Abstract
The title compound C6H12N4, is one of a few known tetrazoles with an alkyl chain in the 5-position. The asymmetric unit contains two independent molecules. The molecules are linked by N—H⋯N interactions into chains with graph-set notation D(2) and C 2 2(8) along [010]. The two independent molecules form a layered structure, the layers being composed of interdigitating strands of alternatingly oriented and nearly identical molecules.
Related literature
For synthetic methods see: Mihina & Herbst (1950 ▶); Steven et al. (1993 ▶); Detert & Schollmeyer (1999 ▶); Sugiono & Detert (2001 ▶); Glang et al. (2008 ▶); Borchmann et al. (2010 ▶). For the properties of tetrazole, see: Huisgen et al. (1960a
▶,b
▶, 1961 ▶); Singh (1980 ▶); Pernice et al. (1988 ▶); Huff et al. (1996 ▶). For graph-set notation, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C6H12N4
M r = 140.20
Triclinic,
a = 8.7812 (14) Å
b = 9.6770 (12) Å
c = 11.614 (2) Å
α = 93.136 (10)°
β = 112.059 (9)°
γ = 116.389 (7)°
V = 789.6 (2) Å3
Z = 4
Cu Kα radiation
μ = 0.63 mm−1
T = 193 K
0.50 × 0.40 × 0.30 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
3182 measured reflections
2991 independent reflections
2764 reflections with I > 2σ(I)
R int = 0.070
3 standard reflections every 60 min intensity decay: 2%
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.109
S = 1.04
2991 reflections
184 parameters
H-atom parameters constrained
Δρmax = 0.24 e Å−3
Δρmin = −0.20 e Å−3
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971 ▶); program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: PLATON.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052244/bx2337sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052244/bx2337Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1A—H1A⋯N4B | 0.96 | 1.82 | 2.7773 (14) | 175 |
| N1B—H1B⋯N4Ai | 0.95 | 1.84 | 2.7779 (14) | 170 |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
The title compound (I), is formed by the addition of triethylammonium azide to capronitrile in refluxing toluene and acidic work-up. In the crystal, molecules are linked by N— H··· N interactions into chains with graph-set notation D(2) a C22(8) along [010] (Bernstein et al., 1995), Table 1. Both molecules of the title compound have very similar geometries. The heterocycles and alkyl chains are coplanar with the molecules A oriented to the opposite site of the molecules B. These strands form layers via interdigitation of the alkyl chains.
Experimental
The title compound was prepared as follows: Triethyl ammonium chloride (8.95 g, 0.06 mol) and sodium azide (3.90 g, 0.06 mol) were added to a solution of hexanoic acid nitrile (4.36 g, 0.045 mol) in toluene (35 ml) and the mixture was stirred under reflux for 72 h. The mixture was filtered, the solvent evaporated and the residue dissolved in water. Hydrochloric acid (6M, 15 ml) was added and the product was extracted with ether/petroleum ether (1/1, 3*30 ml). The cooled organic solutions were dried with sodium sulfate. The solvents were evaporated and the residue crystallized upon standing at ambient temperature within 5 days. Recrystallization from toluene yielded 5-pentyltetrazole in 78% yield as colorless needles.
Refinement
Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The Hydrogen atoms attached to N1A and N1B were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).
Figures
Fig. 1.
View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
Crystal data
| C6H12N4 | Z = 4 |
| Mr = 140.20 | F(000) = 304 |
| Triclinic, P1 | Dx = 1.179 Mg m−3 |
| Hall symbol: -P 1 | Melting point: 315 K |
| a = 8.7812 (14) Å | Cu Kα radiation, λ = 1.54178 Å |
| b = 9.6770 (12) Å | Cell parameters from 25 reflections |
| c = 11.614 (2) Å | θ = 65–69° |
| α = 93.136 (10)° | µ = 0.63 mm−1 |
| β = 112.059 (9)° | T = 193 K |
| γ = 116.389 (7)° | Block, colourless |
| V = 789.6 (2) Å3 | 0.50 × 0.40 × 0.30 mm |
Data collection
| Enraf–Nonius CAD-4 diffractometer | Rint = 0.070 |
| Radiation source: rotating anode | θmax = 70.0°, θmin = 4.3° |
| graphite | h = −10→9 |
| ω/2θ scans | k = 0→11 |
| 3182 measured reflections | l = −14→14 |
| 2991 independent reflections | 3 standard reflections every 60 min |
| 2764 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
| wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0611P)2 + 0.1618P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 2991 reflections | Δρmax = 0.24 e Å−3 |
| 184 parameters | Δρmin = −0.20 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0088 (12) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1A | 0.76292 (14) | 0.44445 (11) | 0.33040 (10) | 0.0321 (2) | |
| H1A | 0.7628 | 0.5432 | 0.3397 | 0.038* | |
| N2A | 0.77322 (17) | 0.38035 (13) | 0.22933 (10) | 0.0392 (3) | |
| N3A | 0.77338 (17) | 0.25012 (13) | 0.24908 (11) | 0.0413 (3) | |
| N4A | 0.76329 (16) | 0.22891 (12) | 0.36157 (10) | 0.0358 (3) | |
| C5A | 0.75588 (16) | 0.35102 (13) | 0.41070 (11) | 0.0286 (3) | |
| C6A | 0.74035 (18) | 0.38071 (13) | 0.53191 (11) | 0.0321 (3) | |
| H6A | 0.6195 | 0.3797 | 0.5105 | 0.039* | |
| H6B | 0.8458 | 0.4884 | 0.5875 | 0.039* | |
| C7A | 0.74667 (18) | 0.25697 (14) | 0.60683 (12) | 0.0336 (3) | |
| H7A | 0.6359 | 0.1501 | 0.5540 | 0.040* | |
| H7B | 0.8633 | 0.2525 | 0.6233 | 0.040* | |
| C8A | 0.74449 (18) | 0.29643 (15) | 0.73469 (12) | 0.0360 (3) | |
| H8A | 0.6351 | 0.3123 | 0.7186 | 0.043* | |
| H8B | 0.8619 | 0.3983 | 0.7905 | 0.043* | |
| C9A | 0.7308 (2) | 0.16675 (18) | 0.80548 (14) | 0.0441 (3) | |
| H9A | 0.6116 | 0.0655 | 0.7507 | 0.053* | |
| H9B | 0.8383 | 0.1489 | 0.8197 | 0.053* | |
| C10A | 0.7338 (3) | 0.2091 (2) | 0.93461 (16) | 0.0607 (4) | |
| H10A | 0.7183 | 0.1198 | 0.9740 | 0.091* | |
| H10B | 0.6298 | 0.2299 | 0.9215 | 0.091* | |
| H10C | 0.8555 | 0.3050 | 0.9916 | 0.091* | |
| N1B | 0.77122 (14) | 0.95284 (11) | 0.40731 (9) | 0.0305 (2) | |
| H1B | 0.7639 | 1.0469 | 0.3995 | 0.037* | |
| N2B | 0.74619 (15) | 0.88499 (12) | 0.50153 (10) | 0.0350 (3) | |
| N3B | 0.74529 (16) | 0.75189 (12) | 0.47932 (10) | 0.0364 (3) | |
| N4B | 0.76875 (15) | 0.73261 (12) | 0.37130 (10) | 0.0336 (2) | |
| C5B | 0.78464 (16) | 0.85919 (13) | 0.32751 (11) | 0.0288 (3) | |
| C6B | 0.81748 (19) | 0.89627 (13) | 0.21354 (12) | 0.0359 (3) | |
| H6C | 0.9558 | 0.9640 | 0.2423 | 0.043* | |
| H6D | 0.7569 | 0.9590 | 0.1766 | 0.043* | |
| C7B | 0.74053 (18) | 0.74860 (13) | 0.10847 (11) | 0.0326 (3) | |
| H7C | 0.8051 | 0.6880 | 0.1436 | 0.039* | |
| H7D | 0.6030 | 0.6784 | 0.0813 | 0.039* | |
| C8B | 0.77032 (18) | 0.79245 (14) | −0.00809 (11) | 0.0341 (3) | |
| H8C | 0.7002 | 0.8484 | −0.0453 | 0.041* | |
| H8D | 0.9071 | 0.8678 | 0.0205 | 0.041* | |
| C9B | 0.70495 (19) | 0.64908 (15) | −0.11205 (12) | 0.0380 (3) | |
| H9C | 0.5680 | 0.5737 | −0.1411 | 0.046* | |
| H9D | 0.7749 | 0.5930 | −0.0751 | 0.046* | |
| C10B | 0.7361 (2) | 0.69521 (18) | −0.22777 (13) | 0.0501 (4) | |
| H10D | 0.6736 | 0.5983 | −0.2974 | 0.075* | |
| H10E | 0.8727 | 0.7536 | −0.2030 | 0.075* | |
| H10F | 0.6822 | 0.7635 | −0.2575 | 0.075* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1A | 0.0489 (6) | 0.0245 (5) | 0.0357 (5) | 0.0239 (4) | 0.0240 (5) | 0.0118 (4) |
| N2A | 0.0627 (7) | 0.0336 (6) | 0.0384 (6) | 0.0314 (5) | 0.0295 (5) | 0.0145 (4) |
| N3A | 0.0686 (7) | 0.0333 (6) | 0.0397 (6) | 0.0336 (5) | 0.0308 (6) | 0.0135 (5) |
| N4A | 0.0564 (6) | 0.0268 (5) | 0.0379 (6) | 0.0269 (5) | 0.0264 (5) | 0.0118 (4) |
| C5A | 0.0357 (6) | 0.0209 (5) | 0.0337 (6) | 0.0163 (5) | 0.0171 (5) | 0.0077 (4) |
| C6A | 0.0446 (6) | 0.0263 (6) | 0.0350 (6) | 0.0218 (5) | 0.0219 (5) | 0.0094 (5) |
| C7A | 0.0440 (7) | 0.0288 (6) | 0.0360 (6) | 0.0214 (5) | 0.0214 (5) | 0.0112 (5) |
| C8A | 0.0426 (7) | 0.0348 (6) | 0.0348 (6) | 0.0211 (5) | 0.0193 (5) | 0.0100 (5) |
| C9A | 0.0566 (8) | 0.0519 (8) | 0.0428 (7) | 0.0358 (7) | 0.0283 (6) | 0.0228 (6) |
| C10A | 0.0868 (12) | 0.0807 (12) | 0.0495 (9) | 0.0573 (10) | 0.0426 (9) | 0.0353 (8) |
| N1B | 0.0454 (6) | 0.0229 (5) | 0.0326 (5) | 0.0217 (4) | 0.0203 (4) | 0.0098 (4) |
| N2B | 0.0511 (6) | 0.0294 (5) | 0.0353 (5) | 0.0242 (5) | 0.0242 (5) | 0.0116 (4) |
| N3B | 0.0544 (6) | 0.0303 (5) | 0.0370 (5) | 0.0255 (5) | 0.0263 (5) | 0.0151 (4) |
| N4B | 0.0520 (6) | 0.0262 (5) | 0.0362 (5) | 0.0250 (5) | 0.0256 (5) | 0.0133 (4) |
| C5B | 0.0386 (6) | 0.0206 (5) | 0.0312 (6) | 0.0168 (5) | 0.0169 (5) | 0.0074 (4) |
| C6B | 0.0554 (7) | 0.0235 (6) | 0.0359 (6) | 0.0205 (5) | 0.0260 (6) | 0.0118 (5) |
| C7B | 0.0440 (7) | 0.0240 (6) | 0.0350 (6) | 0.0174 (5) | 0.0220 (5) | 0.0094 (5) |
| C8B | 0.0457 (7) | 0.0276 (6) | 0.0339 (6) | 0.0194 (5) | 0.0206 (5) | 0.0117 (5) |
| C9B | 0.0507 (7) | 0.0322 (6) | 0.0347 (6) | 0.0208 (6) | 0.0224 (6) | 0.0097 (5) |
| C10B | 0.0734 (10) | 0.0466 (8) | 0.0388 (7) | 0.0305 (7) | 0.0324 (7) | 0.0150 (6) |
Geometric parameters (Å, °)
| N1A—C5A | 1.3330 (15) | N1B—C5B | 1.3339 (15) |
| N1A—N2A | 1.3494 (14) | N1B—N2B | 1.3446 (14) |
| N1A—H1A | 0.9564 | N1B—H1B | 0.9474 |
| N2A—N3A | 1.2937 (14) | N2B—N3B | 1.2956 (14) |
| N3A—N4A | 1.3628 (15) | N3B—N4B | 1.3616 (14) |
| N4A—C5A | 1.3223 (14) | N4B—C5B | 1.3222 (14) |
| C5A—C6A | 1.4892 (16) | C5B—C6B | 1.4868 (16) |
| C6A—C7A | 1.5267 (16) | C6B—C7B | 1.5228 (16) |
| C6A—H6A | 0.9900 | C6B—H6C | 0.9900 |
| C6A—H6B | 0.9900 | C6B—H6D | 0.9900 |
| C7A—C8A | 1.5222 (16) | C7B—C8B | 1.5203 (16) |
| C7A—H7A | 0.9900 | C7B—H7C | 0.9900 |
| C7A—H7B | 0.9900 | C7B—H7D | 0.9900 |
| C8A—C9A | 1.5226 (18) | C8B—C9B | 1.5167 (17) |
| C8A—H8A | 0.9900 | C8B—H8C | 0.9900 |
| C8A—H8B | 0.9900 | C8B—H8D | 0.9900 |
| C9A—C10A | 1.520 (2) | C9B—C10B | 1.5212 (17) |
| C9A—H9A | 0.9900 | C9B—H9C | 0.9900 |
| C9A—H9B | 0.9900 | C9B—H9D | 0.9900 |
| C10A—H10A | 0.9800 | C10B—H10D | 0.9800 |
| C10A—H10B | 0.9800 | C10B—H10E | 0.9800 |
| C10A—H10C | 0.9800 | C10B—H10F | 0.9800 |
| C5A—N1A—N2A | 109.67 (9) | C5B—N1B—N2B | 109.65 (9) |
| C5A—N1A—H1A | 127.6 | C5B—N1B—H1B | 129.2 |
| N2A—N1A—H1A | 122.7 | N2B—N1B—H1B | 120.8 |
| N3A—N2A—N1A | 106.07 (10) | N3B—N2B—N1B | 106.22 (9) |
| N2A—N3A—N4A | 110.18 (10) | N2B—N3B—N4B | 110.06 (9) |
| C5A—N4A—N3A | 106.84 (9) | C5B—N4B—N3B | 106.84 (9) |
| N4A—C5A—N1A | 107.23 (10) | N4B—C5B—N1B | 107.23 (10) |
| N4A—C5A—C6A | 127.37 (10) | N4B—C5B—C6B | 127.50 (10) |
| N1A—C5A—C6A | 125.40 (10) | N1B—C5B—C6B | 125.25 (10) |
| C5A—C6A—C7A | 112.98 (9) | C5B—C6B—C7B | 113.84 (9) |
| C5A—C6A—H6A | 109.0 | C5B—C6B—H6C | 108.8 |
| C7A—C6A—H6A | 109.0 | C7B—C6B—H6C | 108.8 |
| C5A—C6A—H6B | 109.0 | C5B—C6B—H6D | 108.8 |
| C7A—C6A—H6B | 109.0 | C7B—C6B—H6D | 108.8 |
| H6A—C6A—H6B | 107.8 | H6C—C6B—H6D | 107.7 |
| C8A—C7A—C6A | 111.95 (10) | C8B—C7B—C6B | 111.84 (10) |
| C8A—C7A—H7A | 109.2 | C8B—C7B—H7C | 109.2 |
| C6A—C7A—H7A | 109.2 | C6B—C7B—H7C | 109.2 |
| C8A—C7A—H7B | 109.2 | C8B—C7B—H7D | 109.2 |
| C6A—C7A—H7B | 109.2 | C6B—C7B—H7D | 109.2 |
| H7A—C7A—H7B | 107.9 | H7C—C7B—H7D | 107.9 |
| C7A—C8A—C9A | 113.17 (11) | C9B—C8B—C7B | 113.44 (10) |
| C7A—C8A—H8A | 108.9 | C9B—C8B—H8C | 108.9 |
| C9A—C8A—H8A | 108.9 | C7B—C8B—H8C | 108.9 |
| C7A—C8A—H8B | 108.9 | C9B—C8B—H8D | 108.9 |
| C9A—C8A—H8B | 108.9 | C7B—C8B—H8D | 108.9 |
| H8A—C8A—H8B | 107.8 | H8C—C8B—H8D | 107.7 |
| C10A—C9A—C8A | 112.79 (12) | C8B—C9B—C10B | 112.71 (11) |
| C10A—C9A—H9A | 109.0 | C8B—C9B—H9C | 109.0 |
| C8A—C9A—H9A | 109.0 | C10B—C9B—H9C | 109.0 |
| C10A—C9A—H9B | 109.0 | C8B—C9B—H9D | 109.0 |
| C8A—C9A—H9B | 109.0 | C10B—C9B—H9D | 109.0 |
| H9A—C9A—H9B | 107.8 | H9C—C9B—H9D | 107.8 |
| C9A—C10A—H10A | 109.5 | C9B—C10B—H10D | 109.5 |
| C9A—C10A—H10B | 109.5 | C9B—C10B—H10E | 109.5 |
| H10A—C10A—H10B | 109.5 | H10D—C10B—H10E | 109.5 |
| C9A—C10A—H10C | 109.5 | C9B—C10B—H10F | 109.5 |
| H10A—C10A—H10C | 109.5 | H10D—C10B—H10F | 109.5 |
| H10B—C10A—H10C | 109.5 | H10E—C10B—H10F | 109.5 |
| C5A—N1A—N2A—N3A | −0.33 (14) | C5B—N1B—N2B—N3B | 0.27 (13) |
| N1A—N2A—N3A—N4A | 0.02 (14) | N1B—N2B—N3B—N4B | −0.24 (13) |
| N2A—N3A—N4A—C5A | 0.30 (15) | N2B—N3B—N4B—C5B | 0.13 (14) |
| N3A—N4A—C5A—N1A | −0.49 (13) | N3B—N4B—C5B—N1B | 0.04 (13) |
| N3A—N4A—C5A—C6A | 178.87 (11) | N3B—N4B—C5B—C6B | 178.27 (11) |
| N2A—N1A—C5A—N4A | 0.52 (14) | N2B—N1B—C5B—N4B | −0.19 (13) |
| N2A—N1A—C5A—C6A | −178.86 (11) | N2B—N1B—C5B—C6B | −178.47 (11) |
| N4A—C5A—C6A—C7A | 3.98 (18) | N4B—C5B—C6B—C7B | 28.32 (18) |
| N1A—C5A—C6A—C7A | −176.77 (11) | N1B—C5B—C6B—C7B | −153.76 (12) |
| C5A—C6A—C7A—C8A | 176.01 (10) | C5B—C6B—C7B—C8B | 177.66 (10) |
| C6A—C7A—C8A—C9A | 174.26 (11) | C6B—C7B—C8B—C9B | 176.94 (11) |
| C7A—C8A—C9A—C10A | 178.51 (12) | C7B—C8B—C9B—C10B | −179.91 (11) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1A—H1A···N4B | 0.96 | 1.82 | 2.7773 (14) | 175 |
| N1B—H1B···N4Ai | 0.95 | 1.84 | 2.7779 (14) | 170 |
Symmetry codes: (i) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2337).
References
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Borchmann, D., Kratochwil, M., Glang, S. & Detert, H. (2010). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 133–138.
- Detert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999–1004.
- Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Glang, S., Schmitt, V. & Detert, H. (2008). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 125–128.
- Huff, B. E., LeTourneau, M. E., Staszak, M. A. & Ward, J. A. (1996). Tetrahedron Lett. 37, 3655–3658.
- Huisgen, R., Sauer, J. & Seidel, M. (1960a). Chem. Ber. 93, 2885–2891.
- Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960b). Chem. Ber. 93, 2106–2124.
- Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562.
- Mihina, J. S. & Herbst, R. M. (1950). J. Org. Chem. 15, 1082–1092.
- Pernice, P., Castaing, M., Menassa, P. & Kraus, J. L. (1988). Biophys. Chem. 32, 15–20. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Singh, H. (1980). Progress in Medicinal Chemistry, edited by G. P. Ellis & G. B. West Vol. 17, pp. 151–184. Amsterdam: Elsevier/North Holland Biomedical Press.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Steven, J., Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141.
- Sugiono, E. & Detert, H. (2001). Synthesis, pp. 893–896.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052244/bx2337sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052244/bx2337Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

