Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):m32–m33. doi: 10.1107/S1600536810050038

Tetra­ethyl­ammonium dibromido­tricarbon­yl(o-toluidine)rhenate(I)

Alice Brink a,*, Hendrik G Visser a, Andreas Roodt a
PMCID: PMC3050163  PMID: 21522556

Abstract

In the title compound, (C8H20N)[ReBr2(C7H9N)(CO)3], the ReI atom is octa­hedrally surrounded by three carbonyl ligands orientated in a facial arrangement, two bromide ligands and an o-toluidine ligand. The amine lies trans to the carbonyl ligand and is substitutionally disordered over two positions in a 0.66 (1):0.34 (1) ratio. An array of C—H⋯O, C—H⋯Br and N—H⋯Br hydrogen-bonding inter­actions between the cations and the surrounding rhenate anions stabilize the crystal structure.

Related literature

For the synthesis of the ReI–tricarbonyl synthon, see: Alberto et al. (1996); Brink et al. (2009). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006); Schutte et al. (2008, 2009, 2010); Wei et al. (2003); Schibli et al. (2000). For kinetic studies of related Re compounds, see: Smith et al. (1996); Abou-Hamdan et al. (1998). For related dibromido structures, see: Alberto et al. (1999); Abram et al. (1998).graphic file with name e-67-00m32-scheme1.jpg

Experimental

Crystal data

  • (C8H20N)[ReBr2(C7H9N)(CO)3]

  • M r = 667.45

  • Monoclinic, Inline graphic

  • a = 10.776 (2) Å

  • b = 18.466 (4) Å

  • c = 11.745 (2) Å

  • β = 106.74 (3)°

  • V = 2238.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.02 mm−1

  • T = 100 K

  • 0.42 × 0.32 × 0.08 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.116, T max = 0.532

  • 45095 measured reflections

  • 5371 independent reflections

  • 4411 reflections with I > 2σ(I)

  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.086

  • S = 1.06

  • 5371 reflections

  • 270 parameters

  • H-atom parameters constrained

  • Δρmax = 2.5 e Å−3

  • Δρmin = −2.99 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050038/bt5421sup1.cif

e-67-00m32-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050038/bt5421Isup2.hkl

e-67-00m32-Isup2.hkl (257.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Br2i 0.92 2.7 3.542 (4) 153
N1—H1B⋯Br1i 0.92 2.75 3.594 (4) 153
C121—H12C⋯O03ii 0.98 2.5 3.139 (10) 123
C35—H35B⋯O03iii 0.99 2.39 3.196 (7) 138
C37—H37A⋯Br1iv 0.99 2.92 3.911 (6) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA–NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.

supplementary crystallographic information

Comment

The structure forms part of an ongoing investigation aimed at determining the structural and kinetic behaviour of fac-rhenium tricarbonyl complexes. Various rhenium bi- and tridentate tricarbonyl ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006, Schutte et al., 2009, 2008, 2010, Wei et al., 2003, Schibli et al., 2000). A few crystallographic studies on dibromido monodentate rhenium compounds have been reported in literature (Alberto et al., 1999, Abram et al., 1998).

The title complex crystallized as a distorted octahedral anionic ReI compound with one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The coordinated amine lies in an axial position below the equatorial plane, defined as Br1—Br2—C02—C03, and trans to a carbonyl ligand. It is disordered over two positions and the plane through the aromatic carbons lies at an angle of 35.2 (2)° to the equatorial plane. The Re—N bond distance (2.241 (4) Å) is longer than for the rhenium acetonitrile analogue (2.150 (6) Å) (Abram et al., 1998).

The longer Re—Br bond lengths (2.6390 (7) Å and 2.6370 (8) Å) are induced by the facially coordinated carbonyl ligands and compares well with related structures (Abram et al., 1998, Schutte et al., 2010). Intermolecular C—H···O, C—H···Br and N—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations.

Experimental

[NEt4]2[Re(CO)3Br3] (0.13 mmol) (synthesized according to Alberto et al. (1996)) was dissolved in 6 ml methanol. The ligand 2-(o-tolyliminomethyl)phenol (0.14 mmol) (for related synthesis see Brink et al., 2009), containing 10% o-toluidine as byproduct, was dissolved in 6 ml MeOH and slowly added. The reaction mixture was stirred for 2 h at room temperature. Crystals of the title complex whereby the Re bonded preferentially to the amine were obtained by the slow evaporation of the solvent at 4°C.

Refinement

The aromatic and aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5eq(Cmethyl). The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest peak in the final difference map are located 0.81Å from Re1. The minor occupied atoms were refined isotropically.

Figures

Fig. 1.

Fig. 1.

Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Representation of the hydrogen-bonding interactions (only one complete molecular structure (symm. op.: x, y, z) is shown).

Crystal data

(C8H20N)[ReBr2(C7H9N)(CO)3] F(000) = 1280
Mr = 667.45 Dx = 1.981 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9885 reflections
a = 10.776 (2) Å θ = 3.2–28.3°
b = 18.466 (4) Å µ = 9.02 mm1
c = 11.745 (2) Å T = 100 K
β = 106.74 (3)° Plate, yellow
V = 2238.2 (8) Å3 0.42 × 0.32 × 0.08 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer 5371 independent reflections
Radiation source: sealed tube 4411 reflections with I > 2σ(I)
graphite Rint = 0.072
Detector resolution: 512 pixels mm-1 θmax = 28°, θmin = 3.2°
ω and φ scans h = −14→13
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −24→24
Tmin = 0.116, Tmax = 0.532 l = −15→15
45095 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0446P)2 + 2.6175P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 2.5 e Å3
5371 reflections Δρmin = −2.99 e Å3
270 parameters

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1977 frames were collected with a frame width of 0.5° covering up to θ = 28.0° with 99.4% completeness accomplished
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Re1 0.735442 (18) 0.985810 (11) 0.808028 (15) 0.01480 (7)
Br1 0.81038 (5) 0.89501 (3) 0.98836 (4) 0.01871 (12)
Br2 0.95834 (5) 0.96560 (3) 0.76184 (4) 0.01895 (12)
N1 0.8495 (4) 1.0651 (2) 0.9422 (3) 0.0174 (9)
H1A 0.8563 1.0468 1.0166 0.021* 0.659 (10)
H1B 0.932 1.0671 0.9343 0.021* 0.659 (10)
H1C 0.888 1.0409 1.0119 0.021* 0.341 (10)
H1D 0.9145 1.0842 0.9148 0.021* 0.341 (10)
N2 0.8171 (4) 0.8488 (2) 0.3722 (3) 0.0165 (8)
O01 0.6021 (4) 0.8662 (2) 0.6363 (3) 0.0324 (10)
O02 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9)
O03 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11)
C01 0.6523 (5) 0.9121 (3) 0.7010 (4) 0.0208 (11)
C02 0.6823 (5) 1.0544 (3) 0.6816 (4) 0.0211 (11)
C03 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11)
C11 0.8014 (8) 1.1388 (5) 0.9379 (8) 0.0200 (19) 0.659 (10)
C12 0.7270 (8) 1.1603 (5) 1.0104 (7) 0.022 (2) 0.659 (10)
C13 0.6778 (8) 1.2305 (5) 0.9964 (9) 0.025 (2) 0.659 (10)
H13 0.627 1.2465 1.0456 0.03* 0.659 (10)
C14 0.7005 (8) 1.2773 (6) 0.9139 (8) 0.025 (2) 0.659 (10)
H14 0.6648 1.3247 0.9058 0.03* 0.659 (10)
C15 0.7754 (8) 1.2551 (5) 0.8425 (7) 0.025 (2) 0.659 (10)
H15 0.7924 1.2871 0.7854 0.03* 0.659 (10)
C16 0.8250 (9) 1.1859 (6) 0.8557 (8) 0.023 (2) 0.659 (10)
H16 0.8766 1.1703 0.807 0.027* 0.659 (10)
C121 0.7031 (9) 1.1098 (5) 1.1036 (9) 0.032 (2) 0.659 (10)
H12A 0.638 1.1311 1.1371 0.048* 0.659 (10)
H12B 0.7841 1.1025 1.167 0.048* 0.659 (10)
H12C 0.6717 1.0631 1.0669 0.048* 0.659 (10)
C25 0.6163 (16) 1.1668 (10) 1.0700 (14) 0.029 (4)* 0.341 (10)
H25 0.5649 1.1593 1.1224 0.035* 0.341 (10)
C22 0.7679 (15) 1.1900 (9) 0.9138 (13) 0.021 (4)* 0.341 (10)
C24 0.615 (2) 1.2320 (11) 1.0160 (16) 0.032 (4)* 0.341 (10)
H24 0.5629 1.2698 1.0328 0.039* 0.341 (10)
C23 0.6844 (18) 1.2448 (12) 0.9392 (19) 0.020 (4)* 0.341 (10)
H23 0.6782 1.2906 0.9013 0.025* 0.341 (10)
C21 0.7704 (18) 1.1241 (11) 0.9674 (16) 0.020 (5)* 0.341 (10)
C26 0.6933 (16) 1.1111 (10) 1.0483 (16) 0.019 (4)* 0.341 (10)
H26 0.6955 1.0653 1.0859 0.023* 0.341 (10)
C221 0.8433 (19) 1.2027 (11) 0.8293 (17) 0.018 (5)* 0.341 (10)
H22A 0.8303 1.2526 0.8002 0.027* 0.341 (10)
H22B 0.8145 1.1692 0.7622 0.027* 0.341 (10)
H22C 0.9355 1.1947 0.8694 0.027* 0.341 (10)
C31 0.8711 (5) 0.8176 (3) 0.2768 (4) 0.0240 (11)
H31A 0.8 0.8148 0.2015 0.029*
H31B 0.937 0.8514 0.2639 0.029*
C32 0.9320 (6) 0.7433 (3) 0.3040 (5) 0.0321 (14)
H32A 0.9594 0.7263 0.2359 0.048*
H32B 0.8686 0.7095 0.3192 0.048*
H32C 1.0075 0.7462 0.3743 0.048*
C33 0.9209 (5) 0.8507 (3) 0.4913 (4) 0.0215 (11)
H33A 0.8832 0.8725 0.5508 0.026*
H33B 0.9455 0.8003 0.5165 0.026*
C34 1.0420 (5) 0.8920 (4) 0.4925 (5) 0.0336 (14)
H34A 1.0957 0.8983 0.5748 0.05*
H34B 1.0181 0.9396 0.4558 0.05*
H34C 1.0907 0.865 0.4478 0.05*
C35 0.7702 (5) 0.9248 (3) 0.3309 (4) 0.0217 (11)
H35A 0.8448 0.9532 0.3222 0.026*
H35B 0.7065 0.9212 0.2513 0.026*
C36 0.7084 (6) 0.9660 (3) 0.4118 (5) 0.0281 (12)
H36A 0.6865 1.0151 0.3807 0.042*
H36B 0.7693 0.9687 0.4918 0.042*
H36C 0.6294 0.941 0.4153 0.042*
C37 0.7062 (5) 0.8034 (3) 0.3888 (5) 0.0249 (12)
H37A 0.7392 0.7541 0.4133 0.03*
H37B 0.6777 0.8244 0.4546 0.03*
C38 0.5894 (6) 0.7972 (3) 0.2804 (6) 0.0370 (15)
H38A 0.5259 0.7642 0.2977 0.056*
H38B 0.6167 0.7782 0.2134 0.056*
H38C 0.5502 0.8451 0.2599 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.01788 (12) 0.01279 (12) 0.01337 (10) −0.00031 (8) 0.00393 (8) 0.00151 (7)
Br1 0.0253 (3) 0.0146 (2) 0.0156 (2) −0.0011 (2) 0.00488 (19) 0.00306 (17)
Br2 0.0216 (3) 0.0210 (3) 0.0157 (2) −0.0011 (2) 0.00766 (19) −0.00174 (18)
N1 0.023 (2) 0.012 (2) 0.0162 (19) −0.0010 (17) 0.0056 (16) 0.0001 (15)
N2 0.021 (2) 0.015 (2) 0.0133 (18) 0.0006 (17) 0.0048 (16) 0.0014 (15)
O01 0.041 (2) 0.025 (2) 0.026 (2) −0.0135 (19) 0.0027 (17) −0.0051 (17)
O02 0.044 (2) 0.020 (2) 0.0220 (19) 0.0010 (18) 0.0058 (17) 0.0058 (16)
O03 0.025 (2) 0.055 (3) 0.033 (2) 0.008 (2) 0.0136 (18) 0.014 (2)
C01 0.023 (3) 0.018 (3) 0.020 (2) −0.004 (2) 0.005 (2) 0.008 (2)
C02 0.025 (3) 0.020 (3) 0.019 (2) −0.001 (2) 0.008 (2) −0.001 (2)
C03 0.024 (3) 0.022 (3) 0.021 (3) 0.000 (2) 0.006 (2) 0.007 (2)
C11 0.012 (4) 0.027 (5) 0.017 (4) −0.004 (4) −0.002 (3) −0.003 (3)
C12 0.023 (4) 0.020 (4) 0.022 (4) 0.004 (3) 0.005 (3) −0.005 (3)
C13 0.018 (5) 0.028 (5) 0.029 (5) 0.001 (4) 0.008 (4) −0.008 (4)
C14 0.023 (5) 0.022 (5) 0.026 (4) −0.002 (4) 0.001 (3) −0.004 (4)
C15 0.023 (4) 0.022 (5) 0.026 (4) −0.006 (4) −0.002 (3) 0.006 (3)
C16 0.027 (5) 0.028 (5) 0.016 (4) −0.004 (4) 0.009 (4) 0.000 (4)
C121 0.039 (6) 0.035 (6) 0.026 (5) −0.006 (4) 0.016 (4) 0.001 (4)
C31 0.033 (3) 0.025 (3) 0.016 (2) 0.003 (2) 0.011 (2) −0.001 (2)
C32 0.050 (4) 0.022 (3) 0.029 (3) 0.000 (3) 0.019 (3) −0.004 (2)
C33 0.031 (3) 0.018 (3) 0.012 (2) 0.008 (2) 0.001 (2) 0.0021 (18)
C34 0.023 (3) 0.041 (4) 0.032 (3) 0.001 (3) 0.001 (2) −0.004 (3)
C35 0.023 (3) 0.015 (3) 0.023 (2) 0.000 (2) 0.001 (2) 0.006 (2)
C36 0.033 (3) 0.020 (3) 0.030 (3) 0.007 (2) 0.007 (2) −0.003 (2)
C37 0.027 (3) 0.020 (3) 0.031 (3) −0.004 (2) 0.013 (2) −0.003 (2)
C38 0.028 (3) 0.029 (4) 0.052 (4) −0.010 (3) 0.008 (3) −0.011 (3)

Geometric parameters (Å, °)

Re1—C03 1.884 (6) C22—C21 1.37 (2)
Re1—C01 1.895 (5) C22—C23 1.44 (2)
Re1—C02 1.909 (5) C22—C221 1.47 (2)
Re1—N1 2.241 (4) C24—C23 1.35 (3)
Re1—Br2 2.6370 (8) C24—H24 0.95
Re1—Br1 2.6389 (7) C23—H23 0.95
N1—C11 1.452 (10) C21—C26 1.45 (3)
N1—C21 1.47 (2) C26—H26 0.95
N1—H1A 0.92 C221—H22A 0.98
N1—H1B 0.92 C221—H22B 0.98
N1—H1C 0.92 C221—H22C 0.98
N1—H1D 0.92 C31—C32 1.514 (8)
N2—C31 1.518 (6) C31—H31A 0.99
N2—C37 1.518 (6) C31—H31B 0.99
N2—C33 1.518 (6) C32—H32A 0.98
N2—C35 1.523 (6) C32—H32B 0.98
O01—C01 1.162 (6) C32—H32C 0.98
O02—C02 1.145 (6) C33—C34 1.508 (8)
O03—C03 1.164 (7) C33—H33A 0.99
C11—C16 1.377 (14) C33—H33B 0.99
C11—C12 1.385 (12) C34—H34A 0.98
C12—C13 1.392 (12) C34—H34B 0.98
C12—C121 1.516 (12) C34—H34C 0.98
C13—C14 1.372 (13) C35—C36 1.513 (7)
C13—H13 0.95 C35—H35A 0.99
C14—C15 1.383 (12) C35—H35B 0.99
C14—H14 0.95 C36—H36A 0.98
C15—C16 1.377 (13) C36—H36B 0.98
C15—H15 0.95 C36—H36C 0.98
C16—H16 0.95 C37—C38 1.515 (7)
C121—H12A 0.98 C37—H37A 0.99
C121—H12B 0.98 C37—H37B 0.99
C121—H12C 0.98 C38—H38A 0.98
C25—C24 1.36 (3) C38—H38B 0.98
C25—C26 1.39 (2) C38—H38C 0.98
C25—H25 0.95
C03—Re1—C01 89.6 (2) C23—C24—C25 122 (2)
C03—Re1—C02 88.5 (2) C23—C24—H24 118.9
C01—Re1—C02 89.0 (2) C25—C24—H24 118.9
C03—Re1—N1 94.1 (2) C24—C23—C22 121 (2)
C01—Re1—N1 174.31 (19) C24—C23—H23 119.5
C02—Re1—N1 95.41 (19) C22—C23—H23 119.5
C03—Re1—Br2 177.68 (17) C22—C21—C26 120.7 (17)
C01—Re1—Br2 92.67 (16) C22—C21—N1 120.3 (15)
C02—Re1—Br2 91.17 (16) C26—C21—N1 119.0 (15)
N1—Re1—Br2 83.64 (11) C25—C26—C21 118.8 (17)
C03—Re1—Br1 90.87 (16) C25—C26—H26 120.6
C01—Re1—Br1 93.02 (15) C21—C26—H26 120.6
C02—Re1—Br1 177.91 (15) C22—C221—H22A 109.5
N1—Re1—Br1 82.64 (11) C22—C221—H22B 109.5
Br2—Re1—Br1 89.37 (3) H22A—C221—H22B 109.5
C11—N1—Re1 118.0 (4) C22—C221—H22C 109.5
C21—N1—Re1 113.2 (8) H22A—C221—H22C 109.5
C11—N1—H1A 107.8 H22B—C221—H22C 109.5
C21—N1—H1A 88.4 C32—C31—N2 115.1 (4)
Re1—N1—H1A 107.8 C32—C31—H31A 108.5
C11—N1—H1B 107.8 N2—C31—H31A 108.5
C21—N1—H1B 128.7 C32—C31—H31B 108.5
Re1—N1—H1B 107.8 N2—C31—H31B 108.5
H1A—N1—H1B 107.1 H31A—C31—H31B 107.5
C11—N1—H1C 123.4 C31—C32—H32A 109.5
C21—N1—H1C 108.7 C31—C32—H32B 109.5
Re1—N1—H1C 108.9 H32A—C32—H32B 109.5
H1B—N1—H1C 84.8 C31—C32—H32C 109.5
C11—N1—H1D 86 H32A—C32—H32C 109.5
C21—N1—H1D 109.3 H32B—C32—H32C 109.5
Re1—N1—H1D 108.9 C34—C33—N2 115.2 (4)
H1A—N1—H1D 127.7 C34—C33—H33A 108.5
H1C—N1—H1D 107.7 N2—C33—H33A 108.5
C31—N2—C37 111.6 (4) C34—C33—H33B 108.5
C31—N2—C33 110.6 (4) N2—C33—H33B 108.5
C37—N2—C33 107.0 (4) H33A—C33—H33B 107.5
C31—N2—C35 106.1 (4) C33—C34—H34A 109.5
C37—N2—C35 110.4 (4) C33—C34—H34B 109.5
C33—N2—C35 111.2 (4) H34A—C34—H34B 109.5
O01—C01—Re1 179.1 (5) C33—C34—H34C 109.5
O02—C02—Re1 176.6 (5) H34A—C34—H34C 109.5
O03—C03—Re1 178.2 (5) H34B—C34—H34C 109.5
C16—C11—C12 120.4 (9) C36—C35—N2 115.4 (4)
C16—C11—N1 118.6 (8) C36—C35—H35A 108.4
C12—C11—N1 120.9 (8) N2—C35—H35A 108.4
C11—C12—C13 117.6 (9) C36—C35—H35B 108.4
C11—C12—C121 121.0 (8) N2—C35—H35B 108.4
C13—C12—C121 121.3 (8) H35A—C35—H35B 107.5
C14—C13—C12 122.0 (9) C35—C36—H36A 109.5
C14—C13—H13 119 C35—C36—H36B 109.5
C12—C13—H13 119 H36A—C36—H36B 109.5
C13—C14—C15 119.8 (9) C35—C36—H36C 109.5
C13—C14—H14 120.1 H36A—C36—H36C 109.5
C15—C14—H14 120.1 H36B—C36—H36C 109.5
C16—C15—C14 118.8 (8) C38—C37—N2 115.4 (4)
C16—C15—H15 120.6 C38—C37—H37A 108.4
C14—C15—H15 120.6 N2—C37—H37A 108.4
C11—C16—C15 121.4 (9) C38—C37—H37B 108.4
C11—C16—H16 119.3 N2—C37—H37B 108.4
C15—C16—H16 119.3 H37A—C37—H37B 107.5
C24—C25—C26 119.9 (17) C37—C38—H38A 109.5
C24—C25—H25 120.1 C37—C38—H38B 109.5
C26—C25—H25 120.1 H38A—C38—H38B 109.5
C21—C22—C23 117.4 (17) C37—C38—H38C 109.5
C21—C22—C221 120.7 (16) H38A—C38—H38C 109.5
C23—C22—C221 121.8 (17) H38B—C38—H38C 109.5
C03—Re1—N1—C11 −53.5 (5) C21—C22—C23—C24 2(3)
C02—Re1—N1—C11 35.4 (5) C221—C22—C23—C24 179.3 (18)
Br2—Re1—N1—C11 126.0 (5) C23—C22—C21—C26 −1(2)
Br1—Re1—N1—C11 −143.8 (5) C221—C22—C21—C26 −178.4 (16)
C03—Re1—N1—C21 −27.2 (8) C23—C22—C21—N1 177.8 (14)
C02—Re1—N1—C21 61.6 (8) C221—C22—C21—N1 1(2)
Br2—Re1—N1—C21 152.2 (8) C11—N1—C21—C22 8.0 (12)
Br1—Re1—N1—C21 −117.6 (8) Re1—N1—C21—C22 −99.0 (15)
C21—N1—C11—C16 −165 (2) C11—N1—C21—C26 −173 (3)
Re1—N1—C11—C16 −80.3 (8) Re1—N1—C21—C26 79.9 (15)
C21—N1—C11—C12 11.7 (19) C24—C25—C26—C21 0(3)
Re1—N1—C11—C12 96.2 (7) C22—C21—C26—C25 0(3)
C16—C11—C12—C13 0.2 (12) N1—C21—C26—C25 −178.6 (14)
N1—C11—C12—C13 −176.2 (7) C37—N2—C31—C32 −63.7 (6)
C16—C11—C12—C121 −178.4 (8) C33—N2—C31—C32 55.3 (6)
N1—C11—C12—C121 5.2 (12) C35—N2—C31—C32 176.0 (5)
C11—C12—C13—C14 0.4 (12) C31—N2—C33—C34 56.7 (6)
C121—C12—C13—C14 178.9 (8) C37—N2—C33—C34 178.4 (5)
C12—C13—C14—C15 −0.7 (13) C35—N2—C33—C34 −60.9 (6)
C13—C14—C15—C16 0.5 (13) C31—N2—C35—C36 178.4 (4)
C12—C11—C16—C15 −0.4 (13) C37—N2—C35—C36 57.3 (6)
N1—C11—C16—C15 176.1 (7) C33—N2—C35—C36 −61.3 (6)
C14—C15—C16—C11 0.0 (13) C31—N2—C37—C38 −61.2 (6)
C26—C25—C24—C23 1(3) C33—N2—C37—C38 177.7 (5)
C25—C24—C23—C22 −2(3) C35—N2—C37—C38 56.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···Br2i 0.92 2.7 3.542 (4) 153.
N1—H1B···Br1i 0.92 2.75 3.594 (4) 153.
C121—H12C···O03ii 0.98 2.5 3.139 (10) 123
C35—H35B···O03iii 0.99 2.39 3.196 (7) 138.
C37—H37A···Br1iv 0.99 2.92 3.911 (6) 174.

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5421).

References

  1. Abou-Hamdan, A., Roodt, A. & Merbach, A. E. (1998). Inorg. Chem. 37, 1278–1288. [DOI] [PubMed]
  2. Abram, U., Abram, S., Schibli, R., Alberto, R. & Dilworth, J. R. (1998). Polyhedron, 17, 1303–1309.
  3. Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.
  4. Alberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 190, 901–919.
  5. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  6. Brandenburg, K. & Putz, H. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Brink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175–o3176. [DOI] [PMC free article] [PubMed]
  8. Bruker (2004). SAINT-Plus, SADABS and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  11. Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328. [DOI] [PubMed]
  12. Saw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). Inorg. Chim. Acta, 359, 4087–4094.
  13. Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). Bioconjug. Chem. 11, 345–351. [DOI] [PubMed]
  14. Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575–m1576. [DOI] [PMC free article] [PubMed]
  15. Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611. [DOI] [PMC free article] [PubMed]
  16. Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859–m860. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Smith, J., Purcell, W., Lamprecht, G. J. & Roodt, A. (1996). Polyhedron, 15, 1389–1395.
  19. Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393.
  20. Wei, L., Banerjee, S. R., Levadala, M. K., Babich, J. & Zubieta, J. (2003). Inorg. Chem. Commun. 6, 1099–1103.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050038/bt5421sup1.cif

e-67-00m32-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050038/bt5421Isup2.hkl

e-67-00m32-Isup2.hkl (257.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES