Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):m128. doi: 10.1107/S1600536810053183

{1,1′-[Butane-1,4-diylbis(nitrilo­methyl­idyne)]di-2-naphtho­lato}copper(II) ethanol monosolvate

Hadi Kargar a,*, Reza Kia b,c
PMCID: PMC3050176  PMID: 21522539

Abstract

The asymmetric unit of the title compound, [Cu(C26H22N2O2)]·C2H5OH, comprises a Schiff base complex and an ethanol mol­ecule of crystallization. The CuII atom shows a distorted square-planar geometry. The dihedral angle between the two aromatic rings is 48.16 (13)°. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and inter­molecular π–π inter­actions with centroid–centroid distances in the range 3.485 (2)–3.845 (3) Å.

Related literature

For standard values of bond lengths, see: Allen et al. (1987). For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000); Kargar et al. (2010).graphic file with name e-67-0m128-scheme1.jpg

Experimental

Crystal data

  • [Cu(C26H22N2O2)]·C2H6O

  • M r = 504.06

  • Monoclinic, Inline graphic

  • a = 13.468 (3) Å

  • b = 22.606 (5) Å

  • c = 15.831 (3) Å

  • β = 95.84 (3)°

  • V = 4794.9 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.42 × 0.26 × 0.22 mm

Data collection

  • Stoe IPDS II image plate diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009) T min = 0.973, T max = 1.000

  • 9868 measured reflections

  • 4655 independent reflections

  • 3110 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.126

  • S = 1.04

  • 4655 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810053183/jh2247sup1.cif

e-67-0m128-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053183/jh2247Isup2.hkl

e-67-0m128-Isup2.hkl (228.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O1 0.90 1.95 2.837 (4) 167
C12—H12A⋯O2i 0.97 2.52 3.395 (5) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

HK thanks PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University.

supplementary crystallographic information

Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structurel research (Kargar et al., 2010; Elmali et al., 2000; Blower et al., 1998).

The asymmetric unit of the title compound, Fig. 1, comprises one unit of the Schiff base complex and an ethanol molecule of crystallization. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The geometry ground the Cu(II) atom is distorted square-planar which is coordinated by the N2O2 donor atoms of the desired potentially tetradenate Schiff base ligand. The dihedral angle between the two aromatic rings is 48.16 (13)°. The crystal structure is stabilized by the intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π–π interactions [Cg1···Cg1i = 3.4852 (18) Å, (i) 2 - x, y, 1/2 - z; Cg2···Cg2i = 3.7183 (6)Å; Cg3···Cg3i = 3.638 (2)Å; Cg4···Cg4i = 3.845 (3)Å], Cg1, Cg2, Cg3 and Cg4 are the centroids of the Cu1/O1/C1/C10/C11/N1, Cu1/O2/C26/C17/C16/N2, C17/C18/C23/C24/C25/C26, and C18–C23 rings, respectively.

Experimental

The title compound was synthesized by adding bis(hydroxy naphtylidene)-1,4-butanediamine (2 mmol) to a solution of CuCl2. 4 H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant green solution was filtered. Dark-green block single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). The H atom of the hydroxy group was located from the difference Fourier mapand constrained to refine with the parent atom with Uiso (H) = 1.5 Ueq (O) after its distance was restrained to 0.90 (1)Å.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The intermolecular interaction is shown as dashed lines.

Fig. 2.

Fig. 2.

The packing of the title compound viewed down the a-axis showing dimer formation through the intermolecular C—H···O hydrogen bonds. All H atoms were removed for clarity except those involved in the hydrogen bonding. The intermolecular interactions are shown as dashed lines.

Crystal data

[Cu(C26H22N2O2)]·C2H6O F(000) = 2104
Mr = 504.06 Dx = 1.397 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 10437 reflections
a = 13.468 (3) Å θ = 1.8–29.6°
b = 22.606 (5) Å µ = 0.94 mm1
c = 15.831 (3) Å T = 296 K
β = 95.84 (3)° Block, dark-green
V = 4794.9 (17) Å3 0.42 × 0.26 × 0.22 mm
Z = 8

Data collection

Stoe IPDS II image plate diffractometer 4655 independent reflections
Radiation source: fine-focus sealed tube 3110 reflections with I > 2σ(I)
graphite Rint = 0.053
Detector resolution: 0.15 mm pixels mm-1 θmax = 26.0°, θmin = 1.8°
ω scans h = −16→16
Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009) k = −27→27
Tmin = 0.973, Tmax = 1.000 l = −14→19
9868 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0612P)2] where P = (Fo2 + 2Fc2)/3
4655 reflections (Δ/σ)max = 0.001
308 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.99074 (3) 0.39671 (2) 0.13736 (3) 0.03967 (16)
O1 1.09554 (19) 0.34050 (11) 0.13087 (19) 0.0462 (7)
O2 1.0912 (2) 0.45001 (11) 0.18187 (19) 0.0475 (7)
N1 0.8934 (2) 0.33537 (13) 0.1535 (2) 0.0402 (8)
N2 0.9081 (2) 0.45888 (13) 0.08166 (19) 0.0368 (7)
C1 1.0894 (3) 0.28282 (16) 0.1258 (2) 0.0370 (9)
C2 1.1777 (3) 0.25202 (17) 0.1090 (3) 0.0465 (10)
H2A 1.2354 0.2734 0.1025 0.056*
C3 1.1793 (3) 0.19265 (17) 0.1022 (3) 0.0475 (10)
H3A 1.2376 0.1741 0.0895 0.057*
C4 1.0948 (3) 0.15794 (16) 0.1140 (3) 0.0419 (9)
C5 1.0986 (3) 0.09535 (18) 0.1096 (3) 0.0535 (11)
H5A 1.1573 0.0769 0.0977 0.064*
C6 1.0179 (4) 0.06193 (19) 0.1226 (3) 0.0627 (13)
H6A 1.0216 0.0209 0.1195 0.075*
C7 0.9301 (4) 0.08883 (17) 0.1405 (3) 0.0596 (13)
H7A 0.8752 0.0658 0.1502 0.072*
C8 0.9236 (3) 0.14926 (17) 0.1440 (3) 0.0506 (11)
H8A 0.8636 0.1665 0.1549 0.061*
C9 1.0052 (3) 0.18599 (17) 0.1315 (2) 0.0380 (8)
C10 1.0024 (3) 0.25057 (16) 0.1367 (3) 0.0372 (8)
C11 0.9126 (3) 0.27942 (16) 0.1541 (2) 0.0395 (9)
H11A 0.8612 0.2548 0.1676 0.047*
C12 0.7936 (3) 0.35263 (18) 0.1772 (3) 0.0470 (10)
H12A 0.8013 0.3864 0.2151 0.056*
H12B 0.7670 0.3203 0.2082 0.056*
C13 0.7198 (3) 0.3680 (2) 0.1035 (3) 0.0630 (13)
H13A 0.6532 0.3625 0.1204 0.076*
H13B 0.7278 0.3403 0.0579 0.076*
C14 0.7270 (3) 0.4312 (2) 0.0682 (3) 0.0595 (12)
H14A 0.6686 0.4387 0.0285 0.071*
H14B 0.7256 0.4590 0.1147 0.071*
C15 0.8183 (3) 0.4431 (2) 0.0241 (3) 0.0486 (10)
H15A 0.8331 0.4082 −0.0079 0.058*
H15B 0.8039 0.4751 −0.0160 0.058*
C16 0.9315 (3) 0.51465 (16) 0.0851 (2) 0.0359 (8)
H16A 0.8889 0.5400 0.0524 0.043*
C17 1.0155 (2) 0.54158 (15) 0.1335 (2) 0.0320 (8)
C18 1.0243 (3) 0.60666 (17) 0.1334 (2) 0.0346 (8)
C19 0.9549 (3) 0.64393 (17) 0.0881 (3) 0.0437 (10)
H19A 0.9002 0.6277 0.0557 0.052*
C20 0.9669 (4) 0.70446 (19) 0.0913 (3) 0.0589 (12)
H20A 0.9195 0.7286 0.0615 0.071*
C21 1.0488 (4) 0.7300 (2) 0.1382 (4) 0.0707 (15)
H21A 1.0564 0.7709 0.1391 0.085*
C22 1.1174 (3) 0.69509 (19) 0.1827 (3) 0.0584 (12)
H22A 1.1716 0.7123 0.2148 0.070*
C23 1.1074 (3) 0.63268 (17) 0.1808 (3) 0.0406 (9)
C24 1.1801 (3) 0.59615 (17) 0.2255 (3) 0.0441 (9)
H24A 1.2346 0.6138 0.2566 0.053*
C25 1.1733 (3) 0.53693 (17) 0.2245 (3) 0.0429 (9)
H25A 1.2232 0.5144 0.2540 0.052*
C26 1.0900 (3) 0.50794 (16) 0.1786 (2) 0.0362 (8)
O3 1.2478 (2) 0.40229 (16) 0.0561 (2) 0.0741 (10)
H1 1.2027 0.3859 0.0872 0.111*
C27 1.3277 (4) 0.4255 (3) 0.1075 (4) 0.0863 (18)
H27A 1.3024 0.4447 0.1557 0.104*
H27B 1.3594 0.4556 0.0758 0.104*
C28 1.4013 (6) 0.3832 (4) 0.1383 (5) 0.131 (3)
H28A 1.4506 0.4021 0.1774 0.197*
H28B 1.4328 0.3673 0.0915 0.197*
H28C 1.3702 0.3519 0.1668 0.197*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0315 (2) 0.0356 (2) 0.0519 (3) −0.0033 (2) 0.00417 (19) 0.0020 (3)
O1 0.0345 (14) 0.0385 (15) 0.066 (2) −0.0025 (12) 0.0089 (14) −0.0030 (13)
O2 0.0387 (15) 0.0332 (14) 0.067 (2) −0.0018 (12) −0.0109 (14) 0.0052 (13)
N1 0.0309 (16) 0.0389 (17) 0.052 (2) −0.0010 (13) 0.0092 (15) 0.0013 (15)
N2 0.0295 (16) 0.0404 (17) 0.0401 (19) −0.0068 (13) 0.0021 (14) −0.0015 (14)
C1 0.0316 (18) 0.035 (2) 0.045 (2) 0.0009 (15) 0.0031 (17) −0.0003 (17)
C2 0.032 (2) 0.044 (2) 0.064 (3) −0.0017 (16) 0.0079 (19) 0.003 (2)
C3 0.035 (2) 0.045 (2) 0.063 (3) 0.0073 (17) 0.006 (2) −0.003 (2)
C4 0.043 (2) 0.037 (2) 0.045 (2) −0.0006 (17) 0.0026 (18) −0.0003 (17)
C5 0.053 (2) 0.041 (2) 0.066 (3) 0.006 (2) 0.005 (2) −0.005 (2)
C6 0.075 (3) 0.032 (2) 0.081 (4) −0.004 (2) 0.011 (3) −0.005 (2)
C7 0.059 (3) 0.034 (2) 0.087 (4) −0.0127 (19) 0.011 (3) −0.009 (2)
C8 0.047 (2) 0.040 (2) 0.066 (3) −0.0065 (19) 0.008 (2) −0.002 (2)
C9 0.038 (2) 0.0394 (19) 0.037 (2) −0.0013 (17) 0.0034 (17) −0.0035 (18)
C10 0.035 (2) 0.0358 (18) 0.041 (2) −0.0052 (16) 0.0022 (17) −0.0029 (18)
C11 0.0342 (19) 0.041 (2) 0.044 (2) −0.0055 (16) 0.0071 (17) 0.0002 (17)
C12 0.038 (2) 0.045 (2) 0.061 (3) 0.0015 (18) 0.017 (2) 0.000 (2)
C13 0.038 (2) 0.065 (3) 0.086 (4) −0.013 (2) 0.002 (2) 0.007 (3)
C14 0.042 (2) 0.072 (3) 0.062 (3) −0.002 (2) −0.006 (2) −0.001 (2)
C15 0.039 (2) 0.058 (3) 0.045 (3) −0.0073 (19) −0.0100 (19) −0.001 (2)
C16 0.0298 (19) 0.040 (2) 0.038 (2) 0.0009 (16) 0.0029 (17) 0.0031 (16)
C17 0.0258 (18) 0.0373 (19) 0.033 (2) −0.0036 (14) 0.0047 (16) 0.0020 (16)
C18 0.0326 (16) 0.0403 (19) 0.0318 (19) −0.0016 (17) 0.0084 (15) −0.0026 (18)
C19 0.043 (2) 0.039 (2) 0.048 (3) 0.0026 (18) 0.000 (2) 0.0033 (18)
C20 0.057 (3) 0.042 (2) 0.076 (3) 0.003 (2) 0.000 (3) 0.009 (2)
C21 0.074 (3) 0.038 (2) 0.099 (4) −0.007 (2) 0.001 (3) 0.003 (3)
C22 0.048 (3) 0.046 (2) 0.079 (4) −0.009 (2) 0.000 (2) −0.007 (2)
C23 0.039 (2) 0.043 (2) 0.041 (2) −0.0053 (17) 0.0078 (18) −0.0022 (18)
C24 0.038 (2) 0.046 (2) 0.047 (2) −0.0073 (18) −0.0022 (17) −0.0042 (19)
C25 0.035 (2) 0.044 (2) 0.049 (3) −0.0023 (17) −0.0026 (18) 0.0040 (18)
C26 0.0293 (18) 0.038 (2) 0.042 (2) −0.0029 (15) 0.0075 (17) −0.0005 (17)
O3 0.0546 (19) 0.092 (3) 0.077 (2) −0.013 (2) 0.0114 (17) 0.008 (2)
C27 0.075 (4) 0.075 (4) 0.110 (5) −0.018 (3) 0.012 (4) −0.020 (3)
C28 0.099 (5) 0.142 (7) 0.143 (8) 0.010 (5) −0.033 (5) 0.022 (6)

Geometric parameters (Å, °)

Cu1—O2 1.893 (3) C13—H13B 0.9700
Cu1—O1 1.910 (3) C14—C15 1.498 (6)
Cu1—N1 1.943 (3) C14—H14A 0.9700
Cu1—N2 1.947 (3) C14—H14B 0.9700
O1—C1 1.308 (4) C15—H15A 0.9700
O2—C26 1.311 (4) C15—H15B 0.9700
N1—C11 1.291 (5) C16—C17 1.436 (5)
N1—C12 1.485 (4) C16—H16A 0.9300
N2—C16 1.299 (4) C17—C26 1.397 (5)
N2—C15 1.481 (5) C17—C18 1.476 (5)
C1—C10 1.405 (5) C18—C19 1.400 (5)
C1—C2 1.427 (5) C18—C23 1.411 (5)
C2—C3 1.347 (5) C19—C20 1.378 (6)
C2—H2A 0.9300 C19—H19A 0.9300
C3—C4 1.411 (5) C20—C21 1.391 (7)
C3—H3A 0.9300 C20—H20A 0.9300
C4—C9 1.415 (5) C21—C22 1.357 (7)
C4—C5 1.418 (5) C21—H21A 0.9300
C5—C6 1.356 (6) C22—C23 1.417 (6)
C5—H5A 0.9300 C22—H22A 0.9300
C6—C7 1.384 (6) C23—C24 1.414 (5)
C6—H6A 0.9300 C24—C25 1.342 (5)
C7—C8 1.370 (6) C24—H24A 0.9300
C7—H7A 0.9300 C25—C26 1.431 (5)
C8—C9 1.406 (5) C25—H25A 0.9300
C8—H8A 0.9300 O3—C27 1.384 (6)
C9—C10 1.463 (5) O3—H1 0.9000
C10—C11 1.426 (5) C27—C28 1.427 (8)
C11—H11A 0.9300 C27—H27A 0.9700
C12—C13 1.495 (6) C27—H27B 0.9700
C12—H12A 0.9700 C28—H28A 0.9600
C12—H12B 0.9700 C28—H28B 0.9600
C13—C14 1.541 (6) C28—H28C 0.9600
C13—H13A 0.9700
O2—Cu1—O1 86.54 (12) C15—C14—C13 114.9 (4)
O2—Cu1—N1 150.64 (14) C15—C14—H14A 108.6
O1—Cu1—N1 92.55 (12) C13—C14—H14A 108.6
O2—Cu1—N2 93.61 (12) C15—C14—H14B 108.6
O1—Cu1—N2 147.92 (13) C13—C14—H14B 108.6
N1—Cu1—N2 102.26 (13) H14A—C14—H14B 107.5
C1—O1—Cu1 128.6 (2) N2—C15—C14 114.5 (4)
C26—O2—Cu1 128.0 (3) N2—C15—H15A 108.6
C11—N1—C12 116.2 (3) C14—C15—H15A 108.6
C11—N1—Cu1 124.3 (3) N2—C15—H15B 108.6
C12—N1—Cu1 119.1 (2) C14—C15—H15B 108.6
C16—N2—C15 116.0 (3) H15A—C15—H15B 107.6
C16—N2—Cu1 123.8 (3) N2—C16—C17 127.4 (4)
C15—N2—Cu1 119.8 (2) N2—C16—H16A 116.3
O1—C1—C10 124.0 (3) C17—C16—H16A 116.3
O1—C1—C2 116.7 (3) C26—C17—C16 121.9 (3)
C10—C1—C2 119.4 (3) C26—C17—C18 119.3 (3)
C3—C2—C1 121.4 (4) C16—C17—C18 118.8 (3)
C3—C2—H2A 119.3 C19—C18—C23 118.2 (4)
C1—C2—H2A 119.3 C19—C18—C17 123.4 (3)
C2—C3—C4 121.6 (4) C23—C18—C17 118.4 (3)
C2—C3—H3A 119.2 C20—C19—C18 120.6 (4)
C4—C3—H3A 119.2 C20—C19—H19A 119.7
C3—C4—C9 119.5 (3) C18—C19—H19A 119.7
C3—C4—C5 121.0 (4) C19—C20—C21 121.0 (5)
C9—C4—C5 119.5 (4) C19—C20—H20A 119.5
C6—C5—C4 121.0 (4) C21—C20—H20A 119.5
C6—C5—H5A 119.5 C22—C21—C20 119.8 (4)
C4—C5—H5A 119.5 C22—C21—H21A 120.1
C5—C6—C7 120.0 (4) C20—C21—H21A 120.1
C5—C6—H6A 120.0 C21—C22—C23 120.6 (4)
C7—C6—H6A 120.0 C21—C22—H22A 119.7
C8—C7—C6 120.4 (4) C23—C22—H22A 119.7
C8—C7—H7A 119.8 C18—C23—C24 119.6 (3)
C6—C7—H7A 119.8 C18—C23—C22 119.7 (4)
C7—C8—C9 121.9 (4) C24—C23—C22 120.7 (4)
C7—C8—H8A 119.0 C25—C24—C23 122.2 (4)
C9—C8—H8A 119.0 C25—C24—H24A 118.9
C8—C9—C4 117.1 (4) C23—C24—H24A 118.9
C8—C9—C10 123.9 (4) C24—C25—C26 120.8 (4)
C4—C9—C10 119.0 (3) C24—C25—H25A 119.6
C1—C10—C11 121.4 (3) C26—C25—H25A 119.6
C1—C10—C9 119.0 (3) O2—C26—C17 124.7 (3)
C11—C10—C9 119.6 (3) O2—C26—C25 115.6 (4)
N1—C11—C10 128.3 (3) C17—C26—C25 119.7 (3)
N1—C11—H11A 115.8 C27—O3—H1 111.3
C10—C11—H11A 115.8 O3—C27—C28 114.8 (5)
N1—C12—C13 114.3 (4) O3—C27—H27A 108.6
N1—C12—H12A 108.7 C28—C27—H27A 108.6
C13—C12—H12A 108.7 O3—C27—H27B 108.6
N1—C12—H12B 108.7 C28—C27—H27B 108.6
C13—C12—H12B 108.7 H27A—C27—H27B 107.6
H12A—C12—H12B 107.6 C27—C28—H28A 109.5
C12—C13—C14 115.9 (4) C27—C28—H28B 109.5
C12—C13—H13A 108.3 H28A—C28—H28B 109.5
C14—C13—H13A 108.3 C27—C28—H28C 109.5
C12—C13—H13B 108.3 H28A—C28—H28C 109.5
C14—C13—H13B 108.3 H28B—C28—H28C 109.5
H13A—C13—H13B 107.4
O2—Cu1—O1—C1 160.0 (3) C4—C9—C10—C11 179.8 (4)
N1—Cu1—O1—C1 9.4 (3) C12—N1—C11—C10 −178.0 (4)
N2—Cu1—O1—C1 −108.7 (4) Cu1—N1—C11—C10 −5.7 (6)
O1—Cu1—O2—C26 153.9 (3) C1—C10—C11—N1 7.9 (7)
N1—Cu1—O2—C26 −117.1 (3) C9—C10—C11—N1 −173.2 (4)
N2—Cu1—O2—C26 6.0 (3) C11—N1—C12—C13 −101.9 (4)
O2—Cu1—N1—C11 −89.3 (4) Cu1—N1—C12—C13 85.4 (4)
O1—Cu1—N1—C11 −1.9 (3) N1—C12—C13—C14 −81.5 (5)
N2—Cu1—N1—C11 149.5 (3) C12—C13—C14—C15 69.1 (5)
O2—Cu1—N1—C12 82.7 (4) C16—N2—C15—C14 −102.7 (4)
O1—Cu1—N1—C12 170.2 (3) Cu1—N2—C15—C14 83.6 (4)
N2—Cu1—N1—C12 −38.4 (3) C13—C14—C15—N2 −83.3 (5)
O2—Cu1—N2—C16 −0.6 (3) C15—N2—C16—C17 −178.3 (3)
O1—Cu1—N2—C16 −89.9 (4) Cu1—N2—C16—C17 −4.8 (5)
N1—Cu1—N2—C16 154.5 (3) N2—C16—C17—C26 6.2 (6)
O2—Cu1—N2—C15 172.5 (3) N2—C16—C17—C18 −175.4 (3)
O1—Cu1—N2—C15 83.3 (3) C26—C17—C18—C19 178.1 (3)
N1—Cu1—N2—C15 −32.3 (3) C16—C17—C18—C19 −0.3 (5)
Cu1—O1—C1—C10 −9.7 (6) C26—C17—C18—C23 −1.3 (5)
Cu1—O1—C1—C2 170.9 (3) C16—C17—C18—C23 −179.7 (3)
O1—C1—C2—C3 −179.8 (4) C23—C18—C19—C20 −1.1 (6)
C10—C1—C2—C3 0.8 (6) C17—C18—C19—C20 179.4 (4)
C1—C2—C3—C4 −1.9 (7) C18—C19—C20—C21 1.0 (7)
C2—C3—C4—C9 1.4 (7) C19—C20—C21—C22 −0.9 (8)
C2—C3—C4—C5 −177.8 (4) C20—C21—C22—C23 1.0 (8)
C3—C4—C5—C6 178.7 (4) C19—C18—C23—C24 −178.4 (3)
C9—C4—C5—C6 −0.5 (7) C17—C18—C23—C24 1.1 (5)
C4—C5—C6—C7 0.0 (8) C19—C18—C23—C22 1.2 (5)
C5—C6—C7—C8 1.0 (8) C17—C18—C23—C22 −179.4 (4)
C6—C7—C8—C9 −1.4 (8) C21—C22—C23—C18 −1.1 (7)
C7—C8—C9—C4 0.8 (7) C21—C22—C23—C24 178.4 (5)
C7—C8—C9—C10 −178.4 (4) C18—C23—C24—C25 0.0 (6)
C3—C4—C9—C8 −179.1 (4) C22—C23—C24—C25 −179.5 (4)
C5—C4—C9—C8 0.1 (6) C23—C24—C25—C26 −1.0 (6)
C3—C4—C9—C10 0.2 (6) Cu1—O2—C26—C17 −6.3 (5)
C5—C4—C9—C10 179.4 (4) Cu1—O2—C26—C25 174.7 (3)
O1—C1—C10—C11 0.3 (6) C16—C17—C26—O2 −0.3 (6)
C2—C1—C10—C11 179.7 (4) C18—C17—C26—O2 −178.6 (3)
O1—C1—C10—C9 −178.6 (4) C16—C17—C26—C25 178.7 (3)
C2—C1—C10—C9 0.8 (6) C18—C17—C26—C25 0.4 (5)
C8—C9—C10—C1 178.0 (4) C24—C25—C26—O2 179.8 (4)
C4—C9—C10—C1 −1.2 (6) C24—C25—C26—C17 0.7 (6)
C8—C9—C10—C11 −1.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H1···O1 0.90 1.95 2.837 (4) 167
C12—H12A···O2i 0.97 2.52 3.395 (5) 150

Symmetry codes: (i) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2247).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Blower, P. J. (1998). Transition Met. Chem. 23, 109–112.
  3. Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. [DOI] [PubMed]
  4. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  5. Kargar, H., Kia, R., Tahir, M. N. & Sahraei, A. (2010). Acta Cryst. E66, m1246. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Stoe & Cie (2005). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810053183/jh2247sup1.cif

e-67-0m128-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053183/jh2247Isup2.hkl

e-67-0m128-Isup2.hkl (228.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES