Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):i5. doi: 10.1107/S1600536810053304

Silver trimagnesium phosphate bis­(hydrogenphosphate), AgMg3(PO4)(HPO4)2, with an alluaudite-like structure

Abderrazzak Assani a,*, Mohamed Saadi a, Mohammed Zriouil a, Lahcen El Ammari a
PMCID: PMC3050206  PMID: 21522513

Abstract

The title compound, AgMg3(PO4)(HPO4)2, which has been synthesized by the hydro­thermal method, has an alluaudite-like structure which is formed by edge-sharing MgO6 octa­hedra (one of which has symmetry 2), resulting in chains linked together by phosphate groups and hydrogen bonds. The three-dimensional framework leads to two different channels along the c axis, one of which is occupied by Ag+ ions with a square-planar coordination. The Ag+ ions are disordered over two sites in a 0.89 (3):0.11 (3) ratio. The OH groups, which point into the other type of channel, are involved in strong O—H⋯O hydrogen bonds. The title compound is isotypic with the compounds AM 3H2(XO4)(HXO4)2 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type.

Related literature

For applications of related compounds, see: Kacimi et al. (2005); Korzenski et al. (1998); Trad et al. (2010). For compounds with the same structure type, see: Moore (1971); Hatert (2008); Hatert et al. (2000); Assani et al. (2010); Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003); Leroux et al. (1995).

Experimental

Crystal data

  • AgMg3(PO4)(HPO4)2

  • M r = 467.73

  • Monoclinic, Inline graphic

  • a = 11.9126 (5) Å

  • b = 12.1197 (6) Å

  • c = 6.4780 (3) Å

  • β = 113.812 (2)°

  • V = 855.66 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 296 K

  • 0.31 × 0.16 × 0.12 mm

Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.545, T max = 0.680

  • 10680 measured reflections

  • 2330 independent reflections

  • 1998 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.075

  • S = 1.08

  • 2330 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −1.28 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810053304/fj2371sup1.cif

e-67-000i5-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053304/fj2371Isup2.hkl

e-67-000i5-Isup2.hkl (114.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O1i 0.86 1.68 2.5266 (17) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Compounds belonging to the large structural family of alluaudite derivatives (Moore (1971); Hatert et al. (2000)) have been of continuing interest due to their structural properties, such as their open-framework architecture and their physical properties. Accordingly, the alluaudite structure exhibit an appropriate frameworks for a variety of applications, such as corrosion inhibition, passivation of metal surfaces, and catalysis (Hatert (2008); Korzenski et al. (1998); Kacimi et al. (2005)).

In addition, the accommodation of the monovalent cations in the one-dimensional channels of the alluaudite-like structures is strongly required for conductivity properties and have offered a great field of application as positive electrode in the lithium and sodium batteries (Trad et al. 2010)

By means of the powerful hydrothermal technique, our attempts to synthesize new monovalent divalent cations phosphate with alluaudite –like structure have successfully allowed to obtain a new silver magnesium phosphate phase. The present paper aims to report detailed hydrothermal synthesis and structural characterization of the title compound.

The structure is built up from MgO6 octahedra, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as schown in Fig.1 and Fig.2. The three-dimensional network delimits two types of hexagonal channels which accommodate Ag+ cations and OH groups (see Fig.2). In the channels, each silver atoms is surrounded by four O atoms with Ag–O bond length varies between 2.3621 and 2.5150 Å. The same Ag+coordination sphere is observed in γ-AgZnPO4 (Assani et al. (2010)). Moreover the OH groups, pointing into one type of channel, are involved in strong hydrogen bonds. The silver trimagnesium phosphate bis-(hydrogenphosphate): AgMg3(PO4)(HPO4)2, is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type (Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003).

Experimental

The crystals of the title compound has been hydrothermally synthesized starting from a mixture of magnesium oxide (0,0605 g), silver nitrate (0,1699 g), 85 wt % phosphoric acid (0,10 ml), and 12 ml of water. The hydrothermal synthesis was carried out in 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K during 24 h. The product was filtered off, washed with deionized water and air dried. The reaction product consists yellow powder besides a colorless parallelepipedic crystals of the title compound.

Refinement

The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1), for the water molecule. In the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.5Ueq(O).

In this model of the title compound, the atomic displacement parameters for Ag are higher than those of other atoms. This is due to the fact that Ag is in a channel. The same phenomenon is observed in the case of crystal structures of AgCo3(PO4)(HPO4)2; AgNi3(PO4)(HPO4)2 and AgMn3(AsO4)(HAsO4)2. However, Leroux et al. (1995) have proposed another model in the case of AgMn3(PO4)(HPO4)2 in which Ag is split into two very near sites with relatively weak atomic displacement parameters. The refinement is slightly better in this model.

Figures

Fig. 1.

Fig. 1.

Partial plot of AgMg3(PO4)(HPO4)2 crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered silver atom is shown. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x + 1/2, y - 1/2, z + 1; (iii) x + 1/2, -y + 1/2, z + 1/2; (iv) -x + 1/2, -y + 1/2, -z + 1; (v) -x + 1, y, -z + 3/2; (vi) -x + 1, -y, -z + 1; (vii) -x + 1, -y, -z + 2; (viii) x + 1/2, -y + 1/2, z - 1/2; (ix) -x + 1/2, -y + 1/2, -z; (x) -x + 1, y, -z + 1/2; (xi) -x, y, -z + 1/2; (xii) -x + 1/2, y + 1/2, -z + 1/2; (xiii) x - 1/2, y + 1/2, z - 1.

Fig. 2.

Fig. 2.

A three-dimensional polyhedral view of the crystal structure of the AgMg3(PO4)(HPO4)2, showing the channels running along the c direction,at 0,0,z and 1/2,0,z. Hydrogen bonds are indicated by dashed lines.

Crystal data

AgMg3(PO4)(HPO4)2 F(000) = 904
Mr = 467.73 Dx = 3.631 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2330 reflections
a = 11.9126 (5) Å θ = 2.5–38.0°
b = 12.1197 (6) Å µ = 3.21 mm1
c = 6.4780 (3) Å T = 296 K
β = 113.812 (2)° Prism, colourless
V = 855.66 (7) Å3 0.31 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker X8 APEX diffractometer 2330 independent reflections
Radiation source: fine-focus sealed tube 1998 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 38.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −20→20
Tmin = 0.545, Tmax = 0.680 k = −20→20
10680 measured reflections l = −11→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.8049P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
2330 reflections Δρmax = 0.63 e Å3
91 parameters Δρmin = −1.28 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0013 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1A 0.5000 0.0261 (4) 0.7500 0.0192 (3) 0.89 (3)
Ag1B 0.5000 0.0047 (18) 0.7500 0.0192 (3) 0.11 (3)
Mg1 0.5000 0.27737 (7) 0.2500 0.00765 (14)
Mg2 0.28999 (6) 0.16182 (5) 0.37691 (10) 0.00621 (10)
P1 0.0000 0.18606 (5) 0.2500 0.00545 (10)
P2 0.22298 (4) 0.38713 (3) 0.11567 (7) 0.00508 (8)
O1 0.10721 (11) 0.10964 (10) 0.2643 (2) 0.00793 (19)
O2 0.03617 (10) 0.25753 (10) 0.46302 (18) 0.00686 (19)
O3 0.15657 (11) 0.32826 (10) −0.11097 (19) 0.00676 (19)
O4 0.21721 (11) 0.31920 (10) 0.30907 (18) 0.00623 (18)
O5 0.16491 (11) 0.50095 (10) 0.1050 (2) 0.00777 (19)
O6 0.36178 (11) 0.40491 (10) 0.1603 (2) 0.00812 (19)
H6 0.3747 0.4749 0.1705 0.012*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1A 0.00987 (9) 0.0318 (8) 0.01280 (10) 0.000 0.00135 (7) 0.000
Ag1B 0.00987 (9) 0.0318 (8) 0.01280 (10) 0.000 0.00135 (7) 0.000
Mg1 0.0087 (3) 0.0072 (3) 0.0080 (3) 0.000 0.0044 (3) 0.000
Mg2 0.0076 (2) 0.0049 (2) 0.0068 (2) 0.00050 (17) 0.00358 (18) 0.00038 (17)
P1 0.0062 (2) 0.0052 (2) 0.0043 (2) 0.000 0.00141 (17) 0.000
P2 0.00704 (15) 0.00373 (16) 0.00436 (15) 0.00011 (11) 0.00219 (12) 0.00006 (11)
O1 0.0057 (4) 0.0061 (5) 0.0116 (5) 0.0009 (3) 0.0032 (4) −0.0004 (4)
O2 0.0064 (4) 0.0087 (5) 0.0049 (4) −0.0008 (3) 0.0017 (3) −0.0018 (3)
O3 0.0086 (5) 0.0069 (5) 0.0045 (4) −0.0009 (3) 0.0023 (3) −0.0011 (3)
O4 0.0083 (4) 0.0058 (4) 0.0048 (4) 0.0001 (3) 0.0029 (3) 0.0013 (3)
O5 0.0091 (5) 0.0045 (4) 0.0096 (5) 0.0012 (3) 0.0036 (4) −0.0004 (3)
O6 0.0067 (4) 0.0056 (5) 0.0123 (5) −0.0007 (3) 0.0042 (4) −0.0001 (4)

Geometric parameters (Å, °)

Ag1A—O5i 2.3649 (14) Mg2—O5i 2.0132 (13)
Ag1A—O5ii 2.3649 (14) Mg2—O3ix 2.0672 (13)
Ag1A—O5iii 2.5177 (14) Mg2—O4 2.0677 (13)
Ag1A—O5iv 2.5177 (14) Mg2—O4iv 2.0831 (13)
Ag1A—Mg2 3.150 (3) Mg2—O1 2.0954 (13)
Ag1A—Mg2v 3.150 (3) Mg2—O2iv 2.1414 (13)
Ag1A—Ag1Bvi 3.260 (3) Mg2—Mg2iv 3.0408 (12)
Ag1A—Ag1Bvii 3.260 (3) Mg2—P2 3.1411 (7)
Ag1A—Ag1Avi 3.3001 (19) Mg2—P2ix 3.1874 (7)
Ag1A—Ag1Avii 3.3001 (19) P1—O2 1.5363 (12)
Ag1B—O5i 2.3457 (13) P1—O2xi 1.5363 (12)
Ag1B—O5ii 2.3457 (13) P1—O1 1.5497 (12)
Ag1B—O5iii 2.4972 (14) P1—O1xi 1.5497 (12)
Ag1B—O5iv 2.4972 (14) P2—O4 1.5237 (12)
Ag1B—Ag1Bvi 3.2410 (15) P2—O5 1.5322 (13)
Ag1B—Ag1Bvii 3.2410 (15) P2—O3 1.5337 (12)
Ag1B—Ag1Avi 3.260 (3) P2—O6 1.5742 (13)
Ag1B—Ag1Avii 3.260 (3) P2—Mg2ix 3.1874 (7)
Ag1B—Mg2 3.293 (12) O2—Mg1iv 2.1136 (12)
Ag1B—Mg2v 3.293 (12) O2—Mg2iv 2.1414 (13)
Ag1B—Mg1vi 3.42 (2) O3—Mg2ix 2.0672 (13)
Mg1—O2viii 2.1136 (12) O3—Mg1ix 2.1384 (13)
Mg1—O2iv 2.1136 (12) O4—Mg2iv 2.0831 (13)
Mg1—O3ix 2.1383 (13) O5—Mg2xii 2.0133 (13)
Mg1—O3iii 2.1383 (13) O5—Ag1Bxiii 2.3457 (13)
Mg1—O6 2.1600 (14) O5—Ag1Axiii 2.3649 (14)
Mg1—O6x 2.1601 (14) O5—Ag1Biv 2.4972 (14)
Mg1—Mg2x 3.2491 (7) O5—Ag1Aiv 2.5177 (14)
Mg1—Mg2 3.2492 (7) O6—H6 0.8600
Mg1—Ag1Bvi 3.42 (2)
O5i—Ag1A—O5ii 165.2 (2) O6x—Mg1—Mg2 145.25 (4)
O5i—Ag1A—O5iii 95.01 (5) Mg2x—Mg1—Mg2 128.94 (3)
O5ii—Ag1A—O5iii 83.06 (5) O2viii—Mg1—Ag1Bvi 78.46 (4)
O5i—Ag1A—O5iv 83.06 (5) O2iv—Mg1—Ag1Bvi 78.46 (4)
O5ii—Ag1A—O5iv 95.01 (5) O3ix—Mg1—Ag1Bvi 53.22 (4)
O5iii—Ag1A—O5iv 165.0 (2) O3iii—Mg1—Ag1Bvi 53.22 (4)
O5i—Ag1A—Mg2 39.70 (5) O6—Mg1—Ag1Bvi 135.69 (4)
O5ii—Ag1A—Mg2 154.68 (19) O6x—Mg1—Ag1Bvi 135.70 (4)
O5iii—Ag1A—Mg2 106.22 (6) Mg2x—Mg1—Ag1Bvi 64.468 (17)
O5iv—Ag1A—Mg2 81.75 (5) Mg2—Mg1—Ag1Bvi 64.467 (17)
O5i—Ag1A—Mg2v 154.68 (19) O5i—Mg2—O3ix 86.56 (5)
O5ii—Ag1A—Mg2v 39.70 (5) O5i—Mg2—O4 170.04 (6)
O5iii—Ag1A—Mg2v 81.75 (5) O3ix—Mg2—O4 90.74 (5)
O5iv—Ag1A—Mg2v 106.22 (6) O5i—Mg2—O4iv 99.52 (5)
Mg2—Ag1A—Mg2v 117.04 (15) O3ix—Mg2—O4iv 162.82 (6)
O5i—Ag1A—Ag1Bvi 49.64 (5) O4—Mg2—O4iv 85.79 (5)
O5ii—Ag1A—Ag1Bvi 128.18 (15) O5i—Mg2—O1 86.75 (5)
O5iii—Ag1A—Ag1Bvi 45.70 (5) O3ix—Mg2—O1 110.73 (5)
O5iv—Ag1A—Ag1Bvi 131.97 (16) O4—Mg2—O1 85.23 (5)
Mg2—Ag1A—Ag1Bvi 67.4 (3) O4iv—Mg2—O1 85.78 (5)
Mg2v—Ag1A—Ag1Bvi 120.2 (3) O5i—Mg2—O2iv 103.34 (5)
O5i—Ag1A—Ag1Bvii 128.18 (15) O3ix—Mg2—O2iv 79.28 (5)
O5ii—Ag1A—Ag1Bvii 49.64 (5) O4—Mg2—O2iv 85.55 (5)
O5iii—Ag1A—Ag1Bvii 131.97 (16) O4iv—Mg2—O2iv 83.67 (5)
O5iv—Ag1A—Ag1Bvii 45.70 (5) O1—Mg2—O2iv 166.46 (6)
Mg2—Ag1A—Ag1Bvii 120.2 (3) O5i—Mg2—Mg2iv 141.54 (5)
Mg2v—Ag1A—Ag1Bvii 67.4 (3) O3ix—Mg2—Mg2iv 131.55 (5)
Ag1Bvi—Ag1A—Ag1Bvii 166.9 (9) O4—Mg2—Mg2iv 43.09 (3)
O5i—Ag1A—Ag1Avi 49.46 (4) O4iv—Mg2—Mg2iv 42.70 (3)
O5ii—Ag1A—Ag1Avi 126.91 (10) O1—Mg2—Mg2iv 83.86 (4)
O5iii—Ag1A—Ag1Avi 45.55 (3) O2iv—Mg2—Mg2iv 82.63 (4)
O5iv—Ag1A—Ag1Avi 130.57 (10) O5i—Mg2—P2 151.29 (4)
Mg2—Ag1A—Ag1Avi 70.23 (7) O3ix—Mg2—P2 66.25 (4)
Mg2v—Ag1A—Ag1Avi 122.57 (9) O4—Mg2—P2 24.50 (3)
Ag1Bvi—Ag1A—Ag1Avi 4.5 (3) O4iv—Mg2—P2 109.17 (4)
Ag1Bvii—Ag1A—Ag1Avi 162.4 (6) O1—Mg2—P2 94.16 (4)
O5i—Ag1A—Ag1Avii 126.91 (10) O2iv—Mg2—P2 81.36 (4)
O5ii—Ag1A—Ag1Avii 49.46 (4) Mg2iv—Mg2—P2 66.81 (2)
O5iii—Ag1A—Ag1Avii 130.57 (10) O5i—Mg2—Ag1A 48.62 (8)
O5iv—Ag1A—Ag1Avii 45.55 (3) O3ix—Mg2—Ag1A 104.68 (4)
Mg2—Ag1A—Ag1Avii 122.57 (9) O4—Mg2—Ag1A 141.24 (8)
Mg2v—Ag1A—Ag1Avii 70.23 (7) O4iv—Mg2—Ag1A 68.99 (5)
Ag1Bvi—Ag1A—Ag1Avii 162.4 (6) O1—Mg2—Ag1A 120.08 (7)
Ag1Bvii—Ag1A—Ag1Avii 4.5 (3) O2iv—Mg2—Ag1A 63.49 (8)
Ag1Avi—Ag1A—Ag1Avii 157.9 (3) Mg2iv—Mg2—Ag1A 106.54 (6)
O5i—Ag1B—O5ii 177.8 (10) P2—Mg2—Ag1A 144.85 (7)
O5i—Ag1B—O5iii 96.05 (5) O5i—Mg2—P2ix 77.41 (4)
O5ii—Ag1B—O5iii 83.89 (5) O3ix—Mg2—P2ix 23.55 (3)
O5i—Ag1B—O5iv 83.89 (5) O4—Mg2—P2ix 96.44 (4)
O5ii—Ag1B—O5iv 96.05 (5) O4iv—Mg2—P2ix 173.57 (4)
O5iii—Ag1B—O5iv 176.9 (10) O1—Mg2—P2ix 88.39 (4)
O5i—Ag1B—Ag1Bvi 50.02 (3) O2iv—Mg2—P2ix 102.49 (4)
O5ii—Ag1B—Ag1Bvi 129.88 (8) Mg2iv—Mg2—P2ix 139.20 (3)
O5iii—Ag1B—Ag1Bvi 46.03 (3) P2—Mg2—P2ix 73.940 (17)
O5iv—Ag1B—Ag1Bvi 133.82 (10) Ag1A—Mg2—P2ix 111.92 (4)
O5i—Ag1B—Ag1Bvii 129.88 (8) O5i—Mg2—Mg1 102.56 (4)
O5ii—Ag1B—Ag1Bvii 50.02 (3) O3ix—Mg2—Mg1 40.22 (3)
O5iii—Ag1B—Ag1Bvii 133.82 (10) O4—Mg2—Mg1 81.27 (4)
O5iv—Ag1B—Ag1Bvii 46.03 (3) O4iv—Mg2—Mg1 122.61 (4)
Ag1Bvi—Ag1B—Ag1Bvii 176.0 (15) O1—Mg2—Mg1 147.15 (4)
O5i—Ag1B—Ag1Avi 50.19 (5) O2iv—Mg2—Mg1 39.90 (3)
O5ii—Ag1B—Ag1Avi 129.49 (14) Mg2iv—Mg2—Mg1 105.43 (3)
O5iii—Ag1B—Ag1Avi 46.19 (4) P2—Mg2—Mg1 62.814 (18)
O5iv—Ag1B—Ag1Avi 133.32 (16) Ag1A—Mg2—Mg1 88.00 (4)
Ag1Bvi—Ag1B—Ag1Avi 4.6 (3) P2ix—Mg2—Mg1 63.765 (15)
Ag1Bvii—Ag1B—Ag1Avi 171.4 (12) O5i—Mg2—Ag1B 44.9 (3)
O5i—Ag1B—Ag1Avii 129.49 (14) O3ix—Mg2—Ag1B 104.30 (5)
O5ii—Ag1B—Ag1Avii 50.19 (5) O4—Mg2—Ag1B 144.9 (3)
O5iii—Ag1B—Ag1Avii 133.32 (16) O4iv—Mg2—Ag1B 70.47 (13)
O5iv—Ag1B—Ag1Avii 46.19 (4) O1—Mg2—Ag1B 117.1 (2)
Ag1Bvi—Ag1B—Ag1Avii 171.4 (12) O2iv—Mg2—Ag1B 67.0 (3)
Ag1Bvii—Ag1B—Ag1Avii 4.6 (3) Mg2iv—Mg2—Ag1B 109.1 (2)
Ag1Avi—Ag1B—Ag1Avii 166.9 (9) P2—Mg2—Ag1B 148.3 (3)
O5i—Ag1B—Mg2 37.3 (2) Ag1A—Mg2—Ag1B 3.9 (2)
O5ii—Ag1B—Mg2 144.9 (8) P2ix—Mg2—Ag1B 110.03 (15)
O5iii—Ag1B—Mg2 102.7 (3) Mg1—Mg2—Ag1B 90.03 (16)
O5iv—Ag1B—Mg2 79.2 (2) O2—P1—O2xi 111.36 (10)
Ag1Bvi—Ag1B—Mg2 66.0 (4) O2—P1—O1 110.96 (6)
Ag1Bvii—Ag1B—Mg2 116.6 (6) O2xi—P1—O1 108.44 (6)
Ag1Avi—Ag1B—Mg2 69.01 (18) O2—P1—O1xi 108.44 (6)
Ag1Avii—Ag1B—Mg2 119.4 (3) O2xi—P1—O1xi 110.95 (6)
O5i—Ag1B—Mg2v 144.9 (8) O1—P1—O1xi 106.60 (10)
O5ii—Ag1B—Mg2v 37.3 (2) O4—P2—O5 110.74 (7)
O5iii—Ag1B—Mg2v 79.2 (2) O4—P2—O3 111.02 (7)
O5iv—Ag1B—Mg2v 102.7 (3) O5—P2—O3 109.06 (7)
Ag1Bvi—Ag1B—Mg2v 116.6 (6) O4—P2—O6 108.40 (7)
Ag1Bvii—Ag1B—Mg2v 66.0 (4) O5—P2—O6 107.86 (7)
Ag1Avi—Ag1B—Mg2v 119.4 (3) O3—P2—O6 109.70 (7)
Ag1Avii—Ag1B—Mg2v 69.01 (18) O4—P2—Mg2 34.24 (5)
Mg2—Ag1B—Mg2v 109.3 (6) O5—P2—Mg2 144.97 (5)
O5i—Ag1B—Mg1vi 88.9 (5) O3—P2—Mg2 91.84 (5)
O5ii—Ag1B—Mg1vi 88.9 (5) O6—P2—Mg2 90.03 (5)
O5iii—Ag1B—Mg1vi 88.4 (5) O4—P2—Mg2ix 136.27 (5)
O5iv—Ag1B—Mg1vi 88.4 (5) O5—P2—Mg2ix 106.49 (5)
Ag1Bvi—Ag1B—Mg1vi 88.0 (8) O3—P2—Mg2ix 32.58 (5)
Ag1Bvii—Ag1B—Mg1vi 88.0 (8) O6—P2—Mg2ix 80.34 (5)
Ag1Avi—Ag1B—Mg1vi 83.4 (5) Mg2—P2—Mg2ix 106.060 (17)
Ag1Avii—Ag1B—Mg1vi 83.4 (5) P1—O1—Mg2 123.77 (7)
Mg2—Ag1B—Mg1vi 125.3 (3) P1—O2—Mg1iv 126.47 (7)
Mg2v—Ag1B—Mg1vi 125.3 (3) P1—O2—Mg2iv 123.92 (7)
O2viii—Mg1—O2iv 156.91 (8) Mg1iv—O2—Mg2iv 99.56 (5)
O2viii—Mg1—O3ix 87.86 (5) P2—O3—Mg2ix 123.87 (7)
O2iv—Mg1—O3ix 78.33 (5) P2—O3—Mg1ix 134.97 (7)
O2viii—Mg1—O3iii 78.33 (5) Mg2ix—O3—Mg1ix 101.16 (5)
O2iv—Mg1—O3iii 87.86 (5) P2—O4—Mg2 121.26 (7)
O3ix—Mg1—O3iii 106.45 (7) P2—O4—Mg2iv 140.95 (7)
O2viii—Mg1—O6 108.09 (5) Mg2—O4—Mg2iv 94.21 (5)
O2iv—Mg1—O6 88.61 (5) P2—O5—Mg2xii 139.84 (8)
O3ix—Mg1—O6 82.80 (4) P2—O5—Ag1Bxiii 104.2 (5)
O3iii—Mg1—O6 169.20 (5) Mg2xii—O5—Ag1Bxiii 97.9 (5)
O2viii—Mg1—O6x 88.61 (5) P2—O5—Ag1Axiii 110.03 (12)
O2iv—Mg1—O6x 108.09 (5) Mg2xii—O5—Ag1Axiii 91.67 (12)
O3ix—Mg1—O6x 169.20 (5) Ag1Bxiii—O5—Ag1Axiii 6.3 (4)
O3iii—Mg1—O6x 82.80 (4) P2—O5—Ag1Biv 111.6 (5)
O6—Mg1—O6x 88.61 (7) Mg2xii—O5—Ag1Biv 103.7 (5)
O2viii—Mg1—Mg2x 40.53 (3) Ag1Bxiii—O5—Ag1Biv 83.95 (5)
O2iv—Mg1—Mg2x 125.98 (4) Ag1Axiii—O5—Ag1Biv 84.17 (8)
O3ix—Mg1—Mg2x 105.38 (4) P2—O5—Ag1Aiv 105.79 (12)
O3iii—Mg1—Mg2x 38.62 (3) Mg2xii—O5—Ag1Aiv 109.53 (12)
O6—Mg1—Mg2x 145.25 (4) Ag1Bxiii—O5—Ag1Aiv 84.12 (8)
O6x—Mg1—Mg2x 78.19 (3) Ag1Axiii—O5—Ag1Aiv 84.99 (5)
O2viii—Mg1—Mg2 125.98 (4) Ag1Biv—O5—Ag1Aiv 5.9 (4)
O2iv—Mg1—Mg2 40.53 (3) P2—O6—Mg1 125.56 (7)
O3ix—Mg1—Mg2 38.62 (3) P2—O6—H6 106.9
O3iii—Mg1—Mg2 105.38 (4) Mg1—O6—H6 126.3
O6—Mg1—Mg2 78.19 (3)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, y−1/2, z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1/2, −y+1/2, −z+1; (v) −x+1, y, −z+3/2; (vi) −x+1, −y, −z+1; (vii) −x+1, −y, −z+2; (viii) x+1/2, −y+1/2, z−1/2; (ix) −x+1/2, −y+1/2, −z; (x) −x+1, y, −z+1/2; (xi) −x, y, −z+1/2; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) x−1/2, y+1/2, z−1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6···O1xiv 0.86 1.68 2.5266 (17) 168

Symmetry codes: (xiv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2371).

References

  1. Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74. [DOI] [PMC free article] [PubMed]
  2. Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17. [DOI] [PubMed]
  8. Hatert, F. (2008). J. Solid State Chem. 181, 1258–1272.
  9. Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847–857.
  10. Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.
  11. Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 142–160.
  12. Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206–212.
  13. Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Stock, N. & Bein, T. (2003). Solid State Sci. 5, 1207–1210.
  16. Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810053304/fj2371sup1.cif

e-67-000i5-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053304/fj2371Isup2.hkl

e-67-000i5-Isup2.hkl (114.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES