Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):m69. doi: 10.1107/S1600536810050865

Diaqua­bis­(2-oxo-2H-chromene-3-carboxyl­ato)zinc(II)

Yue Cui a, Qian Gao a, Huan-Huan Wang a, Lin Wang a, Ya-Bo Xie a,*
PMCID: PMC3050235  PMID: 21522587

Abstract

In the title compound, [Zn(C10H5O4)2(H2O)2], the ZnII atom lies on a crystallographic inversion center and is six-coordinated by two O atoms from water mol­ecules in the axial positions and four O atoms from two deprotonated coumarin-3-carb­oxy­late ligands in the equatorial plane, forming a slightly distorted octa­hedral coordination geometry. O—H⋯O hydrogen-bonding inter­actions involving the water mol­ecules form infinite chains parallel to [010].

Related literature

For related structures, see: Chu et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990).graphic file with name e-67-00m69-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H5O4)2(H2O)2]

  • M r = 479.70

  • Triclinic, Inline graphic

  • a = 6.6113 (13) Å

  • b = 6.8404 (14) Å

  • c = 10.392 (2) Å

  • α = 85.64 (3)°

  • β = 89.47 (3)°

  • γ = 66.09 (3)°

  • V = 428.27 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.741, T max = 0.748

  • 2642 measured reflections

  • 1808 independent reflections

  • 1793 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.061

  • S = 1.12

  • 1808 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050865/dn2633sup1.cif

e-67-00m69-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050865/dn2633Isup2.hkl

e-67-00m69-Isup2.hkl (89KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O3i 0.82 1.88 2.6950 (17) 179
O1W—H2⋯O3ii 0.93 1.83 2.7473 (19) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21075114), the Science and Technology Development Project of Beijing Education Committee and the Special Environmental Protection Fund for Public Welfare project (201009015).

supplementary crystallographic information

Comment

In the past decades, numerous papers dealing with mononuclear zinc complexes have been published (Chu et al. 2010). Herein, we report the synthesis and crystal structure of a new mononuclear zinc complex.

In the title compound, [Zn(C10H5O4)2(H2O)2], each ZnII atom lies on a crystallographic inversion center and is six-coordinated by two O atoms from water molecules in the axial positions and four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial plane, forming an octahedral coordination geometry (Fig. 1). O—H···O hydrogen bonds involving the water molecules build up chain parllel to the [0 1 0] axis (Table 1, Fig. 2). The O-H···O interactions results in the formation of R42(8) rings (Etter, 1990; Bernstein et al., 1995).

Experimental

The title complex was synthesized by carefully layering a solution of ZnSO4.7H2O (28.8 mg, 0.1 mmol) in ethanol solution (10 ml) on top of a solution of coumarin-3-carboxylic acid (19.0 mg, 0.1 mmol) and LiOH (8.4 mg, 0.2 mmol) in H2O (10 ml) in a test-tube. After about one month at room temperature, colorless block-shaped single crystals suitable for X-ray investigation appeared at the boundary between ethanol solution and water with a yield of 27%.

Refinement

The H atoms were placed geometrically (C—H = 0.93 Å) and treated as riding with Uiso(H) = 1.2eq(C) . H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycle of refinement they were treated as riding on their parent O atom.

Figures

Fig. 1.

Fig. 1.

Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) -x+1, -y+1, -z+1]

Fig. 2.

Fig. 2.

Partial packing view of compound ( I ), showing the formation of chains along [010] built from hydrogen bonds, and the formation of R 24(8) rings. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (ii) -x, -y+1, -z+1; (iii) x+1, y-1, z]

Crystal data

[Zn(C10H5O4)2(H2O)2] Z = 1
Mr = 479.70 F(000) = 244
Triclinic, P1 Dx = 1.860 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6113 (13) Å Cell parameters from 2271 reflections
b = 6.8404 (14) Å θ = 3.4–28.4°
c = 10.392 (2) Å µ = 1.50 mm1
α = 85.64 (3)° T = 293 K
β = 89.47 (3)° Block, colourless
γ = 66.09 (3)° 0.2 × 0.2 × 0.2 mm
V = 428.27 (18) Å3

Data collection

Bruker APEXII CCD diffractometer 1808 independent reflections
Radiation source: fine-focus sealed tube 1793 reflections with I > 2σ(I)
graphite Rint = 0.013
φ and ω scans θmax = 27.1°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −8→8
Tmin = 0.741, Tmax = 0.748 k = −8→8
2642 measured reflections l = 0→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.2757P] where P = (Fo2 + 2Fc2)/3
1808 reflections (Δ/σ)max < 0.001
142 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.5000 0.5000 0.01047 (10)
O1 0.30343 (17) 0.68964 (17) 0.87151 (10) 0.0127 (2)
O1W 0.49536 (17) 0.22209 (17) 0.59641 (10) 0.0133 (2)
H1 0.3972 0.1951 0.5649 0.020*
H2 0.6183 0.1022 0.5763 0.020*
O2 0.45061 (18) 0.64366 (18) 0.68157 (10) 0.0141 (2)
O3 −0.17320 (17) 0.86870 (17) 0.50573 (10) 0.0134 (2)
O4 0.16868 (17) 0.63230 (18) 0.47583 (10) 0.0132 (2)
C1 −0.2479 (3) 0.7880 (2) 0.99672 (15) 0.0146 (3)
H1A −0.3880 0.8073 0.9679 0.018*
C2 −0.2071 (3) 0.7889 (3) 1.12660 (15) 0.0168 (3)
H3A −0.3203 0.8111 1.1850 0.020*
C3 0.0042 (3) 0.7564 (2) 1.17064 (15) 0.0161 (3)
H2A 0.0305 0.7567 1.2584 0.019*
C4 0.1753 (3) 0.7237 (2) 1.08507 (15) 0.0148 (3)
H11A 0.3160 0.7015 1.1143 0.018*
C5 0.1306 (2) 0.7250 (2) 0.95493 (14) 0.0119 (3)
C6 −0.0780 (2) 0.7579 (2) 0.90792 (14) 0.0122 (3)
C7 −0.1088 (2) 0.7641 (2) 0.77180 (14) 0.0120 (3)
H7A −0.2480 0.7893 0.7385 0.014*
C8 0.0600 (2) 0.7342 (2) 0.68973 (14) 0.0109 (3)
C9 0.2798 (2) 0.6861 (2) 0.74172 (14) 0.0113 (3)
C10 0.0171 (2) 0.7468 (2) 0.54635 (14) 0.0105 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.00736 (13) 0.01189 (14) 0.01013 (13) −0.00175 (9) 0.00122 (8) −0.00152 (9)
O1 0.0106 (5) 0.0164 (5) 0.0101 (5) −0.0041 (4) 0.0009 (4) −0.0028 (4)
O1W 0.0105 (5) 0.0139 (5) 0.0143 (5) −0.0036 (4) 0.0005 (4) −0.0016 (4)
O2 0.0099 (5) 0.0185 (5) 0.0133 (5) −0.0048 (4) 0.0021 (4) −0.0041 (4)
O3 0.0093 (5) 0.0143 (5) 0.0138 (5) −0.0018 (4) −0.0009 (4) −0.0012 (4)
O4 0.0091 (5) 0.0168 (5) 0.0116 (5) −0.0026 (4) 0.0013 (4) −0.0032 (4)
C1 0.0139 (7) 0.0135 (7) 0.0155 (7) −0.0046 (6) 0.0028 (6) −0.0014 (6)
C2 0.0204 (8) 0.0135 (7) 0.0147 (7) −0.0051 (6) 0.0069 (6) −0.0015 (6)
C3 0.0247 (8) 0.0122 (7) 0.0098 (7) −0.0059 (6) 0.0016 (6) −0.0012 (5)
C4 0.0166 (7) 0.0133 (7) 0.0129 (7) −0.0043 (6) −0.0009 (6) −0.0014 (6)
C5 0.0129 (7) 0.0092 (6) 0.0117 (7) −0.0024 (5) 0.0034 (5) −0.0017 (5)
C6 0.0133 (7) 0.0095 (6) 0.0129 (7) −0.0036 (5) 0.0020 (5) −0.0008 (5)
C7 0.0110 (7) 0.0108 (7) 0.0135 (7) −0.0037 (5) −0.0002 (5) −0.0008 (5)
C8 0.0105 (7) 0.0100 (6) 0.0113 (6) −0.0032 (5) 0.0004 (5) −0.0016 (5)
C9 0.0123 (7) 0.0096 (6) 0.0105 (6) −0.0026 (5) 0.0004 (5) −0.0015 (5)
C10 0.0097 (6) 0.0108 (6) 0.0120 (7) −0.0051 (5) 0.0006 (5) −0.0009 (5)

Geometric parameters (Å, °)

Zn1—O4 2.0122 (12) C1—C6 1.406 (2)
Zn1—O4i 2.0122 (12) C1—H1A 0.9300
Zn1—O1Wi 2.0918 (12) C2—C3 1.398 (2)
Zn1—O1W 2.0918 (12) C2—H3A 0.9300
Zn1—O2 2.1548 (12) C3—C4 1.388 (2)
Zn1—O2i 2.1548 (12) C3—H2A 0.9300
O1—C9 1.3623 (18) C4—C5 1.386 (2)
O1—C5 1.3801 (18) C4—H11A 0.9300
O1W—H1 0.8200 C5—C6 1.391 (2)
O1W—H2 0.9269 C6—C7 1.426 (2)
O2—C9 1.2241 (18) C7—C8 1.356 (2)
O3—C10 1.2501 (19) C7—H7A 0.9300
O4—C10 1.2617 (19) C8—C9 1.454 (2)
C1—C2 1.380 (2) C8—C10 1.509 (2)
O4—Zn1—O4i 180.0 C3—C2—H3A 119.9
O4—Zn1—O1Wi 88.05 (5) C4—C3—C2 120.84 (15)
O4i—Zn1—O1Wi 91.95 (5) C4—C3—H2A 119.6
O4—Zn1—O1W 91.95 (5) C2—C3—H2A 119.6
O4i—Zn1—O1W 88.05 (5) C5—C4—C3 118.17 (15)
O1Wi—Zn1—O1W 180.00 (3) C5—C4—H11A 120.9
O4—Zn1—O2 87.20 (5) C3—C4—H11A 120.9
O4i—Zn1—O2 92.80 (5) O1—C5—C4 117.34 (14)
O1Wi—Zn1—O2 90.89 (5) O1—C5—C6 120.25 (13)
O1W—Zn1—O2 89.11 (5) C4—C5—C6 122.41 (14)
O4—Zn1—O2i 92.80 (5) C5—C6—C1 118.34 (14)
O4i—Zn1—O2i 87.20 (5) C5—C6—C7 118.03 (14)
O1Wi—Zn1—O2i 89.11 (5) C1—C6—C7 123.62 (14)
O1W—Zn1—O2i 90.89 (5) C8—C7—C6 121.59 (14)
O2—Zn1—O2i 180.000 (1) C8—C7—H7A 119.2
C9—O1—C5 122.65 (12) C6—C7—H7A 119.2
Zn1—O1W—H1 109.5 C7—C8—C9 119.36 (14)
Zn1—O1W—H2 110.7 C7—C8—C10 119.39 (13)
H1—O1W—H3 99.9 C9—C8—C10 121.24 (13)
C9—O2—Zn1 122.37 (10) O2—C9—O1 114.78 (13)
C10—O4—Zn1 131.42 (10) O2—C9—C8 127.30 (14)
C2—C1—C6 120.10 (15) O1—C9—C8 117.92 (13)
C2—C1—H1A 119.9 O3—C10—O4 124.05 (14)
C6—C1—H1A 119.9 O3—C10—C8 116.41 (13)
C1—C2—C3 120.13 (15) O4—C10—C8 119.51 (13)
C1—C2—H3A 119.9

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1···O3ii 0.82 1.88 2.6950 (17) 179.
O1W—H2···O3iii 0.93 1.83 2.7473 (19) 168.

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2633).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Chu, W. J., Yao, H. C., Ma, H. C., He, Y., Fan, Y. T. & Hou, H. W. (2010). J Coord. Chem. 63, 3734–3742.
  5. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050865/dn2633sup1.cif

e-67-00m69-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050865/dn2633Isup2.hkl

e-67-00m69-Isup2.hkl (89KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES