Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 8;67(Pt 1):m52–m53. doi: 10.1107/S1600536810050725

Di-μ-chlorido-bis­{[2-(benzyl­imino­meth­yl)pyridine-κ2 N,N′]chloridomercury(II)} dichloridomercury(II)

Young-Inn Kim a, Young-Kwang Song a, Seong-Jae Yun b, In-Chan Kim b, Sung Kwon Kang c,*
PMCID: PMC3050237  PMID: 21522571

Abstract

The HgII ion in the title centrosymmetric dinuclear complex, [Hg2Cl4(C13H12N2)2]·[HgCl2], adopts a distorted square-pyramidal geometry, being coordinated by the bis-chelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg—Cl bonds [2.8428 (11) Å] is significantly longer than the other [2.5327 (10) Å]. In the crystal, there are weak π–π inter­actions [centroid–centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units. The HgCl2 adduct molecule is located on an inversion centre and has an Hg—Cl bond length of 2.2875 (11) Å.

Related literature

For general background to luminescent mercury compounds, see: Elena et al. (2006); Durantaye et al. (2006); Fan et al. (2009); He et al. (2008). For syntheses and structures of Hg(II) complexes, see: Kim & Kang (2010); Kim et al. (2010).graphic file with name e-67-00m52-scheme1.jpg

Experimental

Crystal data

  • [Hg2Cl4(C13H12N2)2]·[HgCl2]

  • M r = 1206.96

  • Monoclinic, Inline graphic

  • a = 10.1329 (2) Å

  • b = 8.1141 (1) Å

  • c = 19.0591 (2) Å

  • β = 92.939 (1)°

  • V = 1564.97 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.22 mm−1

  • T = 295 K

  • 0.17 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.104, T max = 0.158

  • 16269 measured reflections

  • 3892 independent reflections

  • 3279 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.055

  • S = 1.04

  • 3892 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.18 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050725/jh2236sup1.cif

e-67-00m52-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050725/jh2236Isup2.hkl

e-67-00m52-Isup2.hkl (186.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Hg1—N8 2.347 (4)
Hg1—N1 2.373 (3)
Hg1—Cl1 2.4338 (12)
N8—Hg1—N1 70.74 (12)
N8—Hg1—Cl1 113.97 (9)
N1—Hg1—Cl1 106.32 (9)
N8—Hg1—Cl2 95.92 (9)
N1—Hg1—Cl2 138.01 (8)
Cl1—Hg1—Cl2 115.34 (4)
N8—Hg1—Cl2i 142.19 (9)
N1—Hg1—Cl2i 83.87 (8)
Cl1—Hg1—Cl2i 99.58 (4)
Cl2—Hg1—Cl2i 84.37 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science and Technology (No. 2010–0017080).

supplementary crystallographic information

Comment

Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). In a previous report (Kim & Kang, 2010), we presented a structure of white Hg(II) complex with benzyl(2-pyridylmethylene)amine(bpma), (bpma)HgCl2, concerning its luminescence behavior (Kim et al., 2010; He et al., 2008). The reported white crystals were obtained after recrystallization from methanol solution in a day. However, we could find another yellow crystals in 3–4 days in the same solution. Herein, we report the structure of separated yellow crystals, [(bpma)HgCl2]2 HgCl2.

In (I), Fig. 1, the Hg1II ion is coordinated by two N atoms of heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. The angles around Hg1 atoms are in the range of 70.74 (12) – 142.19 (9)°, suggesting the coordination geometry around the Hg1 atom is described as a distorted square pyrdmid with an apical position of Cl1 atom. One of the bridging Hg1—Cl bonds (2.843 (1) Å) is significantly longer than the other (2.533 (1) Å). The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and form a dihedral angel of 81.21 (11)°. In the crystal structure, there are weak π-π interactions [centroid-centroid distance = 3.630 (3) Å] between the aromatic rings of the discrete units.

Experimental

Benzyl(2-pyridylmethylene)amine (bpma) was synthesized from the reaction of 2-pyridinecarboxylaldehyde and benzylamine. And bpma reacted with mercury dichloride in methanol to yield the titled complex. The yellow crystals were separated from white crystals in 3–4 days from methanol solution. The detailed synthetic method was previously reported (Kim & Kang, 2010).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks were located at 0.79 and 0.63 Å, respectively, from the Hg1 atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids [symmetry code: (i) -x, -y + 1, -z; (ii) -x, -y + 2, -z].

Crystal data

[Hg2Cl4(C13H12N2)2]·[HgCl2] F(000) = 1100
Mr = 1206.96 Dx = 2.561 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5840 reflections
a = 10.1329 (2) Å θ = 2.2–28.0°
b = 8.1141 (1) Å µ = 15.22 mm1
c = 19.0591 (2) Å T = 295 K
β = 92.939 (1)° Block, yellow
V = 1564.97 (4) Å3 0.17 × 0.13 × 0.12 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3279 reflections with I > 2σ(I)
φ and ω scans Rint = 0.027
Absorption correction: multi-scan (SADABS; Bruker, 2002) θmax = 28.3°, θmin = 2.1°
Tmin = 0.104, Tmax = 0.158 h = −13→10
16269 measured reflections k = −10→10
3892 independent reflections l = −25→25

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.025P)2 + 1.1429P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 1.21 e Å3
3892 reflections Δρmin = −1.18 e Å3
178 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.092853 (16) 0.45122 (2) 0.092463 (9) 0.04770 (6)
Cl1 0.02059 (13) 0.19456 (15) 0.14429 (6) 0.0625 (3)
Cl2 −0.09059 (10) 0.64548 (14) 0.05096 (6) 0.0503 (3)
N1 0.3257 (3) 0.4310 (4) 0.08642 (17) 0.0395 (7)
C2 0.3903 (5) 0.3289 (6) 0.0459 (2) 0.0515 (11)
H2 0.3421 0.2636 0.0137 0.062*
C3 0.5252 (5) 0.3161 (7) 0.0498 (3) 0.0637 (14)
H3 0.5671 0.2431 0.0206 0.076*
C4 0.5977 (5) 0.4107 (8) 0.0965 (3) 0.0700 (17)
H4 0.6895 0.4035 0.0997 0.084*
C5 0.5319 (5) 0.5178 (7) 0.1392 (3) 0.0623 (14)
H5 0.5789 0.5839 0.1716 0.075*
C6 0.3952 (4) 0.5253 (5) 0.1331 (2) 0.0422 (9)
C7 0.3196 (4) 0.6329 (5) 0.1779 (2) 0.0457 (10)
H7 0.3644 0.7015 0.2101 0.055*
N8 0.1950 (4) 0.6345 (4) 0.17363 (18) 0.0451 (8)
C9 0.1223 (6) 0.7461 (6) 0.2188 (3) 0.0658 (14)
H9A 0.0734 0.8259 0.1899 0.079*
H9B 0.1844 0.8057 0.2498 0.079*
C10 0.0277 (4) 0.6506 (6) 0.2621 (2) 0.0495 (10)
C11 −0.1060 (5) 0.6560 (8) 0.2474 (3) 0.0740 (16)
H11 −0.1404 0.7177 0.2096 0.089*
C12 −0.1907 (5) 0.5681 (11) 0.2896 (3) 0.090 (2)
H12 −0.2816 0.5723 0.28 0.108*
C13 −0.1409 (6) 0.4767 (8) 0.3446 (3) 0.0747 (17)
H13 −0.1975 0.4182 0.3724 0.09*
C14 −0.0083 (6) 0.4711 (6) 0.3589 (3) 0.0625 (13)
H14 0.0259 0.4081 0.3963 0.075*
C15 0.0756 (5) 0.5576 (5) 0.3184 (3) 0.0531 (11)
H15 0.1662 0.5537 0.329 0.064*
Hg2 0 1 0 0.04776 (7)
Cl3 0.21296 (11) 0.91503 (18) 0.02343 (7) 0.0664 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.03772 (9) 0.05296 (12) 0.05168 (11) −0.00140 (7) −0.00498 (7) 0.00188 (7)
Cl1 0.0824 (8) 0.0537 (7) 0.0518 (6) −0.0145 (6) 0.0082 (6) 0.0031 (5)
Cl2 0.0455 (6) 0.0592 (7) 0.0456 (6) 0.0081 (5) −0.0034 (4) 0.0008 (5)
N1 0.0362 (17) 0.0416 (19) 0.0408 (18) −0.0014 (14) 0.0015 (14) 0.0033 (15)
C2 0.058 (3) 0.047 (3) 0.050 (3) 0.005 (2) 0.009 (2) 0.001 (2)
C3 0.063 (3) 0.062 (3) 0.068 (3) 0.018 (3) 0.024 (3) 0.020 (3)
C4 0.037 (2) 0.083 (4) 0.091 (4) 0.011 (3) 0.014 (3) 0.040 (3)
C5 0.046 (3) 0.069 (3) 0.071 (3) −0.014 (2) −0.012 (2) 0.021 (3)
C6 0.037 (2) 0.044 (2) 0.045 (2) −0.0056 (16) −0.0036 (17) 0.0101 (18)
C7 0.057 (3) 0.041 (2) 0.039 (2) −0.0116 (19) −0.0028 (18) 0.0030 (17)
N8 0.058 (2) 0.0355 (19) 0.0425 (19) 0.0052 (15) 0.0057 (16) −0.0015 (14)
C9 0.094 (4) 0.043 (3) 0.063 (3) 0.011 (3) 0.020 (3) −0.008 (2)
C10 0.056 (3) 0.045 (2) 0.048 (2) 0.010 (2) 0.007 (2) −0.0124 (19)
C11 0.065 (3) 0.101 (4) 0.054 (3) 0.025 (3) −0.008 (3) −0.008 (3)
C12 0.043 (3) 0.154 (7) 0.071 (4) −0.004 (3) 0.000 (3) −0.034 (4)
C13 0.073 (4) 0.096 (5) 0.056 (3) −0.025 (3) 0.013 (3) −0.019 (3)
C14 0.073 (4) 0.055 (3) 0.060 (3) −0.001 (2) 0.006 (3) −0.006 (2)
C15 0.049 (3) 0.048 (3) 0.063 (3) 0.005 (2) 0.002 (2) −0.009 (2)
Hg2 0.03219 (11) 0.05415 (15) 0.05669 (15) 0.00592 (9) −0.00021 (10) 0.00053 (11)
Cl3 0.0374 (6) 0.0813 (9) 0.0799 (9) 0.0158 (6) −0.0035 (5) 0.0004 (7)

Geometric parameters (Å, °)

Hg1—N8 2.347 (4) C7—H7 0.93
Hg1—N1 2.373 (3) N8—C9 1.473 (5)
Hg1—Cl1 2.4338 (12) C9—C10 1.510 (7)
Hg1—Cl2 2.5327 (10) C9—H9A 0.97
Hg1—Cl2i 2.8428 (11) C9—H9B 0.97
Cl2—Hg1i 2.8428 (11) C10—C11 1.370 (7)
N1—C2 1.328 (5) C10—C15 1.379 (6)
N1—C6 1.345 (5) C11—C12 1.402 (9)
C2—C3 1.369 (6) C11—H11 0.93
C2—H2 0.93 C12—C13 1.360 (10)
C3—C4 1.363 (8) C12—H12 0.93
C3—H3 0.93 C13—C14 1.359 (8)
C4—C5 1.385 (8) C13—H13 0.93
C4—H4 0.93 C14—C15 1.371 (7)
C5—C6 1.385 (6) C14—H14 0.93
C5—H5 0.93 C15—H15 0.93
C6—C7 1.465 (6) Hg2—Cl3ii 2.2875 (11)
C7—N8 1.262 (5) Hg2—Cl3 2.2875 (11)
N8—Hg1—N1 70.74 (12) N8—C7—H7 119.3
N8—Hg1—Cl1 113.97 (9) C6—C7—H7 119.3
N1—Hg1—Cl1 106.32 (9) C7—N8—C9 119.8 (4)
N8—Hg1—Cl2 95.92 (9) C7—N8—Hg1 116.2 (3)
N1—Hg1—Cl2 138.01 (8) C9—N8—Hg1 123.9 (3)
Cl1—Hg1—Cl2 115.34 (4) N8—C9—C10 110.8 (4)
N8—Hg1—Cl2i 142.19 (9) N8—C9—H9A 109.5
N1—Hg1—Cl2i 83.87 (8) C10—C9—H9A 109.5
Cl1—Hg1—Cl2i 99.58 (4) N8—C9—H9B 109.5
Cl2—Hg1—Cl2i 84.37 (3) C10—C9—H9B 109.5
Hg1—Cl2—Hg1i 95.63 (3) H9A—C9—H9B 108.1
C2—N1—C6 118.8 (4) C11—C10—C15 118.8 (5)
C2—N1—Hg1 126.3 (3) C11—C10—C9 121.4 (5)
C6—N1—Hg1 114.7 (3) C15—C10—C9 119.8 (4)
N1—C2—C3 122.5 (5) C10—C11—C12 119.6 (5)
N1—C2—H2 118.8 C10—C11—H11 120.2
C3—C2—H2 118.8 C12—C11—H11 120.2
C4—C3—C2 119.8 (5) C13—C12—C11 120.4 (5)
C4—C3—H3 120.1 C13—C12—H12 119.8
C2—C3—H3 120.1 C11—C12—H12 119.8
C3—C4—C5 118.5 (5) C14—C13—C12 119.8 (6)
C3—C4—H4 120.7 C14—C13—H13 120.1
C5—C4—H4 120.7 C12—C13—H13 120.1
C4—C5—C6 119.2 (5) C13—C14—C15 120.4 (5)
C4—C5—H5 120.4 C13—C14—H14 119.8
C6—C5—H5 120.4 C15—C14—H14 119.8
N1—C6—C5 121.2 (4) C14—C15—C10 120.9 (5)
N1—C6—C7 116.9 (4) C14—C15—H15 119.5
C5—C6—C7 121.8 (4) C10—C15—H15 119.5
N8—C7—C6 121.4 (4) Cl3ii—Hg2—Cl3 180

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2236).

References

  1. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Durantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675–5682. [DOI] [PubMed]
  3. Elena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464–1470.
  4. Fan, R., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6943. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. He, G., Zhao, Y., He, C., Liu, Y. & Duan, C. (2008). Inorg. Chem. 47, 5169–5176. [DOI] [PubMed]
  8. Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251. [DOI] [PMC free article] [PubMed]
  9. Kim, Y.-I., Seo, H.-J., Kim, J.-H., Lee, Y.-S. & Kang, S. K. (2010). Acta Cryst. E66, m124. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050725/jh2236sup1.cif

e-67-00m52-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050725/jh2236Isup2.hkl

e-67-00m52-Isup2.hkl (186.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES