −0.9 (3)
Cl4—Bi1—N1—C5 −87.65 (14) Zn1—N3—C13—C14 175.64 (16)
Cl2—Bi1—N1—C5 −4.3 (2) N3—C13—C14—C15 −0.6 (3)
Cl1—Bi1—N1—C5 −178.36 (14) C13—C14—C15—C16 0.5 (3)
Cl3—Bi1—N1—C5 84.96 (14) C14—C15—C16—C17 1.0 (3)
N1—Bi1—N2—C12 −178.07 (19) C14—C15—C16—C18 −178.5 (2)
Cl4—Bi1—N2—C12 −90.09 (17) C13—N3—C17—C16 2.6 (3)
Cl2—Bi1—N2—C12 1.06 (17) Zn1—N3—C17—C16 −174.40 (14)
Cl1—Bi1—N2—C12 −169.56 (14) C13—N3—C17—C21 −176.49 (17)
Cl3—Bi1—N2—C12 93.90 (17) Zn1—N3—C17—C21 6.5 (2)
N1—Bi1—N2—C9 0.89 (14) C15—C16—C17—N3 −2.6 (3)
Cl4—Bi1—N2—C9 88.87 (14) C18—C16—C17—N3 176.91 (18)
Cl2—Bi1—N2—C9 −179.98 (14) C15—C16—C17—C21 176.45 (18)
Cl1—Bi1—N2—C9 9.4 (2) C18—C16—C17—C21 −4.1 (3)
Cl3—Bi1—N2—C9 −87.14 (14) C17—C16—C18—C19 2.2 (3)
N5—Zn1—N3—C13 83.48 (17) C15—C16—C18—C19 −178.3 (2)
N6—Zn1—N3—C13 2.21 (17) C16—C18—C19—C20 1.7 (3)
N4—Zn1—N3—C13 175.16 (17) C18—C19—C20—C22 174.2 (2)
Cl5—Zn1—N3—C13 −96.15 (16) C18—C19—C20—C21 −3.7 (3)
N5—Zn1—N3—C17 −99.84 (13) C24—N4—C21—C20 −1.5 (3)
N6—Zn1—N3—C17 178.89 (12) Zn1—N4—C21—C20 172.35 (15)
N4—Zn1—N3—C17 −8.17 (12) C24—N4—C21—C17 177.89 (18)
Cl5—Zn1—N3—C17 80.53 (13) Zn1—N4—C21—C17 −8.2 (2)
N3—Zn1—N4—C24 −178.41 (19) C22—C20—C21—N4 3.1 (3)
N5—Zn1—N4—C24 −65.64 (19) C19—C20—C21—N4 −178.80 (19)
Cl5—Zn1—N4—C24 65.59 (18) C22—C20—C21—C17 −176.29 (18)
N3—Zn1—N4—C21 8.74 (12) C19—C20—C21—C17 1.8 (3)
N5—Zn1—N4—C21 121.51 (12) N3—C17—C21—N4 1.7 (2)
Cl5—Zn1—N4—C21 −107.27 (12) C16—C17—C21—N4 −177.41 (17)
N3—Zn1—N5—C25 85.42 (17) N3—C17—C21—C20 −178.89 (17)
N6—Zn1—N5—C25 179.49 (17) C16—C17—C21—C20 2.0 (3)
N4—Zn1—N5—C25 5.42 (16) C21—C20—C22—C23 −1.6 (3)
Cl5—Zn1—N5—C25 −95.02 (16) C19—C20—C22—C23 −179.5 (2)
N3—Zn1—N5—C29 −94.02 (12) C20—C22—C23—C24 −1.4 (4)
N6—Zn1—N5—C29 0.06 (11) C21—N4—C24—C23 −1.7 (3)
N4—Zn1—N5—C29 −174.01 (11) Zn1—N4—C24—C23 −174.04 (17)
Cl5—Zn1—N5—C29 85.55 (12) C22—C23—C24—N4 3.2 (4)
N3—Zn1—N6—C36 −70.90 (17) C29—N5—C25—C26 −2.7 (3)
N5—Zn1—N6—C36 176.64 (17) Zn1—N5—C25—C26 177.91 (16)
Cl5—Zn1—N6—C36 46.31 (17) N5—C25—C26—C27 0.5 (3)
N3—Zn1—N6—C33 112.22 (12) C25—C26—C27—C28 2.1 (3)
N5—Zn1—N6—C33 −0.24 (11) C26—C27—C28—C29 −2.5 (3)
Cl5—Zn1—N6—C33 −130.57 (11) C26—C27—C28—C30 177.8 (2)
C5—N1—C1—C2 −2.3 (3) C25—N5—C29—C28 2.2 (3)
Bi1—N1—C1—C2 177.25 (19) Zn1—N5—C29—C28 −178.29 (13)
N1—C1—C2—C3 1.1 (4) C25—N5—C29—C33 −179.36 (16)
C1—C2—C3—C4 1.3 (4) Zn1—N5—C29—C33 0.13 (19)
C2—C3—C4—C5 −2.5 (4) C27—C28—C29—N5 0.3 (3)
C2—C3—C4—C6 175.1 (2) C30—C28—C29—N5 −179.94 (17)
C1—N1—C5—C4 0.9 (3) C27—C28—C29—C33 −178.05 (17)
Bi1—N1—C5—C4 −178.59 (15) C30—C28—C29—C33 1.7 (3)
C1—N1—C5—C9 −177.2 (2) C29—C28—C30—C31 −2.0 (3)
Bi1—N1—C5—C9 3.2 (2) C27—C28—C30—C31 177.8 (2)
C3—C4—C5—N1 1.4 (3) C28—C30—C31—C32 1.3 (3)
C6—C4—C5—N1 −176.3 (2) C30—C31—C32—C34 −177.5 (2)
C3—C4—C5—C9 179.5 (2) C30—C31—C32—C33 −0.4 (3)
C6—C4—C5—C9 1.9 (3) C36—N6—C33—C32 2.1 (3)
C5—C4—C6—C7 0.1 (4) Zn1—N6—C33—C32 179.28 (13)
C3—C4—C6—C7 −177.3 (2) C36—N6—C33—C29 −176.84 (16)
C4—C6—C7—C8 −1.9 (4) Zn1—N6—C33—C29 0.38 (19)
C6—C7—C8—C10 −178.7 (2) C34—C32—C33—N6 −1.4 (3)
C6—C7—C8—C9 1.6 (4) C31—C32—C33—N6 −178.71 (17)
C12—N2—C9—C8 0.8 (3) C34—C32—C33—C29 177.48 (17)
Bi1—N2—C9—C8 −178.14 (15) C31—C32—C33—C29 0.2 (3)
C12—N2—C9—C5 179.3 (2) N5—C29—C33—N6 −0.4 (2)
Bi1—N2—C9—C5 0.4 (2) C28—C29—C33—N6 178.11 (16)
C10—C8—C9—N2 −0.8 (3) N5—C29—C33—C32 −179.28 (15)
C7—C8—C9—N2 178.9 (2) C28—C29—C33—C32 −0.8 (2)
C10—C8—C9—C5 −179.3 (2) C33—C32—C34—C35 −0.3 (3)
C7—C8—C9—C5 0.4 (3) C31—C32—C34—C35 176.9 (2)
N1—C5—C9—N2 −2.4 (3) C32—C34—C35—C36 1.2 (3)
C4—C5—C9—N2 179.33 (19) C33—N6—C36—C35 −1.1 (3)
N1—C5—C9—C8 176.08 (19) Zn1—N6—C36—C35 −177.77 (15)
C4—C5—C9—C8 −2.1 (3) C34—C35—C36—N6 −0.5 (3)
C9—C8—C10—C11 0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···Cl3i 0.93 2.82 3.588 (4) 141.
C6—H6···Cl4ii 0.93 2.82 3.637 (4) 147.
C10—H10···Cl5iii 0.93 2.80 3.707 (4) 164.
C15—H15···Cl1iv 0.93 2.69 3.579 (4) 160.
C25—H25···Cl2v 0.93 2.80 3.506 (4) 134.

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) x−1, y, z; (iv) −x+2, −y+1, −z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2383).

References

  1. Bowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 317–324.
  2. Carmalt, C. J., Farrugia, L. J. & Norman, N. C. (1995). Z. Anorg. Allg. Chem. 621, 47–56.
  3. Chandrasekhar, V., Thilagar, P., Steiner, A. & Bickley, J. F. (2006). Chem. Eur. J. 12, 8847–8861. [DOI] [PubMed]
  4. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86–89. Oxford University Press.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. James, S. C., Lawson, Y. G., Norman, N. C., Orpen, A. G. & Quayle, M. J. (2000). Acta Cryst. C56, 427–429. [PubMed]
  7. Jarraya, S., Ben Hassen, R., Daoud, A. & Jouini, T. (1995). Acta Cryst. C51, 2537–2538.
  8. Mitzi, D. B. & Brock, P. (2001). Inorg. Chem. 40, 2096–2104. [DOI] [PubMed]
  9. Papavassiliou, G. C., Koutselas, I. B., Terzis, A. & Raptopolou, C. P. (1995). Z. Naturforsch. Teil B, 50, 1566–1569.
  10. Pohl, S., Peter, M., Haase, D. & Saak, W. (1994). Z. Naturforsch. Teil B, 49, 741–746.
  11. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  12. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Yu, C.-H. & Zhang, R.-C. (2006). Acta Cryst. E62, m1758–m1759.
  16. Zhu, X.-H., Mercier, N., Frere, P., Blanchard, P., Roncali, J., Allain, M., Pasquier, C. & Riou, A. (2003). Inorg. Chem. 42, 5330–5339. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052682/bg2383sup1.cif

e-67-0m109-sup1.cif (31.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052682/bg2383Isup2.hkl

e-67-0m109-Isup2.hkl (398.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES