Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):m23–m24. doi: 10.1107/S1600536810049780

Poly[tetra­aqua-di-μ4-malonato-barium(II)cadmium(II)]

Ming-Lin Guo a,*, Wen-Jun Gao a, Cong-Cong Luo a, Long Liu a
PMCID: PMC3050201  PMID: 21522548

Abstract

In the title complex, [BaCd(C3H2O4)2(H2O)4]n, the BaII atoms, located on crystallographic twofold axes, adopt slightly distorted square-anti­prismatic coordination geometries, while the CdII atoms, which lie on crystallographic centres of symmetry, have a distorted octa­hedral coordination. Each malonate dianion binds two different CdII atoms and two different BaII atoms. This connectivity generates alternating layers along [100] in the structure, with one type containing CdII cations and malonate dianions, while the other is primarily composed of BaII ions and coordinated water mol­ecules. The water mol­ecules also participate in extensive O—H⋯O hydrogen bonding.

Related literature

For structural studies on the malonate dianion with its versatile coordination patterns, see: Delgado et al. (2004). For related structures, see Djeghri et al. (2005); Guo & Guo (2006). graphic file with name e-67-00m23-scheme1.jpg

Experimental

Crystal data

  • [BaCd(C3H2O4)2(H2O)4]

  • M r = 525.90

  • Orthorhombic, Inline graphic

  • a = 18.809 (4) Å

  • b = 6.9224 (14) Å

  • c = 9.6849 (19) Å

  • V = 1261.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.370, T max = 0.662

  • 5716 measured reflections

  • 1103 independent reflections

  • 978 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.161

  • S = 1.06

  • 1103 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 1.94 e Å−3

  • Δρmin = −1.24 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049780/sj5064sup1.cif

e-67-00m23-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049780/sj5064Isup2.hkl

e-67-00m23-Isup2.hkl (54.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ba1—O4i 2.794 (9)
Ba1—O6 2.809 (10)
Ba1—O4 2.854 (9)
Ba1—O5 2.877 (10)
Cd1—O2ii 2.227 (10)
Cd1—O3 2.227 (9)
Cd1—O1iii 2.364 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O5iii 0.87 2.08 2.893 (14) 157
O6—H6A⋯O1iv 0.85 1.99 2.781 (13) 156
O5—H5B⋯O6i 0.87 2.19 2.919 (15) 141
O5—H5A⋯O2ii 0.84 2.01 2.810 (14) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank Tianjin Polytechnic University for financial support.

supplementary crystallographic information

Comment

The malonate dianion, with two neighboring carboxylate groups, is a very flexible ligand. Its basic coordination mode is as a chelate via two distal carboxylate oxygen atoms to form a six-membered ring and the coordinating ability of the nonchelating oxygen atoms makes the formation of polymeric networks possible (Djeghri et al., 2005; Guo & Guo, 2006). On the other hand, malonate can also coordinate in monodentate, chelated bidentate and bridging modes to create various molecular architectures (Delgado et al., 2004). Herein, we report the structure of the title heterobimetallic malonate complex, (I). It and the chemically similar complex poly[tetraaqua-di-mu4-malonato-barium(II)zinc(II)] (Guo & Guo, 2006) are isotypic.

The asymmetric unit in the structure of (I) comprises half a BaII cation, half a CdII cation, a complete malonate dianion defined by C1—C3/O1—O4 and two independent water molecules involving O5 and O6. Fig. 1 shows a symmetry-expanded view which displays the full coordination of the Ba2+ and Cd2+ centers. Selected geometric parameters are given in Table 1.

The Ba2+ cation, lying on a crystallographic twofold axis, is eight-coordinate, bonded to oxygen atoms of four different malonate groups and four water molecules with Ba—O distances ranging from 2.793 (9) to 2.878 (10) Å. The Ba polyhedra may be described as slightly distorted square antiprisms. They share edges to form chains propagating along c.

The Cd2+ cations, lie on crystallographic centres of symmetry, and have distorted octahedral coordination, with O2 and O3 of two bidentate malonate anions at the equatorial sites and two O1 atoms from two other malonate anions at the apical sites.

Also evident in Fig. 1 is the variability of the coordination modes of the malonate dianion with monodentate (O1), bidentate chelating (O2 and O3) and bridging (O4) bonding modes all present.

The structure as a whole consists of two distinct types of layer, both parallel to (100) and stacked alternately in the direction of a. The first of these (Fig. 2) is composed entirely of CdII ions and malonate dianions and occurs at x = 0 and 1/2. The other type of layer, type 2, alternating with the first and centred on x = 1/4 and 3/4 contains, primarily, the Ba ions and the water molecules. Two forms of connectivity occur within the type 2 layers. First of all O4 atoms on the surfaces of the type 1 layers create chains of edge sharing Ba polyhedra propagating along c and at the same time link the two types of layer and complete the three-dimensional connectivity of the structure. The interlayer connectivity is further enhanced by the hydrogen bonds of the form O5—H5A···O2iv and O6—H6A···O1vi given in Table 2.

Experimental

The title complex was prepared under continuous stirring with successive addition of malonic acid (0.43 g, 4 mmol), cadmium(II) chloride (0.37 g, 2 mmol) and Ba(OH)2.8H2O (0.63 g, 2 mmol) to distilled water (40 ml) at room temperature. After filtration, slow evaporation over a period of a week at room temperature provided colorless plate-like crystals of (I).

Refinement

The H atoms of the water molecule were found in difference Fourier maps and during refinement were fixed at an O–H distance of 0.85 Å, and with Uiso(H) = 1.2 Ueq(O). The H atoms of C–H groups were placed geometrically and during refinement were treated using a riding model, with C–H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The coordination of the metal ions in (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes (i) x, -y + 1/2, z + 1/2; (ii) -x + 1/2, y, z + 1/2; (iii) -x + 1/2, -y + 1/2, z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, y + 1/2, -z + 1/2.

Fig. 2.

Fig. 2.

A view, approximately along the b axis, showing the alternation of type 1 and type 2 layers along the a axis.

Crystal data

[BaCd(C3H2O4)2(H2O)4] F(000) = 992
Mr = 525.90 Dx = 2.770 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 3576 reflections
a = 18.809 (4) Å θ = 3.1–26.4°
b = 6.9224 (14) Å µ = 4.85 mm1
c = 9.6849 (19) Å T = 294 K
V = 1261.0 (4) Å3 Prism, colorless
Z = 4 0.24 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1103 independent reflections
Radiation source: sealed tube 978 reflections with I > 2σ(I)
graphite Rint = 0.059
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −22→10
Tmin = 0.370, Tmax = 0.662 k = −8→8
5716 measured reflections l = −10→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0364P)2 + 63.5907P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
1103 reflections Δρmax = 1.94 e Å3
94 parameters Δρmin = −1.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0147 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ba1 0.2500 0.2500 0.50669 (11) 0.0320 (5)
Cd1 0.5000 0.5000 0.5000 0.0320 (6)
O1 0.5419 (5) 0.2940 (12) 0.0939 (9) 0.030 (2)
O2 0.5475 (5) 0.4394 (15) 0.2939 (10) 0.035 (2)
O3 0.4014 (5) 0.3657 (15) 0.4162 (9) 0.034 (2)
O4 0.3196 (5) 0.3410 (17) 0.2530 (9) 0.035 (2)
O5 0.3078 (5) 0.5890 (15) 0.6370 (11) 0.041 (3)
H5B 0.2892 0.6078 0.7177 0.061*
H5A 0.3517 0.5665 0.6370 0.061*
O6 0.3163 (5) −0.1005 (15) 0.4378 (11) 0.041 (2)
H6A 0.3571 −0.1227 0.4039 0.062*
H6B 0.3010 −0.1850 0.4966 0.062*
C1 0.5135 (7) 0.3835 (18) 0.1916 (14) 0.029 (3)
C2 0.4344 (7) 0.4323 (19) 0.1784 (13) 0.028 (3)
H2A 0.4307 0.5714 0.1686 0.033*
H2B 0.4178 0.3763 0.0924 0.033*
C3 0.3825 (7) 0.3720 (19) 0.2905 (15) 0.030 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.0311 (8) 0.0367 (8) 0.0281 (7) 0.0015 (5) 0.000 0.000
Cd1 0.0341 (9) 0.0357 (9) 0.0261 (8) −0.0001 (6) −0.0021 (6) −0.0004 (6)
O1 0.035 (5) 0.018 (4) 0.037 (5) −0.003 (4) 0.005 (4) −0.005 (4)
O2 0.028 (5) 0.045 (6) 0.033 (5) 0.004 (5) −0.006 (4) −0.007 (5)
O3 0.031 (5) 0.046 (6) 0.026 (5) −0.009 (4) −0.002 (4) 0.003 (4)
O4 0.020 (5) 0.052 (6) 0.032 (5) −0.010 (5) −0.001 (4) 0.001 (4)
O5 0.030 (5) 0.041 (6) 0.052 (6) 0.001 (5) −0.006 (5) −0.001 (5)
O6 0.031 (5) 0.044 (6) 0.049 (6) 0.004 (5) 0.011 (5) 0.006 (5)
C1 0.031 (7) 0.021 (6) 0.034 (7) 0.001 (5) 0.000 (6) 0.001 (5)
C2 0.029 (7) 0.029 (7) 0.025 (6) −0.003 (6) 0.001 (6) 0.000 (5)
C3 0.032 (7) 0.023 (7) 0.036 (7) 0.001 (6) −0.002 (6) −0.003 (6)

Geometric parameters (Å, °)

Ba1—O4i 2.794 (9) Cd1—O1v 2.364 (8)
Ba1—O4ii 2.794 (9) Cd1—O1i 2.364 (8)
Ba1—O6iii 2.809 (10) O1—C1 1.252 (16)
Ba1—O6 2.809 (10) O1—Cd1vi 2.364 (8)
Ba1—O4iii 2.854 (9) O2—C1 1.241 (16)
Ba1—O4 2.854 (9) O3—C3 1.269 (17)
Ba1—O5 2.877 (10) O4—C3 1.255 (16)
Ba1—O5iii 2.877 (10) O4—Ba1vii 2.794 (9)
Ba1—O3iii 3.086 (9) O5—H5B 0.8658
Ba1—O3 3.086 (9) O5—H5A 0.8410
Ba1—C3iii 3.363 (14) O6—H6A 0.8479
Ba1—C3 3.363 (14) O6—H6B 0.8659
Cd1—O2iv 2.227 (10) C1—C2 1.531 (18)
Cd1—O2 2.227 (10) C2—C3 1.518 (19)
Cd1—O3iv 2.227 (9) C2—H2A 0.9700
Cd1—O3 2.227 (9) C2—H2B 0.9700
O4i—Ba1—O4ii 62.7 (4) O4i—Ba1—C3 103.9 (3)
O4i—Ba1—O6iii 127.3 (3) O4ii—Ba1—C3 145.4 (3)
O4ii—Ba1—O6iii 78.5 (3) O6iii—Ba1—C3 88.0 (3)
O4i—Ba1—O6 78.5 (3) O6—Ba1—C3 74.9 (3)
O4ii—Ba1—O6 127.3 (3) O4iii—Ba1—C3 81.9 (3)
O6iii—Ba1—O6 152.5 (4) O4—Ba1—C3 21.3 (3)
O4i—Ba1—O4iii 154.2 (5) O5—Ba1—C3 77.8 (3)
O4ii—Ba1—O4iii 124.7 (4) O5iii—Ba1—C3 139.3 (3)
O6iii—Ba1—O4iii 77.4 (3) O3iii—Ba1—C3 124.9 (3)
O6—Ba1—O4iii 79.0 (3) O3—Ba1—C3 22.2 (3)
O4i—Ba1—O4 124.7 (4) C3iii—Ba1—C3 103.0 (5)
O4ii—Ba1—O4 154.2 (5) O2iv—Cd1—O2 180.000 (1)
O6iii—Ba1—O4 79.0 (3) O2iv—Cd1—O3iv 85.9 (3)
O6—Ba1—O4 77.4 (3) O2—Cd1—O3iv 94.1 (3)
O4iii—Ba1—O4 61.2 (4) O2iv—Cd1—O3 94.1 (3)
O4i—Ba1—O5 68.4 (3) O2—Cd1—O3 85.9 (3)
O4ii—Ba1—O5 67.6 (3) O3iv—Cd1—O3 180.0 (3)
O6iii—Ba1—O5 64.4 (3) O2iv—Cd1—O1v 92.8 (3)
O6—Ba1—O5 129.8 (3) O2—Cd1—O1v 87.2 (3)
O4iii—Ba1—O5 136.9 (3) O3iv—Cd1—O1v 93.3 (3)
O4—Ba1—O5 91.4 (3) O3—Cd1—O1v 86.7 (3)
O4i—Ba1—O5iii 67.6 (3) O2iv—Cd1—O1i 87.2 (3)
O4ii—Ba1—O5iii 68.4 (3) O2—Cd1—O1i 92.8 (3)
O6iii—Ba1—O5iii 129.8 (3) O3iv—Cd1—O1i 86.7 (3)
O6—Ba1—O5iii 64.4 (3) O3—Cd1—O1i 93.3 (3)
O4iii—Ba1—O5iii 91.4 (3) O1v—Cd1—O1i 180.0 (4)
O4—Ba1—O5iii 136.9 (3) C1—O1—Cd1vi 125.1 (8)
O5—Ba1—O5iii 128.0 (4) C1—O2—Cd1 124.6 (9)
O4i—Ba1—O3iii 128.1 (3) C3—O3—Cd1 124.7 (9)
O4ii—Ba1—O3iii 82.4 (3) C3—O3—Ba1 91.3 (8)
O6iii—Ba1—O3iii 75.3 (3) Cd1—O3—Ba1 140.6 (4)
O6—Ba1—O3iii 96.8 (3) C3—O4—Ba1vii 136.6 (9)
O4iii—Ba1—O3iii 43.5 (3) C3—O4—Ba1 102.8 (8)
O4—Ba1—O3iii 103.7 (3) Ba1vii—O4—Ba1 118.0 (3)
O5—Ba1—O3iii 133.2 (3) Ba1—O5—H5B 111.5
O5iii—Ba1—O3iii 64.2 (3) Ba1—O5—H5A 102.7
O4i—Ba1—O3 82.4 (3) H5B—O5—H5A 115.1
O4ii—Ba1—O3 128.1 (3) Ba1—O6—H6A 130.6
O6iii—Ba1—O3 96.8 (3) Ba1—O6—H6B 106.2
O6—Ba1—O3 75.3 (3) H6A—O6—H6B 115.7
O4iii—Ba1—O3 103.7 (3) O2—C1—O1 122.6 (12)
O4—Ba1—O3 43.5 (3) O2—C1—C2 119.9 (12)
O5—Ba1—O3 64.2 (3) O1—C1—C2 117.4 (12)
O5iii—Ba1—O3 133.2 (3) C3—C2—C1 120.2 (11)
O3iii—Ba1—O3 147.0 (3) C3—C2—H2A 107.3
O4i—Ba1—C3iii 145.3 (3) C1—C2—H2A 107.3
O4ii—Ba1—C3iii 103.9 (3) C3—C2—H2B 107.3
O6iii—Ba1—C3iii 74.9 (3) C1—C2—H2B 107.3
O6—Ba1—C3iii 88.0 (3) H2A—C2—H2B 106.9
O4iii—Ba1—C3iii 21.3 (3) O4—C3—O3 122.4 (13)
O4—Ba1—C3iii 81.9 (3) O4—C3—C2 116.4 (12)
O5—Ba1—C3iii 139.3 (3) O3—C3—C2 121.0 (12)
O5iii—Ba1—C3iii 77.8 (3) O4—C3—Ba1 55.9 (7)
O3iii—Ba1—C3iii 22.2 (3) O3—C3—Ba1 66.6 (7)
O3—Ba1—C3iii 124.9 (3) C2—C3—Ba1 172.1 (9)
O3iv—Cd1—O2—C1 −170.4 (11) O6—Ba1—O4—Ba1vii 84.2 (4)
O3—Cd1—O2—C1 9.6 (11) O4iii—Ba1—O4—Ba1vii 0.0
O1v—Cd1—O2—C1 −77.2 (11) O5—Ba1—O4—Ba1vii −145.1 (4)
O1i—Cd1—O2—C1 102.8 (11) O5iii—Ba1—O4—Ba1vii 56.8 (6)
O2iv—Cd1—O3—C3 148.6 (11) O3iii—Ba1—O4—Ba1vii −9.8 (5)
O2—Cd1—O3—C3 −31.4 (11) O3—Ba1—O4—Ba1vii 166.0 (7)
O1v—Cd1—O3—C3 56.0 (11) C3iii—Ba1—O4—Ba1vii −5.5 (4)
O1i—Cd1—O3—C3 −124.0 (11) C3—Ba1—O4—Ba1vii 164.9 (12)
O2iv—Cd1—O3—Ba1 −3.7 (7) Cd1—O2—C1—O1 −156.7 (9)
O2—Cd1—O3—Ba1 176.3 (7) Cd1—O2—C1—C2 26.4 (17)
O1v—Cd1—O3—Ba1 −96.3 (6) Cd1vi—O1—C1—O2 129.4 (11)
O1i—Cd1—O3—Ba1 83.7 (6) Cd1vi—O1—C1—C2 −53.6 (14)
O4i—Ba1—O3—C3 166.0 (8) O2—C1—C2—C3 −57.2 (17)
O4ii—Ba1—O3—C3 −147.8 (8) O1—C1—C2—C3 125.7 (13)
O6iii—Ba1—O3—C3 −67.2 (8) Ba1vii—O4—C3—O3 −162.7 (10)
O6—Ba1—O3—C3 86.0 (8) Ba1—O4—C3—O3 −2.2 (15)
O4iii—Ba1—O3—C3 11.5 (8) Ba1vii—O4—C3—C2 22 (2)
O4—Ba1—O3—C3 −1.1 (7) Ba1—O4—C3—C2 −177.9 (9)
O5—Ba1—O3—C3 −124.4 (9) Ba1vii—O4—C3—Ba1 −160.5 (15)
O5iii—Ba1—O3—C3 116.7 (8) Cd1—O3—C3—O4 −160.9 (10)
O3iii—Ba1—O3—C3 6.3 (7) Ba1—O3—C3—O4 2.0 (14)
C3iii—Ba1—O3—C3 9.2 (11) Cd1—O3—C3—C2 14.7 (18)
O4i—Ba1—O3—Cd1 −36.5 (7) Ba1—O3—C3—C2 177.5 (11)
O4ii—Ba1—O3—Cd1 9.7 (8) Cd1—O3—C3—Ba1 −162.9 (10)
O6iii—Ba1—O3—Cd1 90.4 (7) C1—C2—C3—O4 −151.1 (13)
O6—Ba1—O3—Cd1 −116.5 (7) C1—C2—C3—O3 33.1 (19)
O4iii—Ba1—O3—Cd1 169.0 (6) O4i—Ba1—C3—O4 167.7 (7)
O4—Ba1—O3—Cd1 156.5 (9) O4ii—Ba1—C3—O4 −130.5 (10)
O5—Ba1—O3—Cd1 33.2 (6) O6iii—Ba1—C3—O4 −64.3 (9)
O5iii—Ba1—O3—Cd1 −85.7 (7) O6—Ba1—C3—O4 94.0 (9)
O3iii—Ba1—O3—Cd1 163.8 (7) O4iii—Ba1—C3—O4 13.3 (10)
C3iii—Ba1—O3—Cd1 166.7 (6) O5—Ba1—C3—O4 −128.5 (9)
C3—Ba1—O3—Cd1 157.5 (13) O5iii—Ba1—C3—O4 96.0 (9)
O4i—Ba1—O4—C3 −14.5 (8) O3iii—Ba1—C3—O4 6.2 (10)
O4ii—Ba1—O4—C3 84.2 (9) O3—Ba1—C3—O4 −178.0 (14)
O6iii—Ba1—O4—C3 113.5 (9) C3iii—Ba1—C3—O4 9.7 (8)
O6—Ba1—O4—C3 −80.7 (9) O4i—Ba1—C3—O3 −14.3 (8)
O4iii—Ba1—O4—C3 −164.9 (12) O4ii—Ba1—C3—O3 47.5 (10)
O5—Ba1—O4—C3 49.9 (9) O6iii—Ba1—C3—O3 113.7 (8)
O5iii—Ba1—O4—C3 −108.1 (9) O6—Ba1—C3—O3 −88.0 (8)
O3iii—Ba1—O4—C3 −174.8 (9) O4iii—Ba1—C3—O3 −168.7 (8)
O3—Ba1—O4—C3 1.1 (8) O4—Ba1—C3—O3 178.0 (14)
C3iii—Ba1—O4—C3 −170.4 (8) O5—Ba1—C3—O3 49.5 (8)
O4i—Ba1—O4—Ba1vii 150.4 (5) O5iii—Ba1—C3—O3 −86.0 (9)
O4ii—Ba1—O4—Ba1vii −110.9 (6) O3iii—Ba1—C3—O3 −175.8 (5)
O6iii—Ba1—O4—Ba1vii −81.6 (4) C3iii—Ba1—C3—O3 −172.3 (9)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1/2, y, z+1/2; (iii) −x+1/2, −y+1/2, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+1/2; (vi) −x+1, y−1/2, −z+1/2; (vii) −x+1/2, y, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6B···O5viii 0.87 2.08 2.893 (14) 157.
O6—H6A···O1vi 0.85 1.99 2.781 (13) 156.
O5—H5B···O6i 0.87 2.19 2.919 (15) 141.
O5—H5A···O2iv 0.84 2.01 2.810 (14) 159.

Symmetry codes: (viii) x, y−1, z; (vi) −x+1, y−1/2, −z+1/2; (i) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5064).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Delgado, F. S., Sanchiz, J., Ruis-Perez, C., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 443–450.
  3. Djeghri, A., Balegroune, F., Guehria-Laidoudi, A. & Toupet, L. (2005). J. Chem. Crystallogr. 35, 603–607. [DOI] [PubMed]
  4. Guo, M.-L. & Guo, C.-H. (2006). Acta Cryst. C62, m7–m9. [DOI] [PubMed]
  5. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049780/sj5064sup1.cif

e-67-00m23-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049780/sj5064Isup2.hkl

e-67-00m23-Isup2.hkl (54.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES