Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 18;67(Pt 1):o175–o176. doi: 10.1107/S1600536810052463

1-[2-(4-Nitro­phen­yl)-5-(5-phenyl-1,2-oxazol-3-yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one monohydrate

Margarita Gutierrez a, Gabriel Vallejos b, Carlos Fernández a, Alejandro Cárdenas c, Iván Brito d,*
PMCID: PMC3050245  PMID: 21522681

Abstract

The title compound, C28H24N4O4·H2O, crystallizes with two organic mol­ecules and two solvent water mol­ecules in the asymmetric unit. The most obvious difference between the mol­ecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2)/56.4 (2) and 33.3 (2)/11.0 (2)°, respectively]. Another important difference is observed in the rotation of the nitro group with respect to the phenyl groups [3.5 (6) and 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitro­phenyl fragment. In the crystal, mol­ecules are linked into centrosymmetric R 4 2(8) and R 4 4(20) motifs by O—H⋯O and N—H⋯O inter­actions.

Related literature

For pharmacological activity of quinoline, see: Shi et al. (2008); Lunniss et al. (2009); He et al. (2005); Eswaran et al. (2010). For the synthesis and medicinal uses of quinolines, see: Kalita et al. (2006); Kouznetsov et al. (2005); Sankaran et al. (2010). For reactions of isoxazoles see: Taldone et al. (2008); Narlawar et al. (2008); Velaparthi et al. (2008); Rizzi et al. (2008); Lautens & Roy (2000); Broggini et al. (2005); Kotera et al. (1970). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-0o175-scheme1.jpg

Experimental

Crystal data

  • C28H24N4O4·H2O

  • M r = 498.53

  • Triclinic, Inline graphic

  • a = 13.516 (8) Å

  • b = 14.193 (6) Å

  • c = 14.987 (11) Å

  • α = 70.151 (10)°

  • β = 79.62 (2)°

  • γ = 69.700 (9)°

  • V = 2530 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.39 × 0.17 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 21159 measured reflections

  • 11596 independent reflections

  • 7891 reflections with I > 2σ(I)

  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.098

  • wR(F 2) = 0.240

  • S = 1.16

  • 11596 reflections

  • 691 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052463/om2389sup1.cif

e-67-0o175-sup1.cif (39.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052463/om2389Isup2.hkl

e-67-0o175-Isup2.hkl (555.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.83 (7) 2.07 (7) 2.904 (5) 173 (6)
O1W—H1WB⋯O4ii 1.03 (8) 1.87 (8) 2.877 (5) 167 (6)
O2W—H2WB⋯O7 0.97 (8) 1.80 (9) 2.754 (5) 165 (8)
N6—H6N⋯O2Wiii 0.83 (4) 2.13 (4) 2.958 (5) 179 (5)
O2W—H2WA⋯O1W 0.80 (6) 2.09 (6) 2.883 (6) 175 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

LAS thanks FONDECYT (project No. 1100481) and PBCT ADI-38. We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.

supplementary crystallographic information

Comment

Nitrogen containing heterocycles are indispensable structural units for medicinal chemists (Sankaran et al., 2010). Compounds possessing the quinoline system have wide applications as drugs and pharmaceuticals and also occur as structural frameworks in natural products (Kalita et al., 2006). They also have several pharmacological activities such as anti-breast cancer (Shi et al., 2008), selective PDE4 inhibition (Lunniss et al., 2009), immuno modulatory (He et al., 2005), antimycobacterial agents (Eswaran et al., 2010), among others.

Quinoline and derivatives represent the major class of heterocycles, and a number of preparations have been known since the late 1800's. The quinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. Several syntheses of quinolines are known, but due to their importance, the development of new synthetic approaches remains an active research area (Kouznetsov et al., 2005).

The isoxazoles form a relevant group of biologically active compounds with a wide range of applications, including Hsp90 super chaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008), Mycobacterium tuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008) and neuronal nicotinic acetylcholine receptor agonist effect (Rizzi et al., 2008).

A considerable number of methods to synthesize substituted isoxazoles have been published including approaches based on intramolecular cycloadditions, condensations, and intramolecular cyclizations of amino acids. These methods sometimes suffer in their versatility, convenience and yield (Lautens & Roy, 2000). The isoxazole ring can be synthesized by 1,3-dipolar cycloaddition reactions between nitrile oxide and alkyne, and that reaction may be catalyzed by copper(II). Cycloaddition reactions are among the most useful reactions in synthetic and mechanistic organic chemistry (Broggini et al., 2005).

Isoxazoles have a rich chemistry because of their easy reductive cleavage and susceptibility to ring transformations (Kotera et al., 1970). Depending on the substitution patterns, isoxazoles can be used as reagents for the imino-Diels-Alder condensation between anilines, aldehydes and electron-rich alkenes to generate tetrahydroquinolines with different selected substitution patterns. Due to this fact, the combination of the two heterocycles rings into a new chemical entityis of interest as no examples are known on chemical literature to date. Many molecules widely used today consist of fusions of rings; an example is the case of penicillins, where in the isoxazole ring incorporation allowed obtaining stable derivatives catalyzed degradation by gastric acid level (flucloxacillin and cloxacillin).

We report here the crystal structure of a novel synthetic derivative cis quinoline-isoxazole by imino Diels-Alder cycloaddition, Fig. 2. The title compound, C28H24N4O4.H2O, crystallizes with two organic molecules and two solvent water molecule in the asymmetric unit., Fig. 1. The most obvious difference between the molecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)°] respectively. Anther important difference is observed in the rotation of the nitro group with respect to the phenyl group [3.5 (6)°; 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitrophenyl fragment. In the crystal the molecules are linked into centrosymmetric R24(8) and R44(20) motifs by O—H···O and N—H···O interactions, (Bernstein et al., 1995). There are six intramolecular hydrogen bonds which stabilized the molecular conformation in both molecules, Table 1.

Experimental

A mixture of 3-(3-aminophenyl)-5-phenylisoxazole (2.8 mmol) 3 and 4-nitrobenzaldehyde (3.4 mmol) 1 in anhydrous CH3CN (15 ml) was stirred at room temperature for 30 min. BiCl3 (20 mol%) was added. Over a period of 20 min, a solution the N-vinyl-2-pyrrolidone (NVP) (5.5 mmol) 4 in CH3CN (10 ml) was added dropwise. The resulting mixture was stirred for 10–14 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water (30 ml) and extracted with ethyl acetate (3× 15 ml). The organic layer was separated and dried (Na2SO4), concentrated in vacuum and the resulting product was purified by column chromatography (silica gel) using PE and EtOAc mixtures. Results for derivatives trans and cis quinoline-isoxazole 5 and the title compound, see Figure 2. Solid crystalline mp 215–217 °C. The crystals were obtaned by slow evaporation of a solution of the title compound in a THF:H2O (1:1v/v) mixture. RMN-1H(CDCl3), 400 MHz, δ): 8.14 (2H, d, J = 4.0); 7.77 (1H, d, J= 8.0); 7.59 (2H, d, J = 8.0); 7.42(2H, d, J = 8.0); 7.17 (1H, t, J = 8.0); 6.93 (1H, s); 6.86 (2H, dd, J = 8.0 and 2.0); 6.80 (1H, d, J = 8.0); 6.65 (1H, s); 4.59 (1H, d, J = 12.0 and 1.0); 4.51 (1H, br.s); 4.41 (1H, s); 2.93 (2H, m); 1.98 (2H, m); 1.71 (2H, m), 1.57 (2H, m). RMN-13H(CDCl3), 400 MHz,?d): 174.58, 168.95, 162.92, 149.97,147.26, 146.71, 130.03, 129.61, 128.87, 128.54, 127.13, 127.08, 127.08, 125.82,123.74, 117.35, 116.58, 100.24, 54.76, 46.93, 42.32, 34.92, 30.46, 17.25. MS m/z (EI): 480. Anal. Calcd. for C28H24N4O4: C, 69.99;H,5.03; N, 11.66. Found: C, 69.92; H, 5.05; N, 11.79.

Refinement

The positions of the O1W, O2W, N2 and N6 H atoms were refined freely along with isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

Fig. 2.

Fig. 2.

Synthesis scheme of the title compound.

Crystal data

C28H24N4O4·H2O Z = 4
Mr = 498.53 F(000) = 1048
Triclinic, P1 Dx = 1.309 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 13.516 (8) Å Cell parameters from 7466 reflections
b = 14.193 (6) Å θ = 1.6–27.7°
c = 14.987 (11) Å µ = 0.09 mm1
α = 70.151 (10)° T = 293 K
β = 79.62 (2)° Prism, yellow
γ = 69.700 (9)° 0.39 × 0.17 × 0.12 mm
V = 2530 (3) Å3

Data collection

Nonius KappaCCD diffractometer 7891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.090
graphite θmax = 27.7°, θmin = 1.6°
φ and ω scans with κ offsets h = 0→17
21159 measured reflections k = −16→18
11596 independent reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0836P)2 + 2.2406P] where P = (Fo2 + 2Fc2)/3
11596 reflections (Δ/σ)max < 0.001
691 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1893 (4) 0.5828 (4) 0.0899 (4) 0.151 (2)
O2 0.2061 (4) 0.4662 (4) 0.0265 (4) 0.1459 (19)
O3 1.18855 (17) 0.0338 (2) 0.28972 (19) 0.0595 (7)
O4 0.9406 (2) 0.1193 (2) 0.07318 (17) 0.0621 (7)
O5 −0.4045 (3) 0.5670 (3) 0.1648 (3) 0.1073 (13)
O6 −0.3530 (3) 0.7007 (3) 0.0855 (3) 0.0982 (11)
O7 0.1570 (2) 0.12322 (19) 0.5951 (2) 0.0675 (7)
O8 0.49271 (17) 0.14888 (18) 0.61723 (17) 0.0540 (6)
N1 0.2355 (3) 0.4985 (3) 0.0794 (3) 0.0850 (11)
N2 0.6331 (2) 0.2718 (2) 0.3431 (2) 0.0473 (7)
H2N 0.589 (3) 0.264 (3) 0.388 (3) 0.077 (14)*
N3 1.1088 (2) 0.1043 (2) 0.3322 (2) 0.0582 (8)
N4 0.90577 (19) 0.22917 (19) 0.16467 (17) 0.0405 (6)
N5 −0.3424 (3) 0.6164 (3) 0.1471 (3) 0.0681 (9)
N6 0.0703 (2) 0.5391 (2) 0.3501 (2) 0.0548 (8)
H6N 0.039 (3) 0.603 (3) 0.331 (3) 0.060 (11)*
N7 0.2327 (2) 0.21999 (18) 0.46358 (18) 0.0399 (6)
N8 0.4633 (2) 0.2353 (2) 0.5345 (2) 0.0511 (7)
C1 0.3325 (3) 0.4336 (3) 0.1285 (3) 0.0596 (9)
C2 0.3650 (3) 0.4683 (3) 0.1888 (3) 0.0616 (10)
H2 0.3254 0.5318 0.2002 0.074*
C3 0.4581 (3) 0.4079 (3) 0.2332 (3) 0.0538 (9)
H3 0.4811 0.4315 0.2742 0.065*
C4 0.5168 (2) 0.3135 (3) 0.2172 (2) 0.0447 (7)
C5 0.4787 (3) 0.2782 (4) 0.1591 (3) 0.0767 (13)
H5 0.5159 0.2128 0.1505 0.092*
C6 0.3876 (4) 0.3372 (4) 0.1137 (4) 0.0863 (15)
H6 0.3633 0.3129 0.0741 0.104*
C7 0.6221 (2) 0.2472 (3) 0.2599 (2) 0.0445 (7)
H7 0.6272 0.1726 0.2780 0.053*
C8 0.7137 (2) 0.2665 (3) 0.1879 (2) 0.0460 (8)
H8A 0.7118 0.3392 0.1728 0.055*
H8B 0.7061 0.2548 0.1297 0.055*
C9 0.8203 (2) 0.1933 (2) 0.2269 (2) 0.0382 (7)
H9 0.8288 0.1225 0.2253 0.046*
C10 0.8255 (2) 0.1874 (2) 0.3297 (2) 0.0352 (6)
C11 0.7322 (2) 0.2302 (2) 0.3808 (2) 0.0374 (7)
C12 0.7374 (3) 0.2340 (2) 0.4721 (2) 0.0438 (7)
H12 0.6758 0.2628 0.5055 0.053*
C13 0.8327 (3) 0.1955 (2) 0.5127 (2) 0.0464 (8)
H13 0.8354 0.2013 0.5721 0.056*
C14 0.9243 (3) 0.1482 (2) 0.4654 (2) 0.0452 (7)
H14 0.9881 0.1197 0.4941 0.054*
C15 0.9209 (2) 0.1434 (2) 0.3746 (2) 0.0380 (7)
C16 1.0207 (2) 0.0866 (2) 0.3289 (2) 0.0402 (7)
C17 1.0388 (2) 0.0063 (2) 0.2874 (2) 0.0407 (7)
H17 0.9888 −0.0202 0.2779 0.049*
C18 1.1431 (2) −0.0240 (2) 0.2643 (2) 0.0429 (7)
C19 1.2137 (2) −0.1041 (2) 0.2210 (2) 0.0470 (8)
C20 1.1780 (3) −0.1278 (3) 0.1532 (3) 0.0616 (10)
H20 1.1094 −0.0925 0.1346 0.074*
C21 1.2446 (4) −0.2045 (3) 0.1127 (3) 0.0763 (12)
H21 1.2205 −0.2210 0.0673 0.092*
C22 1.3470 (4) −0.2560 (3) 0.1400 (4) 0.0783 (13)
H22 1.3920 −0.3065 0.1123 0.094*
C23 1.3819 (3) −0.2328 (3) 0.2078 (3) 0.0695 (12)
H23 1.4508 −0.2678 0.2259 0.083*
C24 1.3166 (3) −0.1586 (3) 0.2491 (3) 0.0558 (9)
H24 1.3407 −0.1443 0.2959 0.067*
C25 0.9335 (3) 0.3197 (3) 0.1655 (3) 0.0564 (9)
H25A 0.9496 0.3119 0.2287 0.068*
H25B 0.8764 0.3847 0.1444 0.068*
C26 1.0301 (4) 0.3184 (4) 0.0966 (4) 0.0884 (15)
H26A 1.0248 0.3888 0.0546 0.106*
H26B 1.0934 0.2921 0.1308 0.106*
C27 1.0343 (3) 0.2479 (4) 0.0412 (3) 0.0712 (12)
H27A 1.1048 0.1988 0.0386 0.085*
H27B 1.0150 0.2886 −0.0232 0.085*
C28 0.9561 (3) 0.1901 (3) 0.0928 (2) 0.0475 (8)
C29 −0.2518 (2) 0.5753 (3) 0.2061 (2) 0.0485 (8)
C30 −0.2560 (3) 0.5056 (3) 0.2951 (3) 0.0528 (9)
H30 −0.3141 0.4813 0.3177 0.063*
C31 −0.1722 (3) 0.4724 (2) 0.3505 (2) 0.0483 (8)
H31 −0.1750 0.4265 0.4117 0.058*
C32 −0.0837 (2) 0.5060 (2) 0.3171 (2) 0.0404 (7)
C33 −0.0809 (3) 0.5730 (3) 0.2250 (3) 0.0583 (9)
H33 −0.0210 0.5939 0.2002 0.070*
C34 −0.1656 (3) 0.6091 (3) 0.1698 (3) 0.0630 (10)
H34 −0.1640 0.6556 0.1088 0.076*
C35 0.0048 (2) 0.4706 (2) 0.3819 (2) 0.0433 (7)
H35 −0.0272 0.4730 0.4455 0.052*
C36 0.0762 (2) 0.3586 (2) 0.3899 (2) 0.0422 (7)
H36A 0.1121 0.3552 0.3284 0.051*
H36B 0.0338 0.3111 0.4095 0.051*
C37 0.1584 (2) 0.3241 (2) 0.4628 (2) 0.0368 (7)
H37 0.1205 0.3172 0.5258 0.044*
C38 0.2140 (2) 0.4068 (2) 0.4446 (2) 0.0340 (6)
C39 0.1663 (3) 0.5109 (2) 0.3872 (2) 0.0411 (7)
C40 0.2179 (3) 0.5872 (2) 0.3665 (2) 0.0515 (9)
H40 0.1864 0.6553 0.3287 0.062*
C41 0.3136 (3) 0.5631 (3) 0.4009 (3) 0.0518 (8)
H41 0.3474 0.6143 0.3851 0.062*
C42 0.3605 (3) 0.4633 (3) 0.4591 (2) 0.0472 (8)
H42 0.4249 0.4477 0.4833 0.057*
C43 0.3107 (2) 0.3856 (2) 0.4816 (2) 0.0375 (7)
C44 0.3630 (2) 0.2837 (2) 0.5516 (2) 0.0379 (7)
C45 0.3240 (2) 0.2333 (2) 0.6422 (2) 0.0426 (7)
H45 0.2557 0.2527 0.6699 0.051*
C46 0.4071 (3) 0.1506 (2) 0.6807 (2) 0.0443 (7)
C47 0.4233 (3) 0.0707 (3) 0.7737 (3) 0.0532 (9)
C48 0.3381 (4) 0.0623 (4) 0.8380 (3) 0.0809 (13)
H48 0.2702 0.1046 0.8209 0.097*
C49 0.3530 (5) −0.0096 (5) 0.9289 (4) 0.0997 (17)
H49 0.2951 −0.0155 0.9720 0.120*
C50 0.4522 (5) −0.0710 (4) 0.9544 (4) 0.0913 (16)
H50 0.4618 −0.1184 1.0151 0.110*
C51 0.5376 (5) −0.0636 (3) 0.8917 (4) 0.0815 (14)
H51 0.6052 −0.1052 0.9098 0.098*
C52 0.5234 (3) 0.0061 (3) 0.8010 (3) 0.0646 (10)
H52 0.5817 0.0097 0.7578 0.077*
C53 0.3095 (3) 0.2023 (3) 0.3841 (3) 0.0539 (9)
H53A 0.3517 0.2498 0.3662 0.065*
H53B 0.2747 0.2113 0.3292 0.065*
C54 0.3765 (4) 0.0892 (3) 0.4239 (3) 0.0801 (13)
H54A 0.3990 0.0543 0.3749 0.096*
H54B 0.4386 0.0859 0.4503 0.096*
C55 0.3063 (3) 0.0394 (3) 0.4998 (3) 0.0656 (11)
H55A 0.3457 −0.0095 0.5539 0.079*
H55B 0.2745 0.0018 0.4759 0.079*
C56 0.2227 (3) 0.1298 (2) 0.5272 (3) 0.0484 (8)
O1W 0.0770 (3) 0.0833 (3) 0.9068 (2) 0.0812 (9)
H1WA 0.034 (5) 0.092 (5) 0.953 (5) 0.13 (2)*
H1WB 0.077 (5) 0.012 (6) 0.904 (5) 0.16 (3)*
O2W 0.0413 (3) 0.2325 (2) 0.7199 (3) 0.1003 (13)
H2WA 0.050 (4) 0.194 (4) 0.773 (4) 0.092 (18)*
H2WB 0.071 (6) 0.191 (6) 0.676 (6) 0.17 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.112 (3) 0.108 (3) 0.223 (6) 0.031 (3) −0.097 (4) −0.061 (3)
O2 0.110 (3) 0.141 (4) 0.199 (5) −0.002 (3) −0.100 (3) −0.059 (4)
O3 0.0358 (12) 0.0650 (15) 0.0817 (18) −0.0172 (11) 0.0031 (12) −0.0290 (14)
O4 0.0702 (17) 0.0703 (17) 0.0508 (15) −0.0192 (13) 0.0074 (12) −0.0327 (13)
O5 0.066 (2) 0.099 (3) 0.153 (4) −0.0306 (19) −0.044 (2) −0.009 (2)
O6 0.094 (2) 0.085 (2) 0.093 (2) −0.0120 (18) −0.047 (2) 0.0057 (19)
O7 0.0827 (19) 0.0509 (14) 0.0628 (17) −0.0323 (13) 0.0064 (15) −0.0031 (12)
O8 0.0400 (12) 0.0549 (14) 0.0518 (14) −0.0061 (10) −0.0069 (11) −0.0043 (11)
N1 0.064 (2) 0.083 (3) 0.102 (3) −0.009 (2) −0.037 (2) −0.018 (2)
N2 0.0372 (15) 0.0636 (17) 0.0402 (15) −0.0123 (13) 0.0027 (13) −0.0208 (13)
N3 0.0425 (16) 0.0625 (18) 0.077 (2) −0.0169 (14) −0.0022 (15) −0.0299 (16)
N4 0.0400 (14) 0.0430 (13) 0.0326 (13) −0.0107 (11) 0.0035 (11) −0.0093 (11)
N5 0.0507 (19) 0.063 (2) 0.078 (2) −0.0022 (16) −0.0216 (17) −0.0137 (18)
N6 0.0608 (19) 0.0260 (13) 0.071 (2) −0.0093 (13) −0.0264 (16) 0.0001 (13)
N7 0.0441 (14) 0.0292 (12) 0.0431 (14) −0.0093 (10) −0.0047 (11) −0.0081 (10)
N8 0.0393 (15) 0.0532 (16) 0.0481 (16) −0.0086 (12) −0.0032 (12) −0.0052 (13)
C1 0.0437 (19) 0.066 (2) 0.068 (2) −0.0122 (17) −0.0178 (18) −0.0163 (19)
C2 0.054 (2) 0.057 (2) 0.068 (3) −0.0062 (17) −0.0077 (19) −0.0221 (19)
C3 0.052 (2) 0.060 (2) 0.054 (2) −0.0148 (17) −0.0061 (16) −0.0252 (17)
C4 0.0364 (16) 0.0546 (19) 0.0473 (18) −0.0152 (14) −0.0011 (14) −0.0204 (15)
C5 0.069 (3) 0.072 (3) 0.098 (3) 0.001 (2) −0.033 (2) −0.046 (2)
C6 0.077 (3) 0.087 (3) 0.112 (4) −0.006 (2) −0.047 (3) −0.050 (3)
C7 0.0393 (17) 0.0489 (17) 0.0470 (18) −0.0125 (14) −0.0029 (14) −0.0178 (14)
C8 0.0408 (17) 0.0587 (19) 0.0368 (17) −0.0098 (15) −0.0060 (13) −0.0163 (15)
C9 0.0369 (16) 0.0419 (15) 0.0348 (16) −0.0123 (12) 0.0016 (12) −0.0121 (12)
C10 0.0404 (16) 0.0344 (14) 0.0307 (15) −0.0147 (12) −0.0011 (12) −0.0069 (11)
C11 0.0413 (16) 0.0367 (14) 0.0335 (15) −0.0160 (12) 0.0009 (12) −0.0073 (12)
C12 0.0503 (19) 0.0446 (16) 0.0335 (16) −0.0141 (14) 0.0039 (14) −0.0121 (13)
C13 0.066 (2) 0.0429 (16) 0.0297 (16) −0.0169 (15) −0.0071 (15) −0.0079 (13)
C14 0.0485 (18) 0.0425 (16) 0.0410 (18) −0.0125 (14) −0.0126 (14) −0.0048 (14)
C15 0.0404 (16) 0.0351 (14) 0.0370 (16) −0.0137 (12) −0.0031 (13) −0.0066 (12)
C16 0.0377 (16) 0.0418 (16) 0.0365 (16) −0.0131 (13) −0.0073 (13) −0.0029 (13)
C17 0.0363 (16) 0.0426 (16) 0.0395 (17) −0.0122 (13) −0.0060 (13) −0.0058 (13)
C18 0.0384 (16) 0.0425 (16) 0.0430 (18) −0.0136 (13) −0.0056 (13) −0.0045 (13)
C19 0.0409 (17) 0.0422 (16) 0.0453 (19) −0.0103 (14) 0.0038 (14) −0.0035 (14)
C20 0.055 (2) 0.062 (2) 0.062 (2) −0.0146 (18) −0.0012 (18) −0.0163 (19)
C21 0.091 (3) 0.072 (3) 0.070 (3) −0.028 (2) 0.009 (2) −0.030 (2)
C22 0.075 (3) 0.057 (2) 0.088 (3) −0.014 (2) 0.025 (3) −0.026 (2)
C23 0.046 (2) 0.058 (2) 0.079 (3) −0.0073 (17) 0.011 (2) −0.007 (2)
C24 0.0414 (18) 0.0536 (19) 0.058 (2) −0.0124 (15) 0.0034 (16) −0.0050 (16)
C25 0.064 (2) 0.0487 (19) 0.054 (2) −0.0239 (17) 0.0065 (17) −0.0111 (16)
C26 0.085 (3) 0.094 (3) 0.092 (3) −0.054 (3) 0.028 (3) −0.026 (3)
C27 0.066 (3) 0.082 (3) 0.055 (2) −0.028 (2) 0.0201 (19) −0.014 (2)
C28 0.0420 (17) 0.0532 (19) 0.0345 (17) −0.0055 (14) −0.0004 (14) −0.0080 (14)
C29 0.0374 (17) 0.0462 (17) 0.053 (2) −0.0043 (14) −0.0078 (15) −0.0109 (15)
C30 0.0391 (18) 0.0516 (19) 0.063 (2) −0.0141 (15) 0.0049 (16) −0.0160 (17)
C31 0.0485 (19) 0.0426 (17) 0.0433 (18) −0.0126 (14) −0.0006 (15) −0.0028 (14)
C32 0.0384 (16) 0.0337 (14) 0.0409 (17) −0.0032 (12) −0.0028 (13) −0.0091 (12)
C33 0.0453 (19) 0.072 (2) 0.047 (2) −0.0236 (17) −0.0020 (16) 0.0013 (17)
C34 0.058 (2) 0.071 (2) 0.041 (2) −0.0227 (19) −0.0103 (17) 0.0115 (17)
C35 0.0453 (18) 0.0355 (15) 0.0422 (17) −0.0048 (13) −0.0077 (14) −0.0083 (13)
C36 0.0415 (17) 0.0330 (14) 0.0496 (19) −0.0109 (12) −0.0063 (14) −0.0084 (13)
C37 0.0369 (15) 0.0288 (13) 0.0393 (16) −0.0077 (11) 0.0008 (12) −0.0080 (12)
C38 0.0372 (15) 0.0289 (13) 0.0346 (15) −0.0093 (11) 0.0011 (12) −0.0107 (11)
C39 0.0509 (18) 0.0309 (14) 0.0405 (17) −0.0116 (13) −0.0046 (14) −0.0098 (12)
C40 0.073 (2) 0.0301 (15) 0.049 (2) −0.0182 (15) −0.0061 (17) −0.0053 (13)
C41 0.066 (2) 0.0447 (18) 0.054 (2) −0.0321 (17) 0.0001 (17) −0.0122 (15)
C42 0.0481 (18) 0.0510 (18) 0.0490 (19) −0.0236 (15) −0.0006 (15) −0.0159 (15)
C43 0.0403 (16) 0.0349 (14) 0.0363 (16) −0.0123 (12) 0.0033 (13) −0.0119 (12)
C44 0.0344 (15) 0.0398 (15) 0.0414 (17) −0.0125 (12) −0.0012 (13) −0.0139 (13)
C45 0.0382 (16) 0.0457 (17) 0.0423 (17) −0.0137 (13) −0.0010 (13) −0.0113 (14)
C46 0.0464 (18) 0.0449 (17) 0.0445 (18) −0.0192 (14) −0.0052 (14) −0.0109 (14)
C47 0.063 (2) 0.0492 (18) 0.049 (2) −0.0230 (17) −0.0108 (17) −0.0072 (15)
C48 0.076 (3) 0.083 (3) 0.064 (3) −0.026 (2) 0.003 (2) 0.001 (2)
C49 0.111 (4) 0.105 (4) 0.063 (3) −0.044 (3) 0.009 (3) 0.003 (3)
C50 0.135 (5) 0.076 (3) 0.058 (3) −0.040 (3) −0.026 (3) 0.004 (2)
C51 0.108 (4) 0.060 (2) 0.077 (3) −0.029 (2) −0.042 (3) 0.000 (2)
C52 0.077 (3) 0.050 (2) 0.065 (2) −0.0218 (19) −0.024 (2) −0.0033 (18)
C53 0.057 (2) 0.0459 (18) 0.056 (2) −0.0086 (15) 0.0027 (17) −0.0228 (16)
C54 0.081 (3) 0.049 (2) 0.092 (3) 0.007 (2) −0.002 (3) −0.030 (2)
C55 0.075 (3) 0.0348 (17) 0.082 (3) −0.0026 (17) −0.024 (2) −0.0159 (18)
C56 0.059 (2) 0.0346 (16) 0.053 (2) −0.0185 (15) −0.0155 (17) −0.0050 (14)
O1W 0.082 (2) 0.093 (2) 0.066 (2) −0.0288 (18) 0.0151 (17) −0.0289 (17)
O2W 0.129 (3) 0.0466 (16) 0.083 (3) −0.0045 (17) 0.016 (2) −0.0025 (17)

Geometric parameters (Å, °)

O1—N1 1.191 (5) C23—H23 0.9300
O2—N1 1.217 (6) C24—H24 0.9300
O3—C18 1.357 (4) C25—C26 1.511 (5)
O3—N3 1.416 (4) C25—H25A 0.9700
O4—C28 1.228 (4) C25—H25B 0.9700
O5—N5 1.212 (5) C26—C27 1.483 (7)
O6—N5 1.217 (5) C26—H26A 0.9700
O7—C56 1.225 (4) C26—H26B 0.9700
O8—C46 1.358 (4) C27—C28 1.505 (5)
O8—N8 1.416 (4) C27—H27A 0.9700
N1—C1 1.469 (5) C27—H27B 0.9700
N2—C11 1.399 (4) C29—C34 1.365 (5)
N2—C7 1.449 (4) C29—C30 1.370 (5)
N2—H2N 0.82 (4) C30—C31 1.377 (5)
N3—C16 1.311 (4) C30—H30 0.9300
N4—C28 1.345 (4) C31—C32 1.388 (5)
N4—C25 1.463 (4) C31—H31 0.9300
N4—C9 1.470 (4) C32—C33 1.387 (5)
N5—C29 1.472 (5) C32—C35 1.515 (5)
N6—C39 1.378 (4) C33—C34 1.381 (5)
N6—C35 1.446 (4) C33—H33 0.9300
N6—H6N 0.83 (4) C34—H34 0.9300
N7—C56 1.346 (4) C35—C36 1.523 (4)
N7—C53 1.461 (4) C35—H35 0.9800
N7—C37 1.468 (3) C36—C37 1.538 (4)
N8—C44 1.312 (4) C36—H36A 0.9700
C1—C2 1.360 (5) C36—H36B 0.9700
C1—C6 1.384 (6) C37—C38 1.529 (4)
C2—C3 1.388 (5) C37—H37 0.9800
C2—H2 0.9300 C38—C43 1.407 (4)
C3—C4 1.376 (5) C38—C39 1.420 (4)
C3—H3 0.9300 C39—C40 1.404 (5)
C4—C5 1.382 (5) C40—C41 1.368 (5)
C4—C7 1.519 (5) C40—H40 0.9300
C5—C6 1.372 (6) C41—C42 1.380 (5)
C5—H5 0.9300 C41—H41 0.9300
C6—H6 0.9300 C42—C43 1.401 (4)
C7—C8 1.526 (4) C42—H42 0.9300
C7—H7 0.9800 C43—C44 1.490 (4)
C8—C9 1.533 (4) C44—C45 1.407 (4)
C8—H8A 0.9700 C45—C46 1.352 (4)
C8—H8B 0.9700 C45—H45 0.9300
C9—C10 1.527 (4) C46—C47 1.464 (5)
C9—H9 0.9800 C47—C48 1.373 (6)
C10—C15 1.405 (4) C47—C52 1.386 (5)
C10—C11 1.409 (4) C48—C49 1.396 (7)
C11—C12 1.402 (4) C48—H48 0.9300
C12—C13 1.376 (5) C49—C50 1.360 (8)
C12—H12 0.9300 C49—H49 0.9300
C13—C14 1.385 (5) C50—C51 1.360 (7)
C13—H13 0.9300 C50—H50 0.9300
C14—C15 1.395 (5) C51—C52 1.383 (6)
C14—H14 0.9300 C51—H51 0.9300
C15—C16 1.493 (4) C52—H52 0.9300
C16—C17 1.407 (4) C53—C54 1.512 (5)
C17—C18 1.340 (4) C53—H53A 0.9700
C17—H17 0.9300 C53—H53B 0.9700
C18—C19 1.466 (5) C54—C55 1.492 (6)
C19—C20 1.377 (5) C54—H54A 0.9700
C19—C24 1.398 (5) C54—H54B 0.9700
C20—C21 1.392 (6) C55—C56 1.509 (5)
C20—H20 0.9300 C55—H55A 0.9700
C21—C22 1.384 (7) C55—H55B 0.9700
C21—H21 0.9300 O1W—H1WA 0.83 (7)
C22—C23 1.368 (7) O1W—H1WB 1.02 (8)
C22—H22 0.9300 O2W—H2WA 0.80 (6)
C23—C24 1.369 (6) O2W—H2WB 0.98 (8)
C18—O3—N3 108.5 (2) H26A—C26—H26B 108.6
C46—O8—N8 108.4 (2) C26—C27—C28 105.7 (3)
O1—N1—O2 121.6 (4) C26—C27—H27A 110.6
O1—N1—C1 119.3 (4) C28—C27—H27A 110.6
O2—N1—C1 119.0 (4) C26—C27—H27B 110.6
C11—N2—C7 118.4 (3) C28—C27—H27B 110.6
C11—N2—H2N 107 (3) H27A—C27—H27B 108.7
C7—N2—H2N 117 (3) O4—C28—N4 125.6 (3)
C16—N3—O3 105.1 (3) O4—C28—C27 126.2 (3)
C28—N4—C25 113.5 (3) N4—C28—C27 108.2 (3)
C28—N4—C9 122.3 (3) C34—C29—C30 122.0 (3)
C25—N4—C9 123.6 (2) C34—C29—N5 118.2 (3)
O5—N5—O6 123.6 (4) C30—C29—N5 119.8 (3)
O5—N5—C29 118.5 (3) C29—C30—C31 118.5 (3)
O6—N5—C29 117.8 (4) C29—C30—H30 120.7
C39—N6—C35 121.3 (3) C31—C30—H30 120.7
C39—N6—H6N 116 (3) C30—C31—C32 121.5 (3)
C35—N6—H6N 117 (3) C30—C31—H31 119.3
C56—N7—C53 112.7 (3) C32—C31—H31 119.3
C56—N7—C37 123.1 (3) C33—C32—C31 118.0 (3)
C53—N7—C37 122.9 (2) C33—C32—C35 122.4 (3)
C44—N8—O8 105.4 (2) C31—C32—C35 119.6 (3)
C2—C1—C6 121.4 (4) C34—C33—C32 121.0 (3)
C2—C1—N1 119.5 (4) C34—C33—H33 119.5
C6—C1—N1 119.1 (4) C32—C33—H33 119.5
C1—C2—C3 119.3 (3) C29—C34—C33 118.9 (3)
C1—C2—H2 120.4 C29—C34—H34 120.5
C3—C2—H2 120.4 C33—C34—H34 120.5
C4—C3—C2 120.7 (3) N6—C35—C32 111.8 (3)
C4—C3—H3 119.7 N6—C35—C36 107.9 (3)
C2—C3—H3 119.7 C32—C35—C36 112.7 (3)
C3—C4—C5 118.5 (3) N6—C35—H35 108.1
C3—C4—C7 122.8 (3) C32—C35—H35 108.1
C5—C4—C7 118.7 (3) C36—C35—H35 108.1
C6—C5—C4 121.7 (4) C35—C36—C37 110.2 (3)
C6—C5—H5 119.1 C35—C36—H36A 109.6
C4—C5—H5 119.1 C37—C36—H36A 109.6
C5—C6—C1 118.3 (4) C35—C36—H36B 109.6
C5—C6—H6 120.9 C37—C36—H36B 109.6
C1—C6—H6 120.9 H36A—C36—H36B 108.1
N2—C7—C4 111.8 (3) N7—C37—C38 112.6 (2)
N2—C7—C8 107.4 (3) N7—C37—C36 109.7 (2)
C4—C7—C8 110.6 (3) C38—C37—C36 111.5 (2)
N2—C7—H7 109.0 N7—C37—H37 107.6
C4—C7—H7 109.0 C38—C37—H37 107.6
C8—C7—H7 109.0 C36—C37—H37 107.6
C7—C8—C9 111.2 (3) C43—C38—C39 117.7 (3)
C7—C8—H8A 109.4 C43—C38—C37 123.6 (2)
C9—C8—H8A 109.4 C39—C38—C37 118.7 (3)
C7—C8—H8B 109.4 N6—C39—C40 118.8 (3)
C9—C8—H8B 109.4 N6—C39—C38 121.5 (3)
H8A—C8—H8B 108.0 C40—C39—C38 119.7 (3)
N4—C9—C10 111.4 (2) C41—C40—C39 121.1 (3)
N4—C9—C8 109.1 (2) C41—C40—H40 119.4
C10—C9—C8 111.8 (2) C39—C40—H40 119.4
N4—C9—H9 108.1 C40—C41—C42 120.4 (3)
C10—C9—H9 108.1 C40—C41—H41 119.8
C8—C9—H9 108.1 C42—C41—H41 119.8
C15—C10—C11 118.4 (3) C41—C42—C43 119.9 (3)
C15—C10—C9 122.4 (3) C41—C42—H42 120.1
C11—C10—C9 119.1 (3) C43—C42—H42 120.1
N2—C11—C12 118.0 (3) C42—C43—C38 121.2 (3)
N2—C11—C10 122.3 (3) C42—C43—C44 115.5 (3)
C12—C11—C10 119.7 (3) C38—C43—C44 123.2 (3)
C13—C12—C11 120.8 (3) N8—C44—C45 111.6 (3)
C13—C12—H12 119.6 N8—C44—C43 118.7 (3)
C11—C12—H12 119.6 C45—C44—C43 129.3 (3)
C12—C13—C14 120.2 (3) C46—C45—C44 105.4 (3)
C12—C13—H13 119.9 C46—C45—H45 127.3
C14—C13—H13 119.9 C44—C45—H45 127.3
C13—C14—C15 119.9 (3) C45—C46—O8 109.1 (3)
C13—C14—H14 120.1 C45—C46—C47 134.1 (3)
C15—C14—H14 120.1 O8—C46—C47 116.7 (3)
C14—C15—C10 120.8 (3) C48—C47—C52 118.6 (4)
C14—C15—C16 117.8 (3) C48—C47—C46 119.5 (4)
C10—C15—C16 121.4 (3) C52—C47—C46 121.8 (3)
N3—C16—C17 111.6 (3) C47—C48—C49 120.1 (5)
N3—C16—C15 118.9 (3) C47—C48—H48 119.9
C17—C16—C15 129.2 (3) C49—C48—H48 119.9
C18—C17—C16 105.6 (3) C50—C49—C48 120.1 (5)
C18—C17—H17 127.2 C50—C49—H49 120.0
C16—C17—H17 127.2 C48—C49—H49 120.0
C17—C18—O3 109.2 (3) C51—C50—C49 120.6 (4)
C17—C18—C19 133.9 (3) C51—C50—H50 119.7
O3—C18—C19 116.8 (3) C49—C50—H50 119.7
C20—C19—C24 119.4 (3) C50—C51—C52 119.8 (5)
C20—C19—C18 119.9 (3) C50—C51—H51 120.1
C24—C19—C18 120.7 (3) C52—C51—H51 120.1
C19—C20—C21 120.0 (4) C51—C52—C47 120.8 (4)
C19—C20—H20 120.0 C51—C52—H52 119.6
C21—C20—H20 120.0 C47—C52—H52 119.6
C22—C21—C20 119.8 (4) N7—C53—C54 102.8 (3)
C22—C21—H21 120.1 N7—C53—H53A 111.2
C20—C21—H21 120.1 C54—C53—H53A 111.2
C23—C22—C21 120.0 (4) N7—C53—H53B 111.2
C23—C22—H22 120.0 C54—C53—H53B 111.2
C21—C22—H22 120.0 H53A—C53—H53B 109.1
C22—C23—C24 120.6 (4) C55—C54—C53 104.9 (3)
C22—C23—H23 119.7 C55—C54—H54A 110.8
C24—C23—H23 119.7 C53—C54—H54A 110.8
C23—C24—C19 120.1 (4) C55—C54—H54B 110.8
C23—C24—H24 119.9 C53—C54—H54B 110.8
C19—C24—H24 119.9 H54A—C54—H54B 108.8
N4—C25—C26 103.4 (3) C54—C55—C56 105.0 (3)
N4—C25—H25A 111.1 C54—C55—H55A 110.8
C26—C25—H25A 111.1 C56—C55—H55A 110.8
N4—C25—H25B 111.1 C54—C55—H55B 110.8
C26—C25—H25B 111.1 C56—C55—H55B 110.8
H25A—C25—H25B 109.0 H55A—C55—H55B 108.8
C27—C26—C25 106.8 (3) O7—C56—N7 125.6 (3)
C27—C26—H26A 110.4 O7—C56—C55 126.5 (3)
C25—C26—H26A 110.4 N7—C56—C55 107.9 (3)
C27—C26—H26B 110.4 H1WA—O1W—H1WB 102 (6)
C25—C26—H26B 110.4 H2WA—O2W—H2WB 108 (6)
C18—O3—N3—C16 −0.9 (4) C26—C27—C28—N4 4.8 (5)
C46—O8—N8—C44 −0.3 (3) O5—N5—C29—C34 159.1 (4)
O1—N1—C1—C2 3.3 (7) O6—N5—C29—C34 −23.9 (5)
O2—N1—C1—C2 −179.0 (5) O5—N5—C29—C30 −21.3 (6)
O1—N1—C1—C6 −178.1 (6) O6—N5—C29—C30 155.7 (4)
O2—N1—C1—C6 −0.4 (7) C34—C29—C30—C31 2.6 (5)
C6—C1—C2—C3 3.0 (7) N5—C29—C30—C31 −176.9 (3)
N1—C1—C2—C3 −178.4 (4) C29—C30—C31—C32 −1.6 (5)
C1—C2—C3—C4 −0.5 (6) C30—C31—C32—C33 −1.1 (5)
C2—C3—C4—C5 −2.6 (6) C30—C31—C32—C35 177.7 (3)
C2—C3—C4—C7 176.7 (3) C31—C32—C33—C34 2.9 (6)
C3—C4—C5—C6 3.3 (7) C35—C32—C33—C34 −175.9 (3)
C7—C4—C5—C6 −176.0 (4) C30—C29—C34—C33 −0.9 (6)
C4—C5—C6—C1 −0.9 (8) N5—C29—C34—C33 178.6 (4)
C2—C1—C6—C5 −2.3 (8) C32—C33—C34—C29 −1.9 (6)
N1—C1—C6—C5 179.1 (5) C39—N6—C35—C32 −167.4 (3)
C11—N2—C7—C4 −169.6 (3) C39—N6—C35—C36 −42.9 (4)
C11—N2—C7—C8 −48.1 (4) C33—C32—C35—N6 19.1 (4)
C3—C4—C7—N2 21.5 (5) C31—C32—C35—N6 −159.7 (3)
C5—C4—C7—N2 −159.1 (4) C33—C32—C35—C36 −102.7 (4)
C3—C4—C7—C8 −98.1 (4) C31—C32—C35—C36 78.6 (4)
C5—C4—C7—C8 81.2 (4) N6—C35—C36—C37 60.8 (3)
N2—C7—C8—C9 62.6 (3) C32—C35—C36—C37 −175.3 (2)
C4—C7—C8—C9 −175.2 (3) C56—N7—C37—C38 138.2 (3)
C28—N4—C9—C10 142.5 (3) C53—N7—C37—C38 −55.9 (4)
C25—N4—C9—C10 −46.8 (4) C56—N7—C37—C36 −96.9 (3)
C28—N4—C9—C8 −93.6 (3) C53—N7—C37—C36 68.9 (4)
C25—N4—C9—C8 77.1 (4) C35—C36—C37—N7 −174.8 (2)
C7—C8—C9—N4 −168.3 (3) C35—C36—C37—C38 −49.4 (3)
C7—C8—C9—C10 −44.7 (4) N7—C37—C38—C43 −37.9 (4)
N4—C9—C10—C15 −44.4 (4) C36—C37—C38—C43 −161.7 (3)
C8—C9—C10—C15 −166.7 (3) N7—C37—C38—C39 142.0 (3)
N4—C9—C10—C11 133.7 (3) C36—C37—C38—C39 18.2 (4)
C8—C9—C10—C11 11.4 (4) C35—N6—C39—C40 −169.0 (3)
C7—N2—C11—C12 −165.9 (3) C35—N6—C39—C38 11.7 (5)
C7—N2—C11—C10 15.5 (4) C43—C38—C39—N6 −178.4 (3)
C15—C10—C11—N2 −177.5 (3) C37—C38—C39—N6 1.7 (4)
C9—C10—C11—N2 4.4 (4) C43—C38—C39—C40 2.4 (4)
C15—C10—C11—C12 4.0 (4) C37—C38—C39—C40 −177.5 (3)
C9—C10—C11—C12 −174.1 (3) N6—C39—C40—C41 −179.5 (3)
N2—C11—C12—C13 −179.2 (3) C38—C39—C40—C41 −0.2 (5)
C10—C11—C12—C13 −0.6 (4) C39—C40—C41—C42 −1.6 (5)
C11—C12—C13—C14 −2.8 (5) C40—C41—C42—C43 1.2 (5)
C12—C13—C14—C15 2.7 (5) C41—C42—C43—C38 1.1 (5)
C13—C14—C15—C10 0.9 (5) C41—C42—C43—C44 −174.8 (3)
C13—C14—C15—C16 −176.8 (3) C39—C38—C43—C42 −2.8 (4)
C11—C10—C15—C14 −4.2 (4) C37—C38—C43—C42 177.1 (3)
C9—C10—C15—C14 173.9 (3) C39—C38—C43—C44 172.8 (3)
C11—C10—C15—C16 173.4 (3) C37—C38—C43—C44 −7.3 (4)
C9—C10—C15—C16 −8.5 (4) O8—N8—C44—C45 0.0 (4)
O3—N3—C16—C17 0.9 (4) O8—N8—C44—C43 173.6 (3)
O3—N3—C16—C15 175.7 (3) C42—C43—C44—N8 −54.3 (4)
C14—C15—C16—N3 −45.5 (4) C38—C43—C44—N8 129.9 (3)
C10—C15—C16—N3 136.9 (3) C42—C43—C44—C45 118.0 (4)
C14—C15—C16—C17 128.3 (3) C38—C43—C44—C45 −57.8 (5)
C10—C15—C16—C17 −49.4 (4) N8—C44—C45—C46 0.4 (4)
N3—C16—C17—C18 −0.6 (4) C43—C44—C45—C46 −172.4 (3)
C15—C16—C17—C18 −174.7 (3) C44—C45—C46—O8 −0.6 (4)
C16—C17—C18—O3 0.0 (3) C44—C45—C46—C47 175.6 (4)
C16—C17—C18—C19 178.8 (3) N8—O8—C46—C45 0.6 (4)
N3—O3—C18—C17 0.6 (4) N8—O8—C46—C47 −176.3 (3)
N3—O3—C18—C19 −178.4 (3) C45—C46—C47—C48 9.7 (6)
C17—C18—C19—C20 33.9 (5) O8—C46—C47—C48 −174.3 (4)
O3—C18—C19—C20 −147.4 (3) C45—C46—C47—C52 −167.0 (4)
C17—C18—C19—C24 −144.8 (4) O8—C46—C47—C52 8.9 (5)
O3—C18—C19—C24 33.9 (4) C52—C47—C48—C49 0.4 (7)
C24—C19—C20—C21 −0.7 (5) C46—C47—C48—C49 −176.5 (4)
C18—C19—C20—C21 −179.4 (3) C47—C48—C49—C50 0.5 (9)
C19—C20—C21—C22 −0.6 (6) C48—C49—C50—C51 −0.4 (9)
C20—C21—C22—C23 1.0 (6) C49—C50—C51—C52 −0.7 (8)
C21—C22—C23—C24 −0.1 (6) C50—C51—C52—C47 1.7 (7)
C22—C23—C24—C19 −1.2 (6) C48—C47—C52—C51 −1.5 (6)
C20—C19—C24—C23 1.6 (5) C46—C47—C52—C51 175.3 (4)
C18—C19—C24—C23 −179.7 (3) C56—N7—C53—C54 −20.9 (4)
C28—N4—C25—C26 −13.2 (4) C37—N7—C53—C54 172.0 (3)
C9—N4—C25—C26 175.3 (3) N7—C53—C54—C55 25.6 (4)
N4—C25—C26—C27 15.4 (5) C53—C54—C55—C56 −22.0 (5)
C25—C26—C27—C28 −12.7 (5) C53—N7—C56—O7 −172.8 (3)
C25—N4—C28—O4 −174.6 (3) C37—N7—C56—O7 −5.7 (5)
C9—N4—C28—O4 −3.0 (5) C53—N7—C56—C55 7.2 (4)
C25—N4—C28—C27 5.5 (4) C37—N7—C56—C55 174.3 (3)
C9—N4—C28—C27 177.1 (3) C54—C55—C56—O7 −170.2 (4)
C26—C27—C28—O4 −175.0 (4) C54—C55—C56—N7 9.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O4i 0.83 (7) 2.07 (7) 2.904 (5) 173 (6)
O1W—H1WB···O4ii 1.03 (8) 1.87 (8) 2.877 (5) 167 (6)
O2W—H2WB···O7 0.97 (8) 1.80 (9) 2.754 (5) 165 (8)
N6—H6N···O2Wiii 0.83 (4) 2.13 (4) 2.958 (5) 179 (5)
O2W—H2WA···O1W 0.80 (6) 2.09 (6) 2.883 (6) 175 (6)
C3—H3···N2 0.93 2.52 2.848 (6) 101
C9—H9···O4 0.98 2.50 2.857 (4) 101
C33—H33···N6 0.93 2.51 2.830 (6) 100
C37—H37···O7 0.98 2.49 2.872 (4) 103
C52—H52···O8 0.93 2.50 2.811 (5) 100

Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2389).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Broggini, G., Chiesa, K., De Marchi, I., Martinelli, M., Pilati, T. & Zecchi, G. (2005). Tetrahedron, 61, 3525–3531.
  4. Eswaran, S., Adhikari, V. A., Pal, K. N. & Chowdhury, H. I. (2010). Bioorg. Med. Chem. 20, 1040–1044. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. He, F.-J., Yun, L.-H., Yang, R.-F., Xiao, Z.-Y., Cheng, J.-P., Zhou, W.-X. & Zhang, Y.-X. (2005). Bioorg. Med. Chem. Lett. 15, 2980–2985. [DOI] [PubMed]
  8. Kalita, P., Baruah, B. & Bhuyan, P. (2006). Tetrahedron Lett. 47, 7779–7782.
  9. Kotera, K., Takano, Y., Matsuura, A. & Kitahonoki, K. (1970). Tetrahedron, 26, 539–556.
  10. Kouznetsov, V. V., Vargas, L. Y. & Melendez, C. C. (2005). Curr. Org. Chem. 9, 141–161.
  11. Lautens, M. & Roy, A. (2000). Org. Lett. 2, 555–557. [DOI] [PubMed]
  12. Lunniss, J. C., Cooper, W. J. A., Eldred, D. C., Kranz, M., Lindvall, M., Lucas, S. F., Neu, M., Preston, A., Ranshaw, E. L., Redgrave, J. A., Robinson, E. J., Shimpley, J. T., Solanke, E. Y., Somers, O. D. & Wiseman, O. J. (2009). Bioorg. Med. Chem. Lett. 19, 1380–1385. [DOI] [PubMed]
  13. Narlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem 3, 165-172. [DOI] [PubMed]
  14. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Rizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett. 18, 4651–4654. [DOI] [PubMed]
  17. Sankaran, M., Kumarasamy, C., Chokkalingam, U. & Mohan, P. S. (2010). Bioorg. Med. Chem. Lett. 20, 7147–7151. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Shi, A., Nguyen, T. A., Battina, K. S., Rana, S., Takemoto, J. D., Chiang, K. P. & Hua, D. (2008). Bioorg. Med. Chem. Lett. 18, 3364–3368. [DOI] [PMC free article] [PubMed]
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol. 8, 370–374. [DOI] [PMC free article] [PubMed]
  22. Velaparthi, S., Brunsteiner, M., Uddin, R., Wan, B., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem. 51, 1999–2002. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052463/om2389sup1.cif

e-67-0o175-sup1.cif (39.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052463/om2389Isup2.hkl

e-67-0o175-Isup2.hkl (555.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES