Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o62. doi: 10.1107/S1600536810050622

2-[3-(2-Chloro­phen­yl)-5-oxo-1,5-diphenyl­pentyl­idene]malononitrile

Bai-Xiang Du a,*, Jie Zhou a, Yu-Ling Li a, Xiang-Shan Wang a
PMCID: PMC3050168  PMID: 21522773

Abstract

In the title compound, C26H19ClN2O, the 2-chloro­phenyl group forms dihedral angles of 59.6 (1) and 31.9 (1)° with the phenyl rings. The two phenyl rings are inclined at a dihedral angle of 32.9 (1)° with respect to each other. In the crystal, an inter­molecular C—H⋯N hydrogen bond links the mol­ecules into a polymeric chain running along the c axis.

Related literature

For water as an attractive medium for organic reactions, see: Breslow (1991). For a related structure, see: Zhou et al. (2007).graphic file with name e-67-00o62-scheme1.jpg

Experimental

Crystal data

  • C26H19ClN2O

  • M r = 410.88

  • Orthorhombic, Inline graphic

  • a = 12.4450 (3) Å

  • b = 14.3866 (3) Å

  • c = 24.1913 (5) Å

  • V = 4331.24 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.50 × 0.39 × 0.29 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 34193 measured reflections

  • 5019 independent reflections

  • 2972 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.153

  • S = 1.04

  • 5019 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050622/pv2363sup1.cif

e-67-00o62-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050622/pv2363Isup2.hkl

e-67-00o62-Isup2.hkl (245.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N1i 0.97 2.62 3.502 (3) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of the Jiangsu Education Committee for financial support.

supplementary crystallographic information

Comment

There has been a growing recognition that water has become an attractive medium for many organic reactions (Breslow, 1991). Recently, we have demonstrated the Michal addition reaction between 2-(1-phenylethylidene)malononitrile and 1-phenyl-3-(2-chlorophenyl)propen-1-one in water without a catalyst and synthesized the title compound which is reported in this article.

In the title compound (Fig. 1), 2-chlorophenyl group forms dihedral angles of 59.6 (1) and 31.9 (1) ° with benzene rings (C1—C6) and (C15—C20), respectively. The two benzene rings are inclined with respect to each other at a dihedral angle of 32.9 (1) °. There is an intermolecular hydrogen bond C8—H8A···N1 (Table 1) resulting in a polymeric chain along the c-axis. In addition, two intramolecular interactions further stabilize the structure (Fig. 2).

Experimental

The title compound was prepared by the reaction of 2-(1-phenylethylidene)malononitrile (0.168 g, 1.0 mmol) and 1-phenyl-3-(2-chlorophenyl)propen-1-one (0.242 g, 1.0 mmol) in water (10 ml) at reflux for 14 h (yield 82%, mp. 438–439 K). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide solution.

Refinement

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure drawing for the title compound; displacement ellipsoids are drawn at 20% probability level.

Fig. 2.

Fig. 2.

The molecular packing diagram of the title compound showing intermolecular and intramolecular interactions by dashed lines.

Crystal data

C26H19ClN2O Dx = 1.260 Mg m3
Mr = 410.88 Melting point = 438–439 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5457 reflections
a = 12.4450 (3) Å θ = 2.7–22.0°
b = 14.3866 (3) Å µ = 0.20 mm1
c = 24.1913 (5) Å T = 296 K
V = 4331.24 (16) Å3 Block, orange
Z = 8 0.50 × 0.39 × 0.29 mm
F(000) = 1712

Data collection

Bruker SMART CCD area-detector diffractometer 2972 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
graphite θmax = 27.6°, θmin = 1.7°
φ and ω scans h = −14→16
34193 measured reflections k = −16→18
5019 independent reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.4979P] where P = (Fo2 + 2Fc2)/3
5019 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.39311 (5) 0.00962 (5) 0.68110 (3) 0.0971 (3)
C9 0.21419 (13) 0.09876 (11) 0.61061 (7) 0.0520 (4)
H9A 0.2428 0.1139 0.6473 0.062*
C8 0.10322 (13) 0.05493 (12) 0.61832 (8) 0.0560 (4)
H8A 0.0692 0.0488 0.5824 0.067*
H8B 0.1121 −0.0071 0.6334 0.067*
C21 0.29056 (14) 0.03111 (11) 0.58342 (8) 0.0556 (5)
C10 0.20485 (14) 0.18975 (11) 0.57755 (8) 0.0557 (4)
H10A 0.1812 0.1751 0.5403 0.067*
H10B 0.1501 0.2284 0.5945 0.067*
C11 0.30676 (14) 0.24393 (10) 0.57417 (8) 0.0544 (4)
C6 −0.08495 (15) 0.08221 (13) 0.66065 (8) 0.0572 (5)
C22 0.37359 (15) −0.01196 (12) 0.61140 (10) 0.0678 (5)
C12 0.34607 (16) 0.27063 (12) 0.52452 (8) 0.0625 (5)
C15 0.35978 (16) 0.27215 (12) 0.62569 (8) 0.0610 (5)
O1 0.06454 (13) 0.17514 (13) 0.68188 (7) 0.1005 (6)
C7 0.03017 (16) 0.10937 (13) 0.65567 (8) 0.0615 (5)
N1 0.50586 (17) 0.38254 (14) 0.51232 (9) 0.0950 (6)
C13 0.43597 (18) 0.33273 (14) 0.51864 (9) 0.0727 (6)
C24 0.4281 (2) −0.09442 (16) 0.53127 (15) 0.0962 (8)
H24A 0.4745 −0.1357 0.5137 0.115*
C1 −0.12962 (17) 0.00934 (14) 0.63200 (10) 0.0752 (6)
H1A −0.0876 −0.0250 0.6076 0.090*
C20 0.2988 (2) 0.30836 (13) 0.66865 (8) 0.0747 (6)
H20A 0.2244 0.3114 0.6654 0.090*
C16 0.4708 (2) 0.26488 (16) 0.63205 (11) 0.0878 (7)
H16A 0.5128 0.2394 0.6041 0.105*
C26 0.27768 (18) 0.00750 (12) 0.52708 (10) 0.0721 (6)
H26A 0.2221 0.0341 0.5069 0.087*
C14 0.2967 (2) 0.24452 (15) 0.47332 (11) 0.0852 (7)
C5 −0.14936 (19) 0.13109 (16) 0.69652 (9) 0.0805 (6)
H5A −0.1202 0.1799 0.7167 0.097*
C23 0.44248 (17) −0.07472 (15) 0.58579 (13) 0.0880 (7)
H23A 0.4976 −0.1028 0.6057 0.106*
C25 0.3458 (2) −0.05403 (15) 0.50173 (11) 0.0889 (7)
H25A 0.3365 −0.0685 0.4646 0.107*
C2 −0.2366 (2) −0.01304 (19) 0.63923 (12) 0.0981 (8)
H2A −0.2663 −0.0624 0.6197 0.118*
C3 −0.2987 (2) 0.0365 (2) 0.67466 (11) 0.0947 (8)
H3A −0.3705 0.0207 0.6795 0.114*
C4 −0.25626 (19) 0.1091 (2) 0.70305 (10) 0.0921 (7)
H4A −0.2992 0.1438 0.7268 0.111*
C18 0.4571 (4) 0.3335 (2) 0.72144 (15) 0.1327 (15)
H18A 0.4900 0.3550 0.7535 0.159*
N2 0.2593 (3) 0.22584 (17) 0.43153 (10) 0.1295 (10)
C17 0.5177 (3) 0.2960 (2) 0.68043 (17) 0.1288 (13)
H17A 0.5917 0.2912 0.6849 0.155*
C19 0.3479 (3) 0.33966 (17) 0.71595 (11) 0.1089 (10)
H19A 0.3068 0.3651 0.7443 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0767 (4) 0.1071 (5) 0.1076 (5) 0.0193 (3) −0.0259 (3) 0.0111 (4)
C9 0.0472 (10) 0.0470 (9) 0.0617 (10) 0.0028 (7) −0.0016 (8) 0.0037 (7)
C8 0.0494 (10) 0.0497 (9) 0.0687 (11) 0.0002 (8) 0.0018 (8) 0.0032 (8)
C21 0.0473 (10) 0.0425 (8) 0.0771 (12) −0.0043 (7) 0.0066 (9) 0.0054 (8)
C10 0.0528 (11) 0.0448 (9) 0.0695 (11) 0.0022 (7) −0.0056 (9) 0.0027 (8)
C11 0.0537 (11) 0.0370 (8) 0.0724 (12) 0.0059 (7) −0.0006 (9) 0.0003 (8)
C6 0.0515 (11) 0.0589 (10) 0.0611 (11) 0.0043 (8) 0.0024 (8) 0.0024 (8)
C22 0.0484 (11) 0.0523 (10) 0.1027 (16) 0.0010 (8) 0.0065 (10) 0.0106 (10)
C12 0.0688 (12) 0.0474 (9) 0.0714 (12) 0.0021 (9) 0.0110 (10) −0.0048 (9)
C15 0.0651 (12) 0.0435 (9) 0.0744 (13) −0.0092 (8) −0.0103 (10) 0.0107 (8)
O1 0.0712 (10) 0.1136 (13) 0.1167 (13) −0.0219 (9) 0.0164 (9) −0.0566 (11)
C7 0.0538 (11) 0.0636 (11) 0.0671 (12) −0.0002 (9) 0.0001 (9) −0.0066 (9)
N1 0.0909 (15) 0.0822 (13) 0.1118 (16) −0.0147 (11) 0.0316 (12) 0.0016 (11)
C13 0.0747 (14) 0.0588 (12) 0.0846 (15) 0.0030 (11) 0.0227 (12) −0.0024 (10)
C24 0.0767 (17) 0.0579 (13) 0.154 (3) 0.0045 (12) 0.0416 (18) −0.0098 (15)
C1 0.0578 (13) 0.0751 (13) 0.0927 (15) −0.0047 (10) 0.0077 (11) −0.0159 (11)
C20 0.0963 (17) 0.0591 (12) 0.0689 (13) −0.0124 (11) −0.0060 (12) 0.0020 (10)
C16 0.0694 (15) 0.0785 (14) 0.1154 (19) −0.0124 (12) −0.0217 (14) 0.0221 (13)
C26 0.0755 (14) 0.0498 (10) 0.0912 (15) 0.0016 (9) 0.0152 (12) 0.0004 (10)
C14 0.118 (2) 0.0643 (13) 0.0733 (15) −0.0065 (12) 0.0138 (14) −0.0044 (11)
C5 0.0680 (14) 0.0882 (15) 0.0854 (15) −0.0005 (12) 0.0126 (12) −0.0168 (12)
C23 0.0545 (13) 0.0653 (13) 0.144 (2) 0.0088 (10) 0.0151 (14) 0.0067 (15)
C25 0.1003 (19) 0.0621 (13) 0.1042 (18) −0.0081 (13) 0.0309 (15) −0.0117 (12)
C2 0.0648 (15) 0.1060 (19) 0.124 (2) −0.0228 (13) 0.0044 (15) −0.0243 (16)
C3 0.0535 (14) 0.124 (2) 0.1068 (19) −0.0112 (14) 0.0122 (13) 0.0044 (17)
C4 0.0614 (14) 0.1157 (19) 0.0992 (17) 0.0068 (14) 0.0222 (13) −0.0104 (15)
C18 0.194 (4) 0.107 (2) 0.098 (2) −0.067 (3) −0.067 (3) 0.0279 (19)
N2 0.206 (3) 0.1064 (17) 0.0766 (15) −0.0285 (19) −0.0054 (16) −0.0090 (13)
C17 0.110 (3) 0.121 (3) 0.155 (3) −0.048 (2) −0.071 (2) 0.050 (2)
C19 0.173 (3) 0.0812 (16) 0.0730 (16) −0.0366 (19) −0.0189 (19) 0.0037 (12)

Geometric parameters (Å, °)

Cl1—C22 1.732 (3) C24—C25 1.378 (4)
C9—C21 1.511 (2) C24—H24A 0.9300
C9—C8 1.530 (2) C1—C2 1.381 (3)
C9—C10 1.538 (2) C1—H1A 0.9300
C9—H9A 0.9800 C20—C19 1.373 (3)
C8—C7 1.502 (3) C20—H20A 0.9300
C8—H8A 0.9700 C16—C17 1.382 (4)
C8—H8B 0.9700 C16—H16A 0.9300
C21—C22 1.382 (3) C26—C25 1.371 (3)
C21—C26 1.414 (3) C26—H26A 0.9300
C10—C11 1.491 (2) C14—N2 1.145 (3)
C10—H10A 0.9700 C5—C4 1.377 (3)
C10—H10B 0.9700 C5—H5A 0.9300
C11—C12 1.353 (2) C23—H23A 0.9300
C11—C15 1.468 (3) C25—H25A 0.9300
C6—C1 1.374 (3) C2—C3 1.357 (4)
C6—C5 1.375 (3) C2—H2A 0.9300
C6—C7 1.490 (3) C3—C4 1.356 (4)
C22—C23 1.391 (3) C3—H3A 0.9300
C12—C14 1.433 (3) C4—H4A 0.9300
C12—C13 1.439 (3) C18—C17 1.357 (5)
C15—C20 1.388 (3) C18—C19 1.369 (5)
C15—C16 1.394 (3) C18—H18A 0.9300
O1—C7 1.217 (2) C17—H17A 0.9300
N1—C13 1.137 (3) C19—H19A 0.9300
C24—C23 1.361 (4)
C21—C9—C8 110.83 (13) C25—C24—H24A 119.6
C21—C9—C10 111.67 (14) C6—C1—C2 120.3 (2)
C8—C9—C10 110.24 (13) C6—C1—H1A 119.9
C21—C9—H9A 108.0 C2—C1—H1A 119.9
C8—C9—H9A 108.0 C19—C20—C15 120.2 (3)
C10—C9—H9A 108.0 C19—C20—H20A 119.9
C7—C8—C9 113.89 (15) C15—C20—H20A 119.9
C7—C8—H8A 108.8 C17—C16—C15 119.2 (3)
C9—C8—H8A 108.8 C17—C16—H16A 120.4
C7—C8—H8B 108.8 C15—C16—H16A 120.4
C9—C8—H8B 108.8 C25—C26—C21 121.1 (2)
H8A—C8—H8B 107.7 C25—C26—H26A 119.5
C22—C21—C26 116.69 (18) C21—C26—H26A 119.5
C22—C21—C9 123.08 (18) N2—C14—C12 177.7 (3)
C26—C21—C9 120.21 (17) C6—C5—C4 121.2 (2)
C11—C10—C9 114.15 (14) C6—C5—H5A 119.4
C11—C10—H10A 108.7 C4—C5—H5A 119.4
C9—C10—H10A 108.7 C24—C23—C22 119.1 (2)
C11—C10—H10B 108.7 C24—C23—H23A 120.5
C9—C10—H10B 108.7 C22—C23—H23A 120.5
H10A—C10—H10B 107.6 C26—C25—C24 120.0 (3)
C12—C11—C15 120.85 (17) C26—C25—H25A 120.0
C12—C11—C10 120.33 (17) C24—C25—H25A 120.0
C15—C11—C10 118.72 (16) C3—C2—C1 120.4 (2)
C1—C6—C5 118.21 (19) C3—C2—H2A 119.8
C1—C6—C7 123.25 (17) C1—C2—H2A 119.8
C5—C6—C7 118.53 (18) C2—C3—C4 120.2 (2)
C21—C22—C23 122.3 (2) C2—C3—H3A 119.9
C21—C22—Cl1 120.10 (16) C4—C3—H3A 119.9
C23—C22—Cl1 117.62 (18) C3—C4—C5 119.7 (2)
C11—C12—C14 122.55 (18) C3—C4—H4A 120.2
C11—C12—C13 123.06 (19) C5—C4—H4A 120.2
C14—C12—C13 114.25 (19) C17—C18—C19 120.4 (3)
C20—C15—C16 119.2 (2) C17—C18—H18A 119.8
C20—C15—C11 119.59 (18) C19—C18—H18A 119.8
C16—C15—C11 121.2 (2) C18—C17—C16 120.8 (3)
O1—C7—C6 119.99 (18) C18—C17—H17A 119.6
O1—C7—C8 120.41 (18) C16—C17—H17A 119.6
C6—C7—C8 119.60 (16) C18—C19—C20 120.1 (3)
N1—C13—C12 177.8 (3) C18—C19—H19A 120.0
C23—C24—C25 120.8 (2) C20—C19—H19A 120.0
C23—C24—H24A 119.6
C21—C9—C8—C7 167.52 (15) C11—C12—C13—N1 −157 (6)
C10—C9—C8—C7 −68.3 (2) C14—C12—C13—N1 19 (6)
C8—C9—C21—C22 −107.58 (19) C5—C6—C1—C2 0.4 (3)
C10—C9—C21—C22 129.09 (17) C7—C6—C1—C2 179.0 (2)
C8—C9—C21—C26 71.0 (2) C16—C15—C20—C19 2.4 (3)
C10—C9—C21—C26 −52.3 (2) C11—C15—C20—C19 −176.51 (18)
C21—C9—C10—C11 −63.88 (19) C20—C15—C16—C17 −1.6 (3)
C8—C9—C10—C11 172.46 (15) C11—C15—C16—C17 177.3 (2)
C9—C10—C11—C12 126.58 (17) C22—C21—C26—C25 −1.0 (3)
C9—C10—C11—C15 −56.9 (2) C9—C21—C26—C25 −179.72 (17)
C26—C21—C22—C23 0.7 (3) C11—C12—C14—N2 166 (8)
C9—C21—C22—C23 179.38 (17) C13—C12—C14—N2 −9(8)
C26—C21—C22—Cl1 −177.92 (13) C1—C6—C5—C4 −1.1 (3)
C9—C21—C22—Cl1 0.7 (2) C7—C6—C5—C4 −179.8 (2)
C15—C11—C12—C14 179.97 (18) C25—C24—C23—C22 −0.9 (4)
C10—C11—C12—C14 −3.6 (3) C21—C22—C23—C24 0.2 (3)
C15—C11—C12—C13 −4.6 (3) Cl1—C22—C23—C24 178.89 (18)
C10—C11—C12—C13 171.84 (16) C21—C26—C25—C24 0.4 (3)
C12—C11—C15—C20 132.33 (19) C23—C24—C25—C26 0.6 (3)
C10—C11—C15—C20 −44.1 (2) C6—C1—C2—C3 0.0 (4)
C12—C11—C15—C16 −46.5 (2) C1—C2—C3—C4 0.5 (4)
C10—C11—C15—C16 137.02 (17) C2—C3—C4—C5 −1.2 (4)
C1—C6—C7—O1 179.4 (2) C6—C5—C4—C3 1.6 (4)
C5—C6—C7—O1 −2.0 (3) C19—C18—C17—C16 1.1 (5)
C1—C6—C7—C8 −0.8 (3) C15—C16—C17—C18 −0.1 (4)
C5—C6—C7—C8 177.80 (18) C17—C18—C19—C20 −0.3 (4)
C9—C8—C7—O1 −8.8 (3) C15—C20—C19—C18 −1.4 (4)
C9—C8—C7—C6 171.45 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···N1i 0.97 2.62 3.502 (3) 152.
C9—H9A···Cl1 0.98 2.53 3.083 (3) 115.
C10—H10B···O1 0.97 2.48 3.071 (4) 119.

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2363).

References

  1. Breslow, R. (1991). Acc. Chem. Res. 24, 159–164.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zhou, J.-X., Wang, X.-S. & Shi, D.-Q. (2007). Acta Cryst. E63, o2082–o2083.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050622/pv2363sup1.cif

e-67-00o62-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050622/pv2363Isup2.hkl

e-67-00o62-Isup2.hkl (245.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES