Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o111. doi: 10.1107/S1600536810051081

1-(2-Bromo-2-de­oxy-β-d-xylofuranos­yl)uracil

Zhong-Gao Zhou a,*, Shun-Guo Fu b, Wu-Leng Lai a, Chun-Feng Wang a
PMCID: PMC3050214  PMID: 21522623

Abstract

In the title compound, C9H11BrN2O5, the ribofuran­ose ring has a C2-exo, C3-endo twist configuration and is attached to the uracil unit via a β-N1-glycosidic bond. The crystal structure is stabilized by two inter­molecular O—H⋯O inter­actions and one inter­molecular N—H⋯O inter­action.

Related literature

For the synthesis of the title compound and its analogues, see: Shakya et al. (2010). For a related structure, see: Suck et al. (1972). For the use of the title compound as a pharmaceutical inter­mediate, see: Haraguchi et al. (1993); Kittaka et al. (1992); Pozharskii et al. (1997); Sairam et al. (2003). For the biological activity of nucleoside derivatives, see: Johar et al. (2005).graphic file with name e-67-0o111-scheme1.jpg

Experimental

Crystal data

  • C9H11BrN2O5

  • M r = 307.11

  • Orthorhombic, Inline graphic

  • a = 4.8444 (3) Å

  • b = 12.7237 (10) Å

  • c = 17.4388 (13) Å

  • V = 1074.90 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.84 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.583, T max = 0.746

  • 6683 measured reflections

  • 2091 independent reflections

  • 1956 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.048

  • S = 1.02

  • 2091 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983), 834 Friedel pairs

  • Flack parameter: 0.016 (9)

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810051081/hg2764sup1.cif

e-67-0o111-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051081/hg2764Isup2.hkl

e-67-0o111-Isup2.hkl (102.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O4i 0.82 2.03 2.841 (2) 169
N2—H2C⋯O3ii 0.86 2.17 2.983 (2) 158
O3—H3B⋯O5iii 0.82 1.96 2.769 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the NNSF of China (grant 20861001) and the Key Laboratory of Jiangxi University for Functional Materials Chemistry.

supplementary crystallographic information

Comment

In the last few decades, there has been dramatic progress in the synthesis of the nucleoside analogues for their biological evaluation of the anticancer activity (Johar et al., 2005; Shakya et al., 2010; Suck et al., 1972). The title compound (I) can be used as important pharmaceutical intermediates (Haraguchi et al., 1993; Kittaka et al., 1992; Pozharskii et al., 1997; Sairam et al., 2003). The synthetic procedure is described below. To know the relative stereochemistry of the anomeric position in the ribofuranose ring, it is necessary to gain the well defined structure of (I) by X-diffraction method. The molecular structure of the title compound is shown in Fig. 1. From the single-crystal structure we observed that the ribofuranose ring has a C2-exo, C3-endo twist configuration and the anomeric carbons are always β configuration in the crystal packing. The crystal structure of (I) is stabilized by two intermolecular O—H···O interactions and one intermolecular N—H···O interaction (Table 1, Fig. 2).

Experimental

All reagents and solvents were used as obtained commercially without further purification. NMR spectra was recorded on Bruker AV 400 MHz NMR spectrometers at ambient temperature. The title compound was prepared according to the reported procedure (Shakya et al., 2010). Detritylation of 1-(3-Bromo-3-deoxy-5-O-trityl-β-D-arabinofuranosyl)uracil using 80% aqueous acetic acid (v/v) at 90 °C for 30 min, then cooled to room temperature, after the solvent were distilled off a white solid of the title compound was obtained in about 70% yield. 1H NMR (400 MHz, DMSO-d6): δ 3.65–3.77 (m, 2H, H-5'), 4.26–4.39 (m, 3H, H-2', H-3', H-4'), 4.89 (t, J = 4.88 Hz, 1H, 5'-OH), 5.64 (dd, J = 8.54 and 1.83 Hz, 1H, H-5), 6.04 (d, J = 3.05 Hz, 1H, H-1'), 6.09 (d, J = 1.83 Hz, 1H, 3'-OH), 7.72 (d, J = 7.93 Hz, 1H, H-6), 11.39 (s, 1H, NH). In a sample vial, colorless block-shaped single crystals were grown from DMSO and water (v/v = 1:1) at room temperature.

Refinement

The N-bound and the C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Uiso(N,C); while the O-bound H atoms were placed in idealized positions and constrained to ride on their parent atoms: O—H = 0.82 Å, with Uiso(H) = 1.5 times Uiso(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The three-dimensional structure of the title compound formed by intermolecular hydrogen bonds viewed down the a axis. The intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C9H11BrN2O5 F(000) = 616
Mr = 307.11 Dx = 1.898 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3827 reflections
a = 4.8444 (3) Å θ = 2.3–26.6°
b = 12.7237 (10) Å µ = 3.84 mm1
c = 17.4388 (13) Å T = 296 K
V = 1074.90 (13) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2091 independent reflections
Radiation source: fine-focus sealed tube 1956 reflections with I > 2σ(I)
graphite Rint = 0.023
phi and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −5→5
Tmin = 0.583, Tmax = 0.746 k = −12→15
6683 measured reflections l = −17→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0196P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2091 reflections Δρmax = 0.20 e Å3
155 parameters Δρmin = −0.34 e Å3
0 restraints Absolute structure: Flack (1983), 834 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.016 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.27277 (5) −0.100786 (17) 0.715735 (13) 0.03335 (9)
N1 0.5109 (4) 0.10657 (15) 0.81851 (10) 0.0218 (4)
N2 0.4796 (4) 0.08084 (15) 0.94956 (10) 0.0263 (5)
H2C 0.5395 0.0505 0.9904 0.032*
C1 0.3861 (5) 0.04049 (18) 0.68858 (12) 0.0225 (5)
H1A 0.2276 0.0878 0.6937 0.027*
C2 0.6127 (5) 0.07596 (18) 0.74317 (13) 0.0234 (5)
H2A 0.7521 0.0206 0.7484 0.028*
C3 0.6883 (5) 0.15620 (18) 0.62383 (11) 0.0262 (5)
H3A 0.8688 0.1469 0.5994 0.031*
C4 0.5166 (5) 0.0564 (2) 0.61047 (12) 0.0258 (6)
H4A 0.3762 0.0675 0.5708 0.031*
C5 0.5620 (5) 0.2564 (2) 0.59440 (14) 0.0354 (6)
H5A 0.6704 0.3160 0.6115 0.042*
H5B 0.5616 0.2560 0.5388 0.042*
C6 0.6060 (5) 0.05312 (19) 0.88240 (13) 0.0241 (5)
C7 0.2656 (5) 0.15228 (17) 0.95953 (11) 0.0257 (5)
C8 0.1829 (5) 0.20597 (17) 0.89049 (12) 0.0244 (5)
H8A 0.0460 0.2571 0.8921 0.029*
C9 0.3045 (5) 0.18165 (17) 0.82441 (12) 0.0243 (5)
H9A 0.2486 0.2166 0.7802 0.029*
O1 0.7292 (4) 0.16509 (12) 0.70608 (7) 0.0290 (4)
O2 0.2882 (4) 0.26569 (14) 0.62192 (11) 0.0494 (5)
H2B 0.2448 0.3279 0.6236 0.074*
O3 0.7002 (4) −0.02551 (13) 0.58996 (8) 0.0339 (4)
H3B 0.6137 −0.0730 0.5692 0.051*
O4 0.7873 (4) −0.01293 (12) 0.88008 (8) 0.0332 (4)
O5 0.1654 (4) 0.16566 (13) 1.02337 (8) 0.0351 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03955 (14) 0.02863 (14) 0.03187 (14) −0.00614 (13) 0.00305 (12) −0.00212 (10)
N1 0.0252 (9) 0.0242 (11) 0.0162 (9) 0.0052 (10) −0.0018 (8) −0.0013 (9)
N2 0.0350 (11) 0.0281 (12) 0.0157 (10) 0.0027 (10) −0.0039 (9) 0.0051 (9)
C1 0.0248 (12) 0.0197 (12) 0.0229 (12) 0.0001 (10) 0.0001 (9) −0.0030 (10)
C2 0.0210 (11) 0.0240 (13) 0.0252 (12) −0.0011 (10) 0.0022 (10) −0.0032 (10)
C3 0.0255 (13) 0.0352 (14) 0.0178 (11) −0.0011 (12) 0.0034 (10) −0.0009 (10)
C4 0.0246 (12) 0.0309 (14) 0.0218 (12) 0.0025 (12) −0.0003 (10) −0.0023 (11)
C5 0.0363 (15) 0.0342 (15) 0.0357 (15) −0.0072 (13) −0.0011 (12) 0.0064 (13)
C6 0.0268 (13) 0.0207 (13) 0.0247 (13) −0.0053 (12) −0.0044 (10) 0.0017 (11)
C7 0.0277 (13) 0.0260 (12) 0.0235 (11) −0.0059 (12) −0.0005 (12) −0.0015 (9)
C8 0.0265 (13) 0.0241 (12) 0.0225 (12) 0.0026 (11) −0.0018 (10) −0.0030 (10)
C9 0.0251 (13) 0.0232 (12) 0.0245 (12) −0.0002 (11) −0.0046 (10) 0.0008 (10)
O1 0.0332 (9) 0.0331 (9) 0.0208 (7) −0.0096 (9) 0.0003 (9) 0.0002 (6)
O2 0.0309 (11) 0.0294 (9) 0.0879 (14) −0.0012 (10) 0.0003 (11) 0.0049 (9)
O3 0.0382 (10) 0.0327 (9) 0.0309 (9) 0.0040 (9) 0.0079 (8) −0.0120 (7)
O4 0.0367 (10) 0.0306 (9) 0.0323 (9) 0.0106 (10) −0.0057 (9) 0.0008 (7)
O5 0.0433 (11) 0.0416 (11) 0.0203 (8) 0.0005 (9) 0.0073 (8) 0.0001 (8)

Geometric parameters (Å, °)

Br1—C1 1.938 (2) C3—H3A 0.9800
N1—C6 1.384 (3) C4—O3 1.416 (3)
N1—C9 1.387 (3) C4—H4A 0.9800
N1—C2 1.456 (3) C5—O2 1.416 (3)
N2—C6 1.368 (3) C5—H5A 0.9700
N2—C7 1.390 (3) C5—H5B 0.9700
N2—H2C 0.8600 C6—O4 1.216 (3)
C1—C4 1.515 (3) C7—O5 1.226 (2)
C1—C2 1.522 (3) C7—C8 1.441 (3)
C1—H1A 0.9800 C8—C9 1.331 (3)
C2—O1 1.422 (3) C8—H8A 0.9300
C2—H2A 0.9800 C9—H9A 0.9300
C3—O1 1.452 (2) O2—H2B 0.8200
C3—C5 1.504 (4) O3—H3B 0.8200
C3—C4 1.536 (3)
C6—N1—C9 121.24 (18) C1—C4—C3 101.55 (17)
C6—N1—C2 118.83 (18) O3—C4—H4A 111.3
C9—N1—C2 119.68 (17) C1—C4—H4A 111.3
C6—N2—C7 127.57 (18) C3—C4—H4A 111.3
C6—N2—H2C 116.2 O2—C5—C3 109.7 (2)
C7—N2—H2C 116.2 O2—C5—H5A 109.7
C4—C1—C2 102.81 (19) C3—C5—H5A 109.7
C4—C1—Br1 117.50 (16) O2—C5—H5B 109.7
C2—C1—Br1 109.06 (15) C3—C5—H5B 109.7
C4—C1—H1A 109.0 H5A—C5—H5B 108.2
C2—C1—H1A 109.0 O4—C6—N2 122.0 (2)
Br1—C1—H1A 109.0 O4—C6—N1 123.6 (2)
O1—C2—N1 109.36 (18) N2—C6—N1 114.4 (2)
O1—C2—C1 103.78 (18) O5—C7—N2 119.96 (19)
N1—C2—C1 113.54 (18) O5—C7—C8 125.7 (2)
O1—C2—H2A 110.0 N2—C7—C8 114.38 (18)
N1—C2—H2A 110.0 C9—C8—C7 119.4 (2)
C1—C2—H2A 110.0 C9—C8—H8A 120.3
O1—C3—C5 109.06 (19) C7—C8—H8A 120.3
O1—C3—C4 106.75 (17) C8—C9—N1 122.9 (2)
C5—C3—C4 115.4 (2) C8—C9—H9A 118.5
O1—C3—H3A 108.5 N1—C9—H9A 118.5
C5—C3—H3A 108.5 C2—O1—C3 109.45 (16)
C4—C3—H3A 108.5 C5—O2—H2B 109.5
O3—C4—C1 112.99 (19) C4—O3—H3B 109.5
O3—C4—C3 107.85 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2B···O4i 0.82 2.03 2.841 (2) 169
N2—H2C···O3ii 0.86 2.17 2.983 (2) 158
O3—H3B···O5iii 0.82 1.96 2.769 (2) 167

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3/2, −y, z+1/2; (iii) −x+1/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2764).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2008). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Haraguchi, K., Itoh, Y., Tanaka, H., Yamaguchi, K. & Miyasaka, T. (1993). Tetrahedron Lett. 33, 6913–6916.
  5. Johar, M., Manning, T., Kunimoto, D. Y. & Kumar, R. (2005). Bioorg. Med. Chem. 13, 6663–6671. [DOI] [PubMed]
  6. Kittaka, A., Tanaka, H., Miyasaka, T. & Yamaguchi, K. (1992). Nucleosides Nucleotides, 11, 37–47.
  7. Pozharskii, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: John Wiley and Sons.
  8. Sairam, P., Puranik, R., Rao, B. S., Swamy, P. V. & Chandra, S. (2003). Carbohydr. Res. 338, 303–306. [DOI] [PubMed]
  9. Shakya, N., Srivastav, N. C., Desroches, N., Agrawal, B., Kunimoto, D. Y. & Kumar, R. (2010). J. Med. Chem. 53, 4130–4140. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Suck, D., Saenger, W. & Hobbs, J. (1972). Biochim. Biophys. Acta, 259, 157–163. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810051081/hg2764sup1.cif

e-67-0o111-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051081/hg2764Isup2.hkl

e-67-0o111-Isup2.hkl (102.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES