Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):o15. doi: 10.1107/S1600536810049287

3-Nitro-1H-1,2,4-triazole

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC3050167  PMID: 21522657

Abstract

The asymmetric unit of the title compound, C2H2N4O2, contains two crystallographically independent mol­ecules in which the triazole rings are essentially planar, with maximum deviations of 0.003 (1) Å in both molecules. The dihedral angle between the two 1H-1,2,4-triazole rings is 56.58 (5)°. In the crystal, mol­ecules are linked via inter­molecular N—H⋯N and C—H⋯O hydrogen bonds, forming a supra­molecular chain along the b axis.

Related literature

For details and applications of 1H-1,2,4-triazole derivatives, see: Desenko (1995); Vos et al. (1983); van Albada et al. (1984); Al-Kharafi et al. (1986); Gupta & Bhargava (1978); Jones et al. (1965); Bennur et al. (1976). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-00o15-scheme1.jpg

Experimental

Crystal data

  • C2H2N4O2

  • M r = 114.08

  • Monoclinic, Inline graphic

  • a = 8.7818 (1) Å

  • b = 10.0726 (2) Å

  • c = 9.9703 (1) Å

  • β = 107.081 (1)°

  • V = 843.03 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.48 × 0.33 × 0.30 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.928, T max = 0.954

  • 11450 measured reflections

  • 3081 independent reflections

  • 2768 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.092

  • S = 1.05

  • 3081 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049287/is2634sup1.cif

e-67-00o15-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049287/is2634Isup2.hkl

e-67-00o15-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1N1⋯N1Ai 0.885 (15) 1.995 (15) 2.8540 (9) 163.4 (15)
N2B—H1N2⋯N1Bii 0.857 (16) 2.057 (16) 2.9128 (10) 176.0 (16)
C1A—H1AA⋯O2Aiii 0.93 2.50 3.1129 (10) 124
C1B—H1BA⋯O2Bii 0.93 2.51 3.0451 (11) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

1H-1,2,4-Triazole ring systems are typical planar six-π-electron partially aromatic systems, and are used, along with their derivatives, as starting materials for the synthesis of many heterocycles (Desenko, 1995). Substituted 1H-1,2,4-triazoles have also been actively studied as bridging ligands coordinating through their vicinal N atoms and some have special structures with interesting magnetic properties (Vos et al., 1983; van Albada et al., 1984). Studies also indicate that the 1H-1,2,4-triazole system is associated with anticorrosion (Al-Kharafi et al., 1986) and anti-inflammatory action (Gupta & Bhargava, 1978) and other pharmacological activities by exhibiting antiviral, anti-asthmatic, diuretic, analgesic, antimicrobial, antidepressant and antifungal effects (Jones et al., 1965; Bennur et al., 1976).

The asymmetric unit of the title compound consists of two crystallographically independent 3-nitro-1H-1,2,4-triazole molecules (A & B) with very similar geometry (Fig. 1). The 1H-1,2,4-triazole units are essentially planar with maximum deviations of 0.003 (1) Å for atom N1A (molecule A) and 0.003 (1) Å for atom C2B (molecule B). The dihedral angle between the two 1H-1,2,4-triazole (N1A—N3A/ C1A–C2A) and (N1B—N3B/C1B–C2B) rings is 56.58 (5)°.

In the crystal structure (Fig. 2), molecules are connected via N2A—H1N1···N1A, N2B—H1N2···N1B, C1A—H1AA···O2A and C1B—H1BA···O2B (Table 1) hydrogen bonds to form a one-dimensional supramolecular chain along the b-axis.

Experimental

Hot methanol solution (20 ml) of 3-nitro-1H-1,2,4-triazole (57 mg, Aldrich) was warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement

Atoms H1N1 and H1N2 were located from a difference Fourier map and refined freely [refined N—H distances 0.857 (16) and 0.885 (15) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) molecular chain.

Crystal data

C2H2N4O2 F(000) = 464
Mr = 114.08 Dx = 1.798 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7180 reflections
a = 8.7818 (1) Å θ = 2.9–32.6°
b = 10.0726 (2) Å µ = 0.16 mm1
c = 9.9703 (1) Å T = 100 K
β = 107.081 (1)° Block, colourless
V = 843.03 (2) Å3 0.48 × 0.33 × 0.30 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3081 independent reflections
Radiation source: fine-focus sealed tube 2768 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 32.7°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→11
Tmin = 0.928, Tmax = 0.954 k = −15→13
11450 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2412P] where P = (Fo2 + 2Fc2)/3
3081 reflections (Δ/σ)max = 0.001
153 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.73082 (8) −0.04055 (7) 0.51717 (7) 0.01914 (13)
O2A 0.85716 (9) 0.01680 (7) 0.73151 (6) 0.01888 (14)
N1A 1.01266 (8) 0.21389 (7) 0.64087 (7) 0.01307 (13)
N2A 0.99857 (9) 0.24376 (7) 0.42001 (7) 0.01273 (13)
N3A 0.89747 (8) 0.14183 (7) 0.41773 (7) 0.01286 (13)
N4A 0.82618 (9) 0.02813 (7) 0.60358 (7) 0.01348 (13)
C1A 1.06543 (10) 0.28585 (8) 0.55150 (8) 0.01356 (14)
H1AA 1.1381 0.3552 0.5768 0.016*
C2A 0.91199 (9) 0.13008 (8) 0.55271 (8) 0.01167 (14)
O1B 0.75840 (8) 0.41600 (7) 0.50676 (7) 0.02046 (14)
O2B 0.68377 (9) 0.58439 (6) 0.60867 (7) 0.01985 (14)
N1B 0.51771 (8) 0.42579 (7) 0.73353 (7) 0.01312 (13)
N2B 0.51813 (9) 0.20833 (7) 0.72132 (7) 0.01419 (13)
N3B 0.60998 (9) 0.24714 (7) 0.64058 (7) 0.01375 (13)
N4B 0.68913 (8) 0.46461 (7) 0.58504 (7) 0.01361 (13)
C1B 0.46484 (10) 0.31423 (8) 0.77581 (8) 0.01436 (15)
H1BA 0.4002 0.3102 0.8347 0.017*
C2B 0.60451 (9) 0.37710 (8) 0.65365 (8) 0.01189 (14)
H1N1 1.0120 (19) 0.2722 (16) 0.3403 (16) 0.034 (4)*
H1N2 0.5028 (18) 0.1259 (16) 0.7343 (15) 0.030 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0195 (3) 0.0170 (3) 0.0203 (3) −0.0044 (2) 0.0049 (2) −0.0008 (2)
O2A 0.0278 (3) 0.0179 (3) 0.0136 (3) 0.0007 (2) 0.0102 (2) 0.0037 (2)
N1A 0.0164 (3) 0.0135 (3) 0.0103 (3) −0.0005 (2) 0.0055 (2) −0.0003 (2)
N2A 0.0164 (3) 0.0133 (3) 0.0099 (3) 0.0001 (2) 0.0060 (2) 0.0011 (2)
N3A 0.0156 (3) 0.0128 (3) 0.0107 (3) 0.0004 (2) 0.0048 (2) 0.0009 (2)
N4A 0.0161 (3) 0.0118 (3) 0.0144 (3) 0.0020 (2) 0.0072 (2) 0.0018 (2)
C1A 0.0163 (3) 0.0142 (3) 0.0115 (3) −0.0007 (3) 0.0060 (3) −0.0005 (2)
C2A 0.0146 (3) 0.0109 (3) 0.0107 (3) 0.0013 (2) 0.0056 (2) 0.0010 (2)
O1B 0.0240 (3) 0.0185 (3) 0.0245 (3) 0.0046 (2) 0.0158 (3) 0.0025 (2)
O2B 0.0264 (3) 0.0106 (3) 0.0260 (3) −0.0006 (2) 0.0131 (3) 0.0004 (2)
N1B 0.0151 (3) 0.0111 (3) 0.0143 (3) 0.0010 (2) 0.0062 (2) 0.0004 (2)
N2B 0.0178 (3) 0.0101 (3) 0.0161 (3) −0.0002 (2) 0.0072 (2) 0.0006 (2)
N3B 0.0163 (3) 0.0111 (3) 0.0149 (3) 0.0009 (2) 0.0062 (2) 0.0007 (2)
N4B 0.0144 (3) 0.0119 (3) 0.0153 (3) 0.0015 (2) 0.0055 (2) 0.0018 (2)
C1B 0.0166 (3) 0.0119 (3) 0.0160 (3) 0.0006 (3) 0.0070 (3) 0.0005 (2)
C2B 0.0128 (3) 0.0103 (3) 0.0127 (3) 0.0007 (2) 0.0041 (2) 0.0007 (2)

Geometric parameters (Å, °)

O1A—N4A 1.2241 (10) O1B—N4B 1.2239 (9)
O2A—N4A 1.2289 (9) O2B—N4B 1.2329 (9)
N1A—C1A 1.3329 (10) N1B—C1B 1.3307 (10)
N1A—C2A 1.3455 (10) N1B—C2B 1.3462 (10)
N2A—C1A 1.3383 (10) N2B—C1B 1.3421 (10)
N2A—N3A 1.3531 (10) N2B—N3B 1.3539 (9)
N2A—H1N1 0.885 (15) N2B—H1N2 0.857 (16)
N3A—C2A 1.3194 (9) N3B—C2B 1.3178 (10)
N4A—C2A 1.4506 (10) N4B—C2B 1.4476 (10)
C1A—H1AA 0.9300 C1B—H1BA 0.9300
C1A—N1A—C2A 101.26 (6) C1B—N1B—C2B 100.99 (7)
C1A—N2A—N3A 110.72 (6) C1B—N2B—N3B 110.52 (7)
C1A—N2A—H1N1 129.9 (10) C1B—N2B—H1N2 128.3 (10)
N3A—N2A—H1N1 119.4 (10) N3B—N2B—H1N2 121.2 (10)
C2A—N3A—N2A 100.64 (6) C2B—N3B—N2B 100.52 (6)
O1A—N4A—O2A 125.11 (7) O1B—N4B—O2B 124.56 (7)
O1A—N4A—C2A 118.18 (6) O1B—N4B—C2B 118.56 (7)
O2A—N4A—C2A 116.70 (7) O2B—N4B—C2B 116.86 (6)
N1A—C1A—N2A 110.12 (7) N1B—C1B—N2B 110.33 (7)
N1A—C1A—H1AA 124.9 N1B—C1B—H1BA 124.8
N2A—C1A—H1AA 124.9 N2B—C1B—H1BA 124.8
N3A—C2A—N1A 117.27 (7) N3B—C2B—N1B 117.63 (7)
N3A—C2A—N4A 121.04 (7) N3B—C2B—N4B 121.29 (7)
N1A—C2A—N4A 121.66 (6) N1B—C2B—N4B 121.08 (7)
C1A—N2A—N3A—C2A −0.05 (8) C1B—N2B—N3B—C2B 0.10 (9)
C2A—N1A—C1A—N2A −0.45 (9) C2B—N1B—C1B—N2B −0.54 (9)
N3A—N2A—C1A—N1A 0.33 (10) N3B—N2B—C1B—N1B 0.30 (10)
N2A—N3A—C2A—N1A −0.27 (9) N2B—N3B—C2B—N1B −0.49 (9)
N2A—N3A—C2A—N4A −178.46 (7) N2B—N3B—C2B—N4B 179.31 (7)
C1A—N1A—C2A—N3A 0.46 (9) C1B—N1B—C2B—N3B 0.66 (9)
C1A—N1A—C2A—N4A 178.64 (7) C1B—N1B—C2B—N4B −179.14 (7)
O1A—N4A—C2A—N3A −5.31 (11) O1B—N4B—C2B—N3B 4.58 (12)
O2A—N4A—C2A—N3A 173.84 (7) O2B—N4B—C2B—N3B −176.50 (8)
O1A—N4A—C2A—N1A 176.57 (7) O1B—N4B—C2B—N1B −175.62 (8)
O2A—N4A—C2A—N1A −4.27 (11) O2B—N4B—C2B—N1B 3.29 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2A—H1N1···N1Ai 0.885 (15) 1.995 (15) 2.8540 (9) 163.4 (15)
N2B—H1N2···N1Bii 0.857 (16) 2.057 (16) 2.9128 (10) 176.0 (16)
C1A—H1AA···O2Aiii 0.93 2.50 3.1129 (10) 124.
C1B—H1BA···O2Bii 0.93 2.51 3.0451 (11) 117.

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2634).

References

  1. Albada, G. A. van, de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). Inorg. Chem. 23, 1404–1408.
  2. Al-Kharafi, F. M., Al-Hajjar, F. H. & Katrib, A. (1986). Corros. Sci. 26, 257–264.
  3. Bennur, S. C., Jigajinni, V. B. & Badiger, V. V. (1976). Rev. Roum. Chim. 21, 757–762.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Desenko, S. M. (1995). Khim. Geterotsikl. Soedin. pp. 2–24.
  7. Gupta, A. K. & Bhargava, K. P. (1978). Pharmazie, 33, 430–431. [DOI] [PubMed]
  8. Jones, D. H., Slack, R., Squires, S. & Wooldridge, K. R. H. (1965). J. Med. Chem. 8, 676–680.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Vos, G., le Febre, R. A., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1983). J. Am. Chem. Soc. 105, 1682–1683.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049287/is2634sup1.cif

e-67-00o15-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049287/is2634Isup2.hkl

e-67-00o15-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES