Abstract
The title compound, AgMg3(PO4)(HPO4)2, which has been synthesized by the hydrothermal method, has an alluaudite-like structure which is formed by edge-sharing MgO6 octahedra (one of which has symmetry 2), resulting in chains linked together by phosphate groups and hydrogen bonds. The three-dimensional framework leads to two different channels along the c axis, one of which is occupied by Ag+ ions with a square-planar coordination. The Ag+ ions are disordered over two sites in a 0.89 (3):0.11 (3) ratio. The OH groups, which point into the other type of channel, are involved in strong O—H⋯O hydrogen bonds. The title compound is isotypic with the compounds AM 3H2(XO4)(HXO4)2 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type.
Related literature
For applications of related compounds, see: Kacimi et al. (2005 ▶); Korzenski et al. (1998 ▶); Trad et al. (2010 ▶). For compounds with the same structure type, see: Moore (1971 ▶); Hatert (2008 ▶); Hatert et al. (2000 ▶); Assani et al. (2010 ▶); Guesmi & Driss (2002 ▶); Ben Smail & Jouini (2002 ▶); Stock & Bein (2003 ▶); Leroux et al. (1995 ▶).
Experimental
Crystal data
AgMg3(PO4)(HPO4)2
M r = 467.73
Monoclinic,
a = 11.9126 (5) Å
b = 12.1197 (6) Å
c = 6.4780 (3) Å
β = 113.812 (2)°
V = 855.66 (7) Å3
Z = 4
Mo Kα radiation
μ = 3.21 mm−1
T = 296 K
0.31 × 0.16 × 0.12 mm
Data collection
Bruker X8 APEX diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.545, T max = 0.680
10680 measured reflections
2330 independent reflections
1998 reflections with I > 2σ(I)
R int = 0.034
Refinement
R[F 2 > 2σ(F 2)] = 0.026
wR(F 2) = 0.075
S = 1.08
2330 reflections
91 parameters
H-atom parameters constrained
Δρmax = 0.63 e Å−3
Δρmin = −1.28 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810053304/fj2371sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053304/fj2371Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O6—H6⋯O1i | 0.86 | 1.68 | 2.5266 (17) | 168 |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
supplementary crystallographic information
Comment
Compounds belonging to the large structural family of alluaudite derivatives (Moore (1971); Hatert et al. (2000)) have been of continuing interest due to their structural properties, such as their open-framework architecture and their physical properties. Accordingly, the alluaudite structure exhibit an appropriate frameworks for a variety of applications, such as corrosion inhibition, passivation of metal surfaces, and catalysis (Hatert (2008); Korzenski et al. (1998); Kacimi et al. (2005)).
In addition, the accommodation of the monovalent cations in the one-dimensional channels of the alluaudite-like structures is strongly required for conductivity properties and have offered a great field of application as positive electrode in the lithium and sodium batteries (Trad et al. 2010)
By means of the powerful hydrothermal technique, our attempts to synthesize new monovalent divalent cations phosphate with alluaudite –like structure have successfully allowed to obtain a new silver magnesium phosphate phase. The present paper aims to report detailed hydrothermal synthesis and structural characterization of the title compound.
The structure is built up from MgO6 octahedra, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as schown in Fig.1 and Fig.2. The three-dimensional network delimits two types of hexagonal channels which accommodate Ag+ cations and OH groups (see Fig.2). In the channels, each silver atoms is surrounded by four O atoms with Ag–O bond length varies between 2.3621 and 2.5150 Å. The same Ag+coordination sphere is observed in γ-AgZnPO4 (Assani et al. (2010)). Moreover the OH groups, pointing into one type of channel, are involved in strong hydrogen bonds. The silver trimagnesium phosphate bis-(hydrogenphosphate): AgMg3(PO4)(HPO4)2, is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type (Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003).
Experimental
The crystals of the title compound has been hydrothermally synthesized starting from a mixture of magnesium oxide (0,0605 g), silver nitrate (0,1699 g), 85 wt % phosphoric acid (0,10 ml), and 12 ml of water. The hydrothermal synthesis was carried out in 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K during 24 h. The product was filtered off, washed with deionized water and air dried. The reaction product consists yellow powder besides a colorless parallelepipedic crystals of the title compound.
Refinement
The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1), for the water molecule. In the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.5Ueq(O).
In this model of the title compound, the atomic displacement parameters for Ag are higher than those of other atoms. This is due to the fact that Ag is in a channel. The same phenomenon is observed in the case of crystal structures of AgCo3(PO4)(HPO4)2; AgNi3(PO4)(HPO4)2 and AgMn3(AsO4)(HAsO4)2. However, Leroux et al. (1995) have proposed another model in the case of AgMn3(PO4)(HPO4)2 in which Ag is split into two very near sites with relatively weak atomic displacement parameters. The refinement is slightly better in this model.
Figures
Fig. 1.
Partial plot of AgMg3(PO4)(HPO4)2 crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered silver atom is shown. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x + 1/2, y - 1/2, z + 1; (iii) x + 1/2, -y + 1/2, z + 1/2; (iv) -x + 1/2, -y + 1/2, -z + 1; (v) -x + 1, y, -z + 3/2; (vi) -x + 1, -y, -z + 1; (vii) -x + 1, -y, -z + 2; (viii) x + 1/2, -y + 1/2, z - 1/2; (ix) -x + 1/2, -y + 1/2, -z; (x) -x + 1, y, -z + 1/2; (xi) -x, y, -z + 1/2; (xii) -x + 1/2, y + 1/2, -z + 1/2; (xiii) x - 1/2, y + 1/2, z - 1.
Fig. 2.
A three-dimensional polyhedral view of the crystal structure of the AgMg3(PO4)(HPO4)2, showing the channels running along the c direction,at 0,0,z and 1/2,0,z. Hydrogen bonds are indicated by dashed lines.
Crystal data
| AgMg3(PO4)(HPO4)2 | F(000) = 904 |
| Mr = 467.73 | Dx = 3.631 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 2330 reflections |
| a = 11.9126 (5) Å | θ = 2.5–38.0° |
| b = 12.1197 (6) Å | µ = 3.21 mm−1 |
| c = 6.4780 (3) Å | T = 296 K |
| β = 113.812 (2)° | Prism, colourless |
| V = 855.66 (7) Å3 | 0.31 × 0.16 × 0.12 mm |
| Z = 4 |
Data collection
| Bruker X8 APEX diffractometer | 2330 independent reflections |
| Radiation source: fine-focus sealed tube | 1998 reflections with I > 2σ(I) |
| graphite | Rint = 0.034 |
| φ and ω scans | θmax = 38.0°, θmin = 2.5° |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −20→20 |
| Tmin = 0.545, Tmax = 0.680 | k = −20→20 |
| 10680 measured reflections | l = −11→10 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
| wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0323P)2 + 1.8049P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.08 | (Δ/σ)max = 0.002 |
| 2330 reflections | Δρmax = 0.63 e Å−3 |
| 91 parameters | Δρmin = −1.28 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0013 (3) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Ag1A | 0.5000 | 0.0261 (4) | 0.7500 | 0.0192 (3) | 0.89 (3) |
| Ag1B | 0.5000 | 0.0047 (18) | 0.7500 | 0.0192 (3) | 0.11 (3) |
| Mg1 | 0.5000 | 0.27737 (7) | 0.2500 | 0.00765 (14) | |
| Mg2 | 0.28999 (6) | 0.16182 (5) | 0.37691 (10) | 0.00621 (10) | |
| P1 | 0.0000 | 0.18606 (5) | 0.2500 | 0.00545 (10) | |
| P2 | 0.22298 (4) | 0.38713 (3) | 0.11567 (7) | 0.00508 (8) | |
| O1 | 0.10721 (11) | 0.10964 (10) | 0.2643 (2) | 0.00793 (19) | |
| O2 | 0.03617 (10) | 0.25753 (10) | 0.46302 (18) | 0.00686 (19) | |
| O3 | 0.15657 (11) | 0.32826 (10) | −0.11097 (19) | 0.00676 (19) | |
| O4 | 0.21721 (11) | 0.31920 (10) | 0.30907 (18) | 0.00623 (18) | |
| O5 | 0.16491 (11) | 0.50095 (10) | 0.1050 (2) | 0.00777 (19) | |
| O6 | 0.36178 (11) | 0.40491 (10) | 0.1603 (2) | 0.00812 (19) | |
| H6 | 0.3747 | 0.4749 | 0.1705 | 0.012* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ag1A | 0.00987 (9) | 0.0318 (8) | 0.01280 (10) | 0.000 | 0.00135 (7) | 0.000 |
| Ag1B | 0.00987 (9) | 0.0318 (8) | 0.01280 (10) | 0.000 | 0.00135 (7) | 0.000 |
| Mg1 | 0.0087 (3) | 0.0072 (3) | 0.0080 (3) | 0.000 | 0.0044 (3) | 0.000 |
| Mg2 | 0.0076 (2) | 0.0049 (2) | 0.0068 (2) | 0.00050 (17) | 0.00358 (18) | 0.00038 (17) |
| P1 | 0.0062 (2) | 0.0052 (2) | 0.0043 (2) | 0.000 | 0.00141 (17) | 0.000 |
| P2 | 0.00704 (15) | 0.00373 (16) | 0.00436 (15) | 0.00011 (11) | 0.00219 (12) | 0.00006 (11) |
| O1 | 0.0057 (4) | 0.0061 (5) | 0.0116 (5) | 0.0009 (3) | 0.0032 (4) | −0.0004 (4) |
| O2 | 0.0064 (4) | 0.0087 (5) | 0.0049 (4) | −0.0008 (3) | 0.0017 (3) | −0.0018 (3) |
| O3 | 0.0086 (5) | 0.0069 (5) | 0.0045 (4) | −0.0009 (3) | 0.0023 (3) | −0.0011 (3) |
| O4 | 0.0083 (4) | 0.0058 (4) | 0.0048 (4) | 0.0001 (3) | 0.0029 (3) | 0.0013 (3) |
| O5 | 0.0091 (5) | 0.0045 (4) | 0.0096 (5) | 0.0012 (3) | 0.0036 (4) | −0.0004 (3) |
| O6 | 0.0067 (4) | 0.0056 (5) | 0.0123 (5) | −0.0007 (3) | 0.0042 (4) | −0.0001 (4) |
Geometric parameters (Å, °)
| Ag1A—O5i | 2.3649 (14) | Mg2—O5i | 2.0132 (13) |
| Ag1A—O5ii | 2.3649 (14) | Mg2—O3ix | 2.0672 (13) |
| Ag1A—O5iii | 2.5177 (14) | Mg2—O4 | 2.0677 (13) |
| Ag1A—O5iv | 2.5177 (14) | Mg2—O4iv | 2.0831 (13) |
| Ag1A—Mg2 | 3.150 (3) | Mg2—O1 | 2.0954 (13) |
| Ag1A—Mg2v | 3.150 (3) | Mg2—O2iv | 2.1414 (13) |
| Ag1A—Ag1Bvi | 3.260 (3) | Mg2—Mg2iv | 3.0408 (12) |
| Ag1A—Ag1Bvii | 3.260 (3) | Mg2—P2 | 3.1411 (7) |
| Ag1A—Ag1Avi | 3.3001 (19) | Mg2—P2ix | 3.1874 (7) |
| Ag1A—Ag1Avii | 3.3001 (19) | P1—O2 | 1.5363 (12) |
| Ag1B—O5i | 2.3457 (13) | P1—O2xi | 1.5363 (12) |
| Ag1B—O5ii | 2.3457 (13) | P1—O1 | 1.5497 (12) |
| Ag1B—O5iii | 2.4972 (14) | P1—O1xi | 1.5497 (12) |
| Ag1B—O5iv | 2.4972 (14) | P2—O4 | 1.5237 (12) |
| Ag1B—Ag1Bvi | 3.2410 (15) | P2—O5 | 1.5322 (13) |
| Ag1B—Ag1Bvii | 3.2410 (15) | P2—O3 | 1.5337 (12) |
| Ag1B—Ag1Avi | 3.260 (3) | P2—O6 | 1.5742 (13) |
| Ag1B—Ag1Avii | 3.260 (3) | P2—Mg2ix | 3.1874 (7) |
| Ag1B—Mg2 | 3.293 (12) | O2—Mg1iv | 2.1136 (12) |
| Ag1B—Mg2v | 3.293 (12) | O2—Mg2iv | 2.1414 (13) |
| Ag1B—Mg1vi | 3.42 (2) | O3—Mg2ix | 2.0672 (13) |
| Mg1—O2viii | 2.1136 (12) | O3—Mg1ix | 2.1384 (13) |
| Mg1—O2iv | 2.1136 (12) | O4—Mg2iv | 2.0831 (13) |
| Mg1—O3ix | 2.1383 (13) | O5—Mg2xii | 2.0133 (13) |
| Mg1—O3iii | 2.1383 (13) | O5—Ag1Bxiii | 2.3457 (13) |
| Mg1—O6 | 2.1600 (14) | O5—Ag1Axiii | 2.3649 (14) |
| Mg1—O6x | 2.1601 (14) | O5—Ag1Biv | 2.4972 (14) |
| Mg1—Mg2x | 3.2491 (7) | O5—Ag1Aiv | 2.5177 (14) |
| Mg1—Mg2 | 3.2492 (7) | O6—H6 | 0.8600 |
| Mg1—Ag1Bvi | 3.42 (2) | ||
| O5i—Ag1A—O5ii | 165.2 (2) | O6x—Mg1—Mg2 | 145.25 (4) |
| O5i—Ag1A—O5iii | 95.01 (5) | Mg2x—Mg1—Mg2 | 128.94 (3) |
| O5ii—Ag1A—O5iii | 83.06 (5) | O2viii—Mg1—Ag1Bvi | 78.46 (4) |
| O5i—Ag1A—O5iv | 83.06 (5) | O2iv—Mg1—Ag1Bvi | 78.46 (4) |
| O5ii—Ag1A—O5iv | 95.01 (5) | O3ix—Mg1—Ag1Bvi | 53.22 (4) |
| O5iii—Ag1A—O5iv | 165.0 (2) | O3iii—Mg1—Ag1Bvi | 53.22 (4) |
| O5i—Ag1A—Mg2 | 39.70 (5) | O6—Mg1—Ag1Bvi | 135.69 (4) |
| O5ii—Ag1A—Mg2 | 154.68 (19) | O6x—Mg1—Ag1Bvi | 135.70 (4) |
| O5iii—Ag1A—Mg2 | 106.22 (6) | Mg2x—Mg1—Ag1Bvi | 64.468 (17) |
| O5iv—Ag1A—Mg2 | 81.75 (5) | Mg2—Mg1—Ag1Bvi | 64.467 (17) |
| O5i—Ag1A—Mg2v | 154.68 (19) | O5i—Mg2—O3ix | 86.56 (5) |
| O5ii—Ag1A—Mg2v | 39.70 (5) | O5i—Mg2—O4 | 170.04 (6) |
| O5iii—Ag1A—Mg2v | 81.75 (5) | O3ix—Mg2—O4 | 90.74 (5) |
| O5iv—Ag1A—Mg2v | 106.22 (6) | O5i—Mg2—O4iv | 99.52 (5) |
| Mg2—Ag1A—Mg2v | 117.04 (15) | O3ix—Mg2—O4iv | 162.82 (6) |
| O5i—Ag1A—Ag1Bvi | 49.64 (5) | O4—Mg2—O4iv | 85.79 (5) |
| O5ii—Ag1A—Ag1Bvi | 128.18 (15) | O5i—Mg2—O1 | 86.75 (5) |
| O5iii—Ag1A—Ag1Bvi | 45.70 (5) | O3ix—Mg2—O1 | 110.73 (5) |
| O5iv—Ag1A—Ag1Bvi | 131.97 (16) | O4—Mg2—O1 | 85.23 (5) |
| Mg2—Ag1A—Ag1Bvi | 67.4 (3) | O4iv—Mg2—O1 | 85.78 (5) |
| Mg2v—Ag1A—Ag1Bvi | 120.2 (3) | O5i—Mg2—O2iv | 103.34 (5) |
| O5i—Ag1A—Ag1Bvii | 128.18 (15) | O3ix—Mg2—O2iv | 79.28 (5) |
| O5ii—Ag1A—Ag1Bvii | 49.64 (5) | O4—Mg2—O2iv | 85.55 (5) |
| O5iii—Ag1A—Ag1Bvii | 131.97 (16) | O4iv—Mg2—O2iv | 83.67 (5) |
| O5iv—Ag1A—Ag1Bvii | 45.70 (5) | O1—Mg2—O2iv | 166.46 (6) |
| Mg2—Ag1A—Ag1Bvii | 120.2 (3) | O5i—Mg2—Mg2iv | 141.54 (5) |
| Mg2v—Ag1A—Ag1Bvii | 67.4 (3) | O3ix—Mg2—Mg2iv | 131.55 (5) |
| Ag1Bvi—Ag1A—Ag1Bvii | 166.9 (9) | O4—Mg2—Mg2iv | 43.09 (3) |
| O5i—Ag1A—Ag1Avi | 49.46 (4) | O4iv—Mg2—Mg2iv | 42.70 (3) |
| O5ii—Ag1A—Ag1Avi | 126.91 (10) | O1—Mg2—Mg2iv | 83.86 (4) |
| O5iii—Ag1A—Ag1Avi | 45.55 (3) | O2iv—Mg2—Mg2iv | 82.63 (4) |
| O5iv—Ag1A—Ag1Avi | 130.57 (10) | O5i—Mg2—P2 | 151.29 (4) |
| Mg2—Ag1A—Ag1Avi | 70.23 (7) | O3ix—Mg2—P2 | 66.25 (4) |
| Mg2v—Ag1A—Ag1Avi | 122.57 (9) | O4—Mg2—P2 | 24.50 (3) |
| Ag1Bvi—Ag1A—Ag1Avi | 4.5 (3) | O4iv—Mg2—P2 | 109.17 (4) |
| Ag1Bvii—Ag1A—Ag1Avi | 162.4 (6) | O1—Mg2—P2 | 94.16 (4) |
| O5i—Ag1A—Ag1Avii | 126.91 (10) | O2iv—Mg2—P2 | 81.36 (4) |
| O5ii—Ag1A—Ag1Avii | 49.46 (4) | Mg2iv—Mg2—P2 | 66.81 (2) |
| O5iii—Ag1A—Ag1Avii | 130.57 (10) | O5i—Mg2—Ag1A | 48.62 (8) |
| O5iv—Ag1A—Ag1Avii | 45.55 (3) | O3ix—Mg2—Ag1A | 104.68 (4) |
| Mg2—Ag1A—Ag1Avii | 122.57 (9) | O4—Mg2—Ag1A | 141.24 (8) |
| Mg2v—Ag1A—Ag1Avii | 70.23 (7) | O4iv—Mg2—Ag1A | 68.99 (5) |
| Ag1Bvi—Ag1A—Ag1Avii | 162.4 (6) | O1—Mg2—Ag1A | 120.08 (7) |
| Ag1Bvii—Ag1A—Ag1Avii | 4.5 (3) | O2iv—Mg2—Ag1A | 63.49 (8) |
| Ag1Avi—Ag1A—Ag1Avii | 157.9 (3) | Mg2iv—Mg2—Ag1A | 106.54 (6) |
| O5i—Ag1B—O5ii | 177.8 (10) | P2—Mg2—Ag1A | 144.85 (7) |
| O5i—Ag1B—O5iii | 96.05 (5) | O5i—Mg2—P2ix | 77.41 (4) |
| O5ii—Ag1B—O5iii | 83.89 (5) | O3ix—Mg2—P2ix | 23.55 (3) |
| O5i—Ag1B—O5iv | 83.89 (5) | O4—Mg2—P2ix | 96.44 (4) |
| O5ii—Ag1B—O5iv | 96.05 (5) | O4iv—Mg2—P2ix | 173.57 (4) |
| O5iii—Ag1B—O5iv | 176.9 (10) | O1—Mg2—P2ix | 88.39 (4) |
| O5i—Ag1B—Ag1Bvi | 50.02 (3) | O2iv—Mg2—P2ix | 102.49 (4) |
| O5ii—Ag1B—Ag1Bvi | 129.88 (8) | Mg2iv—Mg2—P2ix | 139.20 (3) |
| O5iii—Ag1B—Ag1Bvi | 46.03 (3) | P2—Mg2—P2ix | 73.940 (17) |
| O5iv—Ag1B—Ag1Bvi | 133.82 (10) | Ag1A—Mg2—P2ix | 111.92 (4) |
| O5i—Ag1B—Ag1Bvii | 129.88 (8) | O5i—Mg2—Mg1 | 102.56 (4) |
| O5ii—Ag1B—Ag1Bvii | 50.02 (3) | O3ix—Mg2—Mg1 | 40.22 (3) |
| O5iii—Ag1B—Ag1Bvii | 133.82 (10) | O4—Mg2—Mg1 | 81.27 (4) |
| O5iv—Ag1B—Ag1Bvii | 46.03 (3) | O4iv—Mg2—Mg1 | 122.61 (4) |
| Ag1Bvi—Ag1B—Ag1Bvii | 176.0 (15) | O1—Mg2—Mg1 | 147.15 (4) |
| O5i—Ag1B—Ag1Avi | 50.19 (5) | O2iv—Mg2—Mg1 | 39.90 (3) |
| O5ii—Ag1B—Ag1Avi | 129.49 (14) | Mg2iv—Mg2—Mg1 | 105.43 (3) |
| O5iii—Ag1B—Ag1Avi | 46.19 (4) | P2—Mg2—Mg1 | 62.814 (18) |
| O5iv—Ag1B—Ag1Avi | 133.32 (16) | Ag1A—Mg2—Mg1 | 88.00 (4) |
| Ag1Bvi—Ag1B—Ag1Avi | 4.6 (3) | P2ix—Mg2—Mg1 | 63.765 (15) |
| Ag1Bvii—Ag1B—Ag1Avi | 171.4 (12) | O5i—Mg2—Ag1B | 44.9 (3) |
| O5i—Ag1B—Ag1Avii | 129.49 (14) | O3ix—Mg2—Ag1B | 104.30 (5) |
| O5ii—Ag1B—Ag1Avii | 50.19 (5) | O4—Mg2—Ag1B | 144.9 (3) |
| O5iii—Ag1B—Ag1Avii | 133.32 (16) | O4iv—Mg2—Ag1B | 70.47 (13) |
| O5iv—Ag1B—Ag1Avii | 46.19 (4) | O1—Mg2—Ag1B | 117.1 (2) |
| Ag1Bvi—Ag1B—Ag1Avii | 171.4 (12) | O2iv—Mg2—Ag1B | 67.0 (3) |
| Ag1Bvii—Ag1B—Ag1Avii | 4.6 (3) | Mg2iv—Mg2—Ag1B | 109.1 (2) |
| Ag1Avi—Ag1B—Ag1Avii | 166.9 (9) | P2—Mg2—Ag1B | 148.3 (3) |
| O5i—Ag1B—Mg2 | 37.3 (2) | Ag1A—Mg2—Ag1B | 3.9 (2) |
| O5ii—Ag1B—Mg2 | 144.9 (8) | P2ix—Mg2—Ag1B | 110.03 (15) |
| O5iii—Ag1B—Mg2 | 102.7 (3) | Mg1—Mg2—Ag1B | 90.03 (16) |
| O5iv—Ag1B—Mg2 | 79.2 (2) | O2—P1—O2xi | 111.36 (10) |
| Ag1Bvi—Ag1B—Mg2 | 66.0 (4) | O2—P1—O1 | 110.96 (6) |
| Ag1Bvii—Ag1B—Mg2 | 116.6 (6) | O2xi—P1—O1 | 108.44 (6) |
| Ag1Avi—Ag1B—Mg2 | 69.01 (18) | O2—P1—O1xi | 108.44 (6) |
| Ag1Avii—Ag1B—Mg2 | 119.4 (3) | O2xi—P1—O1xi | 110.95 (6) |
| O5i—Ag1B—Mg2v | 144.9 (8) | O1—P1—O1xi | 106.60 (10) |
| O5ii—Ag1B—Mg2v | 37.3 (2) | O4—P2—O5 | 110.74 (7) |
| O5iii—Ag1B—Mg2v | 79.2 (2) | O4—P2—O3 | 111.02 (7) |
| O5iv—Ag1B—Mg2v | 102.7 (3) | O5—P2—O3 | 109.06 (7) |
| Ag1Bvi—Ag1B—Mg2v | 116.6 (6) | O4—P2—O6 | 108.40 (7) |
| Ag1Bvii—Ag1B—Mg2v | 66.0 (4) | O5—P2—O6 | 107.86 (7) |
| Ag1Avi—Ag1B—Mg2v | 119.4 (3) | O3—P2—O6 | 109.70 (7) |
| Ag1Avii—Ag1B—Mg2v | 69.01 (18) | O4—P2—Mg2 | 34.24 (5) |
| Mg2—Ag1B—Mg2v | 109.3 (6) | O5—P2—Mg2 | 144.97 (5) |
| O5i—Ag1B—Mg1vi | 88.9 (5) | O3—P2—Mg2 | 91.84 (5) |
| O5ii—Ag1B—Mg1vi | 88.9 (5) | O6—P2—Mg2 | 90.03 (5) |
| O5iii—Ag1B—Mg1vi | 88.4 (5) | O4—P2—Mg2ix | 136.27 (5) |
| O5iv—Ag1B—Mg1vi | 88.4 (5) | O5—P2—Mg2ix | 106.49 (5) |
| Ag1Bvi—Ag1B—Mg1vi | 88.0 (8) | O3—P2—Mg2ix | 32.58 (5) |
| Ag1Bvii—Ag1B—Mg1vi | 88.0 (8) | O6—P2—Mg2ix | 80.34 (5) |
| Ag1Avi—Ag1B—Mg1vi | 83.4 (5) | Mg2—P2—Mg2ix | 106.060 (17) |
| Ag1Avii—Ag1B—Mg1vi | 83.4 (5) | P1—O1—Mg2 | 123.77 (7) |
| Mg2—Ag1B—Mg1vi | 125.3 (3) | P1—O2—Mg1iv | 126.47 (7) |
| Mg2v—Ag1B—Mg1vi | 125.3 (3) | P1—O2—Mg2iv | 123.92 (7) |
| O2viii—Mg1—O2iv | 156.91 (8) | Mg1iv—O2—Mg2iv | 99.56 (5) |
| O2viii—Mg1—O3ix | 87.86 (5) | P2—O3—Mg2ix | 123.87 (7) |
| O2iv—Mg1—O3ix | 78.33 (5) | P2—O3—Mg1ix | 134.97 (7) |
| O2viii—Mg1—O3iii | 78.33 (5) | Mg2ix—O3—Mg1ix | 101.16 (5) |
| O2iv—Mg1—O3iii | 87.86 (5) | P2—O4—Mg2 | 121.26 (7) |
| O3ix—Mg1—O3iii | 106.45 (7) | P2—O4—Mg2iv | 140.95 (7) |
| O2viii—Mg1—O6 | 108.09 (5) | Mg2—O4—Mg2iv | 94.21 (5) |
| O2iv—Mg1—O6 | 88.61 (5) | P2—O5—Mg2xii | 139.84 (8) |
| O3ix—Mg1—O6 | 82.80 (4) | P2—O5—Ag1Bxiii | 104.2 (5) |
| O3iii—Mg1—O6 | 169.20 (5) | Mg2xii—O5—Ag1Bxiii | 97.9 (5) |
| O2viii—Mg1—O6x | 88.61 (5) | P2—O5—Ag1Axiii | 110.03 (12) |
| O2iv—Mg1—O6x | 108.09 (5) | Mg2xii—O5—Ag1Axiii | 91.67 (12) |
| O3ix—Mg1—O6x | 169.20 (5) | Ag1Bxiii—O5—Ag1Axiii | 6.3 (4) |
| O3iii—Mg1—O6x | 82.80 (4) | P2—O5—Ag1Biv | 111.6 (5) |
| O6—Mg1—O6x | 88.61 (7) | Mg2xii—O5—Ag1Biv | 103.7 (5) |
| O2viii—Mg1—Mg2x | 40.53 (3) | Ag1Bxiii—O5—Ag1Biv | 83.95 (5) |
| O2iv—Mg1—Mg2x | 125.98 (4) | Ag1Axiii—O5—Ag1Biv | 84.17 (8) |
| O3ix—Mg1—Mg2x | 105.38 (4) | P2—O5—Ag1Aiv | 105.79 (12) |
| O3iii—Mg1—Mg2x | 38.62 (3) | Mg2xii—O5—Ag1Aiv | 109.53 (12) |
| O6—Mg1—Mg2x | 145.25 (4) | Ag1Bxiii—O5—Ag1Aiv | 84.12 (8) |
| O6x—Mg1—Mg2x | 78.19 (3) | Ag1Axiii—O5—Ag1Aiv | 84.99 (5) |
| O2viii—Mg1—Mg2 | 125.98 (4) | Ag1Biv—O5—Ag1Aiv | 5.9 (4) |
| O2iv—Mg1—Mg2 | 40.53 (3) | P2—O6—Mg1 | 125.56 (7) |
| O3ix—Mg1—Mg2 | 38.62 (3) | P2—O6—H6 | 106.9 |
| O3iii—Mg1—Mg2 | 105.38 (4) | Mg1—O6—H6 | 126.3 |
| O6—Mg1—Mg2 | 78.19 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, y−1/2, z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1/2, −y+1/2, −z+1; (v) −x+1, y, −z+3/2; (vi) −x+1, −y, −z+1; (vii) −x+1, −y, −z+2; (viii) x+1/2, −y+1/2, z−1/2; (ix) −x+1/2, −y+1/2, −z; (x) −x+1, y, −z+1/2; (xi) −x, y, −z+1/2; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) x−1/2, y+1/2, z−1.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O6—H6···O1xiv | 0.86 | 1.68 | 2.5266 (17) | 168 |
Symmetry codes: (xiv) −x+1/2, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2371).
References
- Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74. [DOI] [PMC free article] [PubMed]
- Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62. [DOI] [PubMed]
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17. [DOI] [PubMed]
- Hatert, F. (2008). J. Solid State Chem. 181, 1258–1272.
- Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847–857.
- Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.
- Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 142–160.
- Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206–212.
- Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stock, N. & Bein, T. (2003). Solid State Sci. 5, 1207–1210.
- Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810053304/fj2371sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053304/fj2371Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


