Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o93. doi: 10.1107/S1600536810050336

N-(Trimethyl­sil­yl)methane­sulfonamide

Andrew R McWilliams a,*, Sossina Gezahegna a, Alan J Lough b
PMCID: PMC3050205  PMID: 21522802

Abstract

There are two mol­ecules in the asymmetric unit of the title compound, C4H13NO2SSi. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming chains along [001]. The crystal studied was an inversion twin, the refined ratio of twin domains being 0.61 (9):0.39 (9).

Related literature

For the original synthesis of the title compound, see: Roy (1993). For the synthetic application of the title compound, see: Roy et al. (1993). For related structures, see: Ni et al. (1995); Chunechom et al. (1998).graphic file with name e-67-00o93-scheme1.jpg

Experimental

Crystal data

  • C4H13NO2SSi

  • M r = 167.30

  • Monoclinic, Inline graphic

  • a = 8.2827 (4) Å

  • b = 10.9513 (5) Å

  • c = 9.6201 (3) Å

  • β = 92.536 (2)°

  • V = 871.75 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 150 K

  • 0.32 × 0.25 × 0.24 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995) T min = 0.830, T max = 0.931

  • 6920 measured reflections

  • 4894 independent reflections

  • 4195 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.094

  • S = 1.05

  • 4894 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983), 1787 Friedel pairs

  • Flack parameter: 0.39 (9)

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050336/si2314sup1.cif

e-67-00o93-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050336/si2314Isup2.hkl

e-67-00o93-Isup2.hkl (239.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1NB⋯O2A 0.81 (2) 2.11 (2) 2.917 (3) 173 (3)
N1A—H1NA⋯O2Bi 0.81 (2) 2.12 (2) 2.925 (3) 177 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

AM would like to thank Ryerson University’s Faculty of Engineering, Architecture and Science for funding.

supplementary crystallographic information

Comment

N-trimethylsilylmethylsulfonamide, a key intermediate in the synthesis of polyoxothiazenes (Roy et al., 1993) and polythionylphosphazenes (Chunechom et al., 1998), was prepared via the reaction of methanesulfonyl chloride and hexamethyldisilazane (Roy, 1993). The asymmetric unit of the title compound, which contains two independent molecules, is shown in Fig. 1. The S—N bond distances in each molecule are intermediate between a typical S—N single bond (1.74 Å) and a typical S=N double bond (1.54 Å), (Ni et al., 1995) suggesting the presence of some π-bonding between the sulfur and nitrogen atoms. The S—N—Si bond angles of 127.83 (14)° and 128.59 (14)Å are larger than might be expected, in terms of hybridization priciples, for either a tetrahedral or trigonal planar geometry about the nitrogen atom. In the crystal structure, molecules are linked via intermolecular N—H···O hydrogen bonds to form one-dimensional chains along [001] (Fig. 2).

Experimental

The title compound was prepared via addition of methanesulfonyl chloride (7 ml, 102.5 mmol) to a three-necked round-bottom flask equipped with a magnetic stirring bar, gas inlet, reflux condenser and a rubber septa under an inert N2 atmosphere. Hexamethyldisilazane (20 ml, 103.1 mmol) was added drop wise over 10 minutes with stirring at ambient temperatures. The flask was then placed into an oil bath and the reaction mixture heated to 363–373 K to initiate the reaction. The temperature of the oil bath was increased to between 388–393 K and the reaction mixture refluxed at this temperature for 2 h. The reaction mixture was allowed to cool to room temperature and the reaction by-product (Me3SiCl) was removed in vacuo. The resulting crude white powder was recrystallized from a CH2Cl2/Hexane mixture producing colourless crystals. (Yield = 15.6 g, 91%).

Refinement

Hydrogen atoms were placed in calculated positions with C—H distances ranging from 0.98 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.5Ueq(C). The positional parameters of the H atoms bonded to N atoms were refined independently and with Uiso(H) = 1.5Ueq(N). The N—H distances were constrained to be the same in each molecule [0.81 (2) Å] using the SADI command in SHELXL (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of title compound showing 30% probability ellipsoids. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

Part of the crystal structure showing hydrogen bonds as dashed lines.

Crystal data

C4H13NO2SSi F(000) = 360
Mr = 167.30 Dx = 1.275 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 6920 reflections
a = 8.2827 (4) Å θ = 2.8–32.0°
b = 10.9513 (5) Å µ = 0.45 mm1
c = 9.6201 (3) Å T = 150 K
β = 92.536 (2)° Block, colourless
V = 871.75 (6) Å3 0.32 × 0.25 × 0.24 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4894 independent reflections
Radiation source: fine-focus sealed tube 4195 reflections with I > 2σ(I)
graphite Rint = 0.030
Detector resolution: 9 pixels mm-1 θmax = 32.0°, θmin = 2.8°
φ scans and ω scans with κ offsets h = −12→12
Absorption correction: multi-scan (SORTAV; Blessing 1995) k = −14→16
Tmin = 0.830, Tmax = 0.931 l = −12→14
6920 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.660P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4894 reflections Δρmax = 0.41 e Å3
170 parameters Δρmin = −0.49 e Å3
2 restraints Absolute structure: Flack (1983), 1787 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.39 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.84555 (7) 0.27915 (6) 0.95708 (6) 0.02134 (13)
Si1A 0.55749 (8) 0.11459 (7) 0.99573 (7) 0.02169 (14)
O1A 0.8724 (3) 0.40683 (18) 0.9815 (2) 0.0303 (4)
O2A 0.8188 (2) 0.2381 (2) 0.81562 (18) 0.0308 (4)
N1A 0.6945 (3) 0.2334 (2) 1.0411 (2) 0.0228 (4)
H1NA 0.693 (4) 0.265 (3) 1.117 (2) 0.027*
C1A 1.0156 (4) 0.2012 (3) 1.0271 (3) 0.0329 (6)
H1AA 1.1115 0.2264 0.9783 0.049*
H1AB 0.9994 0.1131 1.0158 0.049*
H1AC 1.0307 0.2207 1.1262 0.049*
C2A 0.6695 (4) −0.0301 (3) 0.9698 (3) 0.0326 (6)
H2AA 0.7328 −0.0505 1.0552 0.049*
H2AB 0.7423 −0.0201 0.8930 0.049*
H2AC 0.5926 −0.0960 0.9476 0.049*
C3A 0.4308 (3) 0.1074 (3) 1.1496 (3) 0.0296 (6)
H3AA 0.3737 0.1851 1.1595 0.044*
H3AB 0.4997 0.0922 1.2332 0.044*
H3AC 0.3520 0.0411 1.1374 0.044*
C4A 0.4362 (4) 0.1526 (3) 0.8351 (3) 0.0322 (6)
H4AA 0.3771 0.2288 0.8490 0.048*
H4AB 0.3593 0.0866 0.8136 0.048*
H4AC 0.5082 0.1626 0.7577 0.048*
S1B 0.65985 (7) 0.31234 (6) 0.45178 (6) 0.02162 (13)
Si1B 0.94662 (8) 0.47963 (7) 0.51424 (7) 0.02164 (14)
O1B 0.6327 (3) 0.18445 (19) 0.4738 (2) 0.0310 (5)
O2B 0.6801 (2) 0.3547 (2) 0.31117 (19) 0.0307 (4)
N1B 0.8160 (3) 0.3552 (2) 0.5432 (2) 0.0223 (4)
H1NB 0.820 (3) 0.317 (3) 0.615 (2) 0.027*
C1B 0.4928 (4) 0.3904 (3) 0.5154 (3) 0.0340 (7)
H1BA 0.3947 0.3668 0.4613 0.051*
H1BB 0.5096 0.4787 0.5068 0.051*
H1BC 0.4811 0.3694 0.6134 0.051*
C2B 0.8316 (4) 0.6243 (3) 0.5137 (3) 0.0329 (6)
H2BA 0.7775 0.6327 0.6018 0.049*
H2BB 0.7506 0.6239 0.4363 0.049*
H2BC 0.9057 0.6930 0.5027 0.049*
C3B 1.0911 (3) 0.4706 (3) 0.6667 (3) 0.0309 (6)
H3BA 1.0326 0.4805 0.7523 0.046*
H3BB 1.1719 0.5355 0.6607 0.046*
H3BC 1.1451 0.3910 0.6677 0.046*
C4B 1.0488 (3) 0.4616 (3) 0.3477 (3) 0.0304 (6)
H4BA 0.9686 0.4671 0.2699 0.046*
H4BB 1.1023 0.3818 0.3460 0.046*
H4BC 1.1294 0.5264 0.3392 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0233 (3) 0.0193 (3) 0.0216 (3) −0.0012 (2) 0.0028 (2) 0.0028 (2)
Si1A 0.0216 (3) 0.0221 (4) 0.0213 (3) −0.0027 (3) 0.0008 (2) −0.0005 (3)
O1A 0.0340 (11) 0.0163 (10) 0.0406 (11) −0.0031 (8) 0.0019 (9) 0.0038 (9)
O2A 0.0417 (11) 0.0324 (11) 0.0187 (8) −0.0058 (9) 0.0065 (7) 0.0011 (8)
N1A 0.0264 (10) 0.0239 (12) 0.0184 (10) −0.0044 (9) 0.0032 (8) −0.0033 (9)
C1A 0.0266 (13) 0.0273 (16) 0.0448 (17) 0.0039 (11) 0.0010 (12) 0.0066 (13)
C2A 0.0354 (15) 0.0216 (15) 0.0409 (15) −0.0002 (11) 0.0039 (12) −0.0032 (13)
C3A 0.0254 (12) 0.0378 (16) 0.0258 (12) −0.0083 (11) 0.0038 (9) −0.0004 (12)
C4A 0.0308 (14) 0.0392 (18) 0.0258 (13) −0.0014 (11) −0.0066 (10) −0.0018 (12)
S1B 0.0240 (3) 0.0198 (3) 0.0211 (3) −0.0010 (2) 0.0015 (2) −0.0029 (2)
Si1B 0.0230 (3) 0.0216 (4) 0.0205 (3) −0.0035 (3) 0.0030 (2) 0.0007 (3)
O1B 0.0349 (11) 0.0190 (11) 0.0387 (11) −0.0052 (8) −0.0021 (8) −0.0036 (9)
O2B 0.0388 (11) 0.0333 (11) 0.0200 (8) −0.0036 (8) 0.0005 (7) −0.0021 (8)
N1B 0.0258 (10) 0.0209 (11) 0.0201 (10) −0.0035 (8) 0.0007 (8) 0.0041 (9)
C1B 0.0244 (13) 0.0339 (18) 0.0443 (17) 0.0034 (11) 0.0060 (11) −0.0082 (14)
C2B 0.0368 (15) 0.0209 (14) 0.0415 (16) −0.0004 (12) 0.0057 (12) 0.0003 (13)
C3B 0.0277 (13) 0.0395 (17) 0.0253 (12) −0.0071 (12) −0.0015 (10) 0.0003 (13)
C4B 0.0321 (14) 0.0340 (17) 0.0260 (13) −0.0037 (11) 0.0106 (10) 0.0026 (12)

Geometric parameters (Å, °)

S1A—O1A 1.434 (2) S1B—O1B 1.436 (2)
S1A—O2A 1.4410 (19) S1B—O2B 1.4469 (19)
S1A—N1A 1.600 (2) S1B—N1B 1.602 (2)
S1A—C1A 1.755 (3) S1B—C1B 1.759 (3)
Si1A—N1A 1.768 (2) Si1B—N1B 1.769 (2)
Si1A—C4A 1.853 (3) Si1B—C2B 1.849 (3)
Si1A—C3A 1.853 (3) Si1B—C3B 1.854 (3)
Si1A—C2A 1.859 (3) Si1B—C4B 1.855 (3)
N1A—H1NA 0.81 (2) N1B—H1NB 0.81 (2)
C1A—H1AA 0.9800 C1B—H1BA 0.9800
C1A—H1AB 0.9800 C1B—H1BB 0.9800
C1A—H1AC 0.9800 C1B—H1BC 0.9800
C2A—H2AA 0.9800 C2B—H2BA 0.9800
C2A—H2AB 0.9800 C2B—H2BB 0.9800
C2A—H2AC 0.9800 C2B—H2BC 0.9800
C3A—H3AA 0.9800 C3B—H3BA 0.9800
C3A—H3AB 0.9800 C3B—H3BB 0.9800
C3A—H3AC 0.9800 C3B—H3BC 0.9800
C4A—H4AA 0.9800 C4B—H4BA 0.9800
C4A—H4AB 0.9800 C4B—H4BB 0.9800
C4A—H4AC 0.9800 C4B—H4BC 0.9800
O1A—S1A—O2A 118.36 (12) O1B—S1B—O2B 118.44 (12)
O1A—S1A—N1A 110.00 (13) O1B—S1B—N1B 109.44 (12)
O2A—S1A—N1A 106.77 (12) O2B—S1B—N1B 107.15 (12)
O1A—S1A—C1A 107.19 (15) O1B—S1B—C1B 106.99 (15)
O2A—S1A—C1A 107.34 (15) O2B—S1B—C1B 107.15 (15)
N1A—S1A—C1A 106.61 (14) N1B—S1B—C1B 107.15 (14)
N1A—Si1A—C4A 111.04 (13) N1B—Si1B—C2B 110.00 (13)
N1A—Si1A—C3A 102.36 (12) N1B—Si1B—C3B 102.23 (12)
C4A—Si1A—C3A 111.74 (14) C2B—Si1B—C3B 111.25 (15)
N1A—Si1A—C2A 109.97 (13) N1B—Si1B—C4B 111.06 (13)
C4A—Si1A—C2A 109.58 (15) C2B—Si1B—C4B 110.09 (15)
C3A—Si1A—C2A 111.98 (15) C3B—Si1B—C4B 112.00 (13)
S1A—N1A—Si1A 127.83 (14) S1B—N1B—Si1B 128.59 (14)
S1A—N1A—H1NA 112 (2) S1B—N1B—H1NB 109 (2)
Si1A—N1A—H1NA 120 (2) Si1B—N1B—H1NB 122 (2)
S1A—C1A—H1AA 109.5 S1B—C1B—H1BA 109.5
S1A—C1A—H1AB 109.5 S1B—C1B—H1BB 109.5
H1AA—C1A—H1AB 109.5 H1BA—C1B—H1BB 109.5
S1A—C1A—H1AC 109.5 S1B—C1B—H1BC 109.5
H1AA—C1A—H1AC 109.5 H1BA—C1B—H1BC 109.5
H1AB—C1A—H1AC 109.5 H1BB—C1B—H1BC 109.5
Si1A—C2A—H2AA 109.5 Si1B—C2B—H2BA 109.5
Si1A—C2A—H2AB 109.5 Si1B—C2B—H2BB 109.5
H2AA—C2A—H2AB 109.5 H2BA—C2B—H2BB 109.5
Si1A—C2A—H2AC 109.5 Si1B—C2B—H2BC 109.5
H2AA—C2A—H2AC 109.5 H2BA—C2B—H2BC 109.5
H2AB—C2A—H2AC 109.5 H2BB—C2B—H2BC 109.5
Si1A—C3A—H3AA 109.5 Si1B—C3B—H3BA 109.5
Si1A—C3A—H3AB 109.5 Si1B—C3B—H3BB 109.5
H3AA—C3A—H3AB 109.5 H3BA—C3B—H3BB 109.5
Si1A—C3A—H3AC 109.5 Si1B—C3B—H3BC 109.5
H3AA—C3A—H3AC 109.5 H3BA—C3B—H3BC 109.5
H3AB—C3A—H3AC 109.5 H3BB—C3B—H3BC 109.5
Si1A—C4A—H4AA 109.5 Si1B—C4B—H4BA 109.5
Si1A—C4A—H4AB 109.5 Si1B—C4B—H4BB 109.5
H4AA—C4A—H4AB 109.5 H4BA—C4B—H4BB 109.5
Si1A—C4A—H4AC 109.5 Si1B—C4B—H4BC 109.5
H4AA—C4A—H4AC 109.5 H4BA—C4B—H4BC 109.5
H4AB—C4A—H4AC 109.5 H4BB—C4B—H4BC 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1B—H1NB···O2A 0.81 (2) 2.11 (2) 2.917 (3) 173 (3)
N1A—H1NA···O2Bi 0.81 (2) 2.12 (2) 2.925 (3) 177 (3)

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2314).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Chunechom, V., Vidal, T. E., Adams, H. & Turner, M. L. (1998). Angew. Chem. Int. Ed. 37, 1928–1930.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Ni, Y., Lough, A. J., Rheingold, A. L. & Manners, I. (1995). Angew. Chem. Int. Ed. Engl. 34, 998–1001.
  6. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Roy, A. K. (1993). J. Am. Chem. Soc. 114, 2598–2603.
  9. Roy, A. K., Burns, G. T., Lie, G. C. & Grigoras, S. (1993). J. Am. Chem. Soc. 114, 2604–2612.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050336/si2314sup1.cif

e-67-00o93-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050336/si2314Isup2.hkl

e-67-00o93-Isup2.hkl (239.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES