Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 15;67(Pt 1):o131–o132. doi: 10.1107/S1600536810049962

2-Chloro-N′-[4-(dimethyl­amino)­benzyl­idene]-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]acetohydrazide

Ersin Inkaya a,*, Muharrem Dinçer a, Alaaddin Çukurovalı b, Engin Yılmaz c
PMCID: PMC3050246  PMID: 21522642

Abstract

The mol­ecular conformation of the title compound, C25H27ClN4OS, is stabilized by an intra­molecular benzyl­idine C—H⋯Nthia­zole hydrogen bond. The thiazole ring makes dihedral angles of 12.0 (3) and 20.4 (2)°, respectively, with the phenyl and benzene rings, while the phenyl and benzene rings make a dihedral angle of 22.6 (2)°. The crystal packing involves weak inter­molecular thia­zole C—H⋯Ocarbon­yl and methyl C—H⋯π hydrogen-bonding associations.

Related literature

For applications of related compounds, see: Brown et al. (1974); Dehmlow & Schmidt (1990); Foerster et al. (1979); Roger et al. (1977); Sawhney et al. (1978); Slip et al. (1974); Suzuki et al. (1979). For background to Schiff bases, see: Costamagna et al. (1992); Fita et al. (2005); Sridharan et al. (2004). For related structures, see: Dinçer et al. (2004); Demir et al. (2006); Özdemir et al. (2004); Soylu et al. (2005); Xu et al. (1994). For bond-length data, see: Allen (1984). graphic file with name e-67-0o131-scheme1.jpg

Experimental

Crystal data

  • C25H27ClN4OS

  • M r = 467.02

  • Monoclinic, Inline graphic

  • a = 9.0194 (5) Å

  • b = 26.7946 (11) Å

  • c = 13.1773 (7) Å

  • β = 132.054 (3)°

  • V = 2364.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.62 × 0.36 × 0.02 mm

Data collection

  • Stoe IPDS 2 CCD diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.533, T max = 0.896

  • 22742 measured reflections

  • 4446 independent reflections

  • 2250 reflections with I > 2σ(I)

  • R int = 0.143

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.121

  • S = 1.01

  • 4446 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049962/zs2082sup1.cif

e-67-0o131-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049962/zs2082Isup2.hkl

e-67-0o131-Isup2.hkl (213.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N1 0.93 2.21 2.838 (5) 124
C13—H13⋯O1i 0.93 2.50 3.374 (5) 157
C16—H16ACg1ii 0.97 2.57 3.493 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-461).

supplementary crystallographic information

Comment

3-Substituted cyclobutane carboxylic acids exhibit anti-inflammatory and anti-depressant activity (Roger et al.,1977), as well as having liquid crystal properties (Dehmlow & Schmidt, 1990). Also, various thiazole derivatives have been shown to possess herbicidal (Foerster, et al., 1979), anti-inflammatory (Sawhney et al., 1978; Brown et al., 1974), anti-microbial (Suzuki et al.,1979), and anti-parasitic properties (Slip et al., 1974). Schiff bases are important in the development of coordination chemistry and Schiff base ligands are of interest mainly because of the existence of typical hydrogen bonds and tautomerism between the phenol–imine and keto–amine forms (Costamagna et al., 1992; Sridharan et al., 2004; Fita et al., 2005). The synthesis and structure of the title compound, N-(4-dimethylaminobenzylidene)-N- [4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-chloroacetic acid hydrazide, C25H27N4OClS (I) is reported here.

In the structure of (I) (Fig. 1) the phenyl and thiazole rings are cis-related with respect to the cyclobutane ring. The cyclobutane ring is puckered, with a dihedral angle of 22.99 (47)° between the two three-membered halves of the ring, which is more puckered than other similar examples from the literature, e.g. 11.55 (3)°, (Özdemir et al., 2004) and 19.8 (3)° (Dinçer et al., 2004). The dihedral angle between plane A (C1—C6), the thiazole plane B (N1/C14/S1/C13/C12) and the phenyl plane C (C18—C21) are 11.95 (25)° (A/B), 22.61 (23)° (A/C) and 20.36 (23)° (B/C), respectively. In the thiazole ring, the S1—C14 and S1—C13 bond lengths are 1.743 (4) Å and 1.707 (4) Å which are shorter than the accepted value for an S—Csp2 single bond (1.76 Å; Allen, 1984) and is the result the conjugation of the electrons of atom S1 with atoms C14 and C13. The C—Cl and C═O bond distances are 1.779 (3) Å and 1.217 (4) Å, respectively, and these values are significantly shorter than those in the literature [1.807 (12) and 1.187 (16) Å, respectively (Demir et al., 2006]. The C17═N3 bond length [1.276 (4) Å] compares with a literature value of 1.285 (7) Å (Xu et al., 1994). In the thiazole ring the C12—N1 and C14═N1 bond lengths [1.389 (5) and 1.292 (4) Å, respectively] compare with literature values of 1.394 (4) and 1.339 (4)Å, respectively (Soylu et al., 2005).

The conformation of the azide substituent ring systems of the title compound is stabilized by an intramolecular benzylidine C17—H···N1thiazole hydrogen bond (Fig. 1, Table 1) and crystal packing involves weak intermolecular thiazole C13—H···O1carbonyl and methyl C16—H···π (phenyl ring C1–C6) hydrogen-bonding associations (Fig. 2).

Experimental

A solution of 1 mmol of chloroacetyl chloride in 10 ml of 1,4-dioxane was added to a mixture of 0.3905 g (1 mmol) of dimethyl-(4-{[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl} -phenylamine and 1 mmol of triethylamine in 20 ml of 1,4-dioxane, at room temperature with continuous stirring. The course of the reaction was monitored by IR spectroscopy. The target product was precipitated with the slow addition of water, filtered, washed with copious cold ethanol and dried in air. The shiny crystals suitable for X-ray analysis was obtained by slow evaporation from an alcoholic solution. Yield: 83%, m.p. 420 K (EtOH). IR (KBr, ν cm-1): 2974–2813 (aliphatic), 1703 (C=O), 1612 (C=N thiazole), 728 (–CH2—Cl),634 (C—S). 1H NMR (CDCl3, TMS, δ, p.p.m.): 1.57 (s, 3H, –CH3, on cyclobutane), 2.50–2.65 (m, 4H, –CH2– on cyclobutane), 3.05 (s, 6H, –CH3 on aniline),3.77 (quint, j = 8.78 Hz, 1H, >CH– on cyclobutane),4.80 (s, 2H, –CH2—Cl),6.66 (d, j = 8.78 Hz, 2H, aromatic), 6.82 (s, 1H, =CH—S on thiazole), 7.14–7.21 (m, 3H, aromatics), 7.28 (t, j = 6.95 Hz, 2H, aromatic), 7.44 (d, j = 8.78 Hz, 2H, aromatic), 8.78 (s, 1H, –N═CH– azomethine). 13C NMR (CDCl3, TMS, δ, p.p.m.): 167.07, 156.56, 155.42, 152.71, 152.38, 129.88, 128.46, 125.50, 125.00, 120.90, 111.89, 111.30, 44.03, 41.21, 40.35, 38.95, 31.01, 30.10.

Refinement

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH (aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bond is shown as a dashed line. For clarity, only H atoms involved in hydrogen bonding have been included.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing the C—H···O and C—H···π interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.

Crystal data

C25H27ClN4OS F(000) = 984
Mr = 467.02 Dx = 1.312 Mg m3
Monoclinic, P21/c Melting point: 420 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 9.0194 (5) Å Cell parameters from 14801 reflections
b = 26.7946 (11) Å θ = 1.5–26.2°
c = 13.1773 (7) Å µ = 0.28 mm1
β = 132.054 (3)° T = 296 K
V = 2364.6 (2) Å3 Plate, brown
Z = 4 0.62 × 0.36 × 0.02 mm

Data collection

Stoe IPDS 2 CCD diffractometer 4446 independent reflections
Radiation source: fine-focus sealed tube 2250 reflections with I > 2σ(I)
graphite Rint = 0.143
Detector resolution: 6.67 pixels mm-1 θmax = 25.6°, θmin = 1.5°
rotation method scans h = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −32→32
Tmin = 0.533, Tmax = 0.896 l = −16→16
22742 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0287P)2] where P = (Fo2 + 2Fc2)/3
4446 reflections (Δ/σ)max < 0.001
292 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.45265 (18) 0.13475 (4) 0.49349 (10) 0.0796 (4)
N1 0.2748 (4) 0.14808 (12) −0.0565 (3) 0.0585 (9)
N2 0.3574 (4) 0.12803 (12) 0.1519 (3) 0.0563 (8)
N3 0.3105 (4) 0.07697 (12) 0.1292 (3) 0.0552 (8)
N4 0.1455 (6) −0.15632 (14) −0.0154 (4) 0.0862 (12)
O1 0.4501 (5) 0.18872 (11) 0.3042 (3) 0.0788 (9)
S1 0.43474 (18) 0.22208 (4) 0.11117 (10) 0.0743 (4)
C1 −0.1810 (5) 0.05376 (17) −0.5909 (3) 0.0609 (11)
H1 −0.1777 0.0674 −0.6542 0.073*
C2 −0.2743 (6) 0.00874 (17) −0.6195 (4) 0.0700 (12)
H2 −0.3308 −0.0079 −0.7004 0.084*
C3 −0.2841 (6) −0.01176 (17) −0.5289 (5) 0.0764 (13)
H3 −0.3498 −0.0419 −0.5488 0.092*
C4 −0.1959 (6) 0.01272 (18) −0.4082 (4) 0.0755 (13)
H4 −0.2012 −0.0011 −0.3460 0.091*
C5 −0.1001 (6) 0.05746 (17) −0.3794 (4) 0.0661 (11)
H5 −0.0396 0.0733 −0.2970 0.079*
C6 −0.0916 (5) 0.07958 (15) −0.4710 (3) 0.0529 (10)
C7 0.0148 (5) 0.12898 (15) −0.4359 (3) 0.0572 (10)
C8 −0.0100 (6) 0.15109 (18) −0.5534 (4) 0.0809 (14)
H8A 0.0609 0.1822 −0.5249 0.121*
H8B −0.1491 0.1567 −0.6305 0.121*
H8C 0.0427 0.1283 −0.5786 0.121*
C9 0.2381 (5) 0.13060 (16) −0.3001 (3) 0.0628 (11)
H9A 0.2754 0.1036 −0.2377 0.075*
H9B 0.3309 0.1330 −0.3138 0.075*
C10 −0.0258 (5) 0.16916 (15) −0.3724 (4) 0.0661 (11)
H10A −0.0808 0.1557 −0.3352 0.079*
H10B −0.1051 0.1970 −0.4330 0.079*
C11 0.2018 (5) 0.18072 (15) −0.2618 (3) 0.0617 (11)
H11 0.2369 0.2089 −0.2896 0.074*
C12 0.2851 (5) 0.18755 (15) −0.1199 (3) 0.0596 (11)
C13 0.3684 (6) 0.22920 (15) −0.0435 (4) 0.0731 (12)
H13 0.3875 0.2584 −0.0716 0.088*
C14 0.3471 (5) 0.16094 (14) 0.0637 (3) 0.0543 (10)
C15 0.4014 (5) 0.14549 (16) 0.2682 (3) 0.0563 (10)
C16 0.3891 (6) 0.10708 (15) 0.3459 (3) 0.0599 (11)
H16A 0.4799 0.0798 0.3731 0.072*
H16B 0.2547 0.0937 0.2877 0.072*
C17 0.3002 (5) 0.05152 (15) 0.0428 (4) 0.0593 (11)
H17 0.3185 0.0671 −0.0112 0.071*
C18 0.2602 (5) −0.00161 (14) 0.0285 (3) 0.0507 (9)
C19 0.2467 (6) −0.02964 (16) −0.0652 (3) 0.0650 (12)
H19 0.2626 −0.0139 −0.1203 0.078*
C20 0.2104 (6) −0.08041 (16) −0.0799 (4) 0.0677 (12)
H20 0.2008 −0.0977 −0.1453 0.081*
C21 0.2381 (5) −0.02730 (16) 0.1094 (3) 0.0607 (11)
H21 0.2465 −0.0097 0.1740 0.073*
C22 0.2044 (6) −0.07735 (16) 0.0970 (4) 0.0646 (11)
H22 0.1921 −0.0929 0.1541 0.077*
C23 0.1877 (5) −0.10629 (16) 0.0009 (4) 0.0597 (11)
C24 0.1179 (8) −0.18412 (18) −0.1206 (5) 0.1007 (17)
H24A 0.0632 −0.2163 −0.1301 0.151*
H24B 0.2443 −0.1881 −0.0961 0.151*
H24C 0.0279 −0.1664 −0.2056 0.151*
C25 0.1709 (7) −0.18470 (19) 0.0877 (5) 0.1005 (17)
H25A 0.3076 −0.1828 0.1720 0.151*
H25B 0.1362 −0.2189 0.0593 0.151*
H25C 0.0859 −0.1714 0.1008 0.151*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1198 (9) 0.0642 (8) 0.0901 (7) 0.0022 (7) 0.0849 (7) −0.0016 (6)
N1 0.0693 (19) 0.050 (2) 0.0533 (17) −0.0062 (16) 0.0399 (16) −0.0047 (15)
N2 0.070 (2) 0.041 (2) 0.0609 (18) −0.0027 (16) 0.0450 (17) −0.0051 (15)
N3 0.0614 (19) 0.0405 (19) 0.0599 (18) −0.0059 (15) 0.0391 (16) −0.0039 (15)
N4 0.133 (3) 0.040 (2) 0.096 (3) −0.015 (2) 0.081 (3) −0.0071 (19)
O1 0.124 (2) 0.048 (2) 0.0852 (18) −0.0129 (18) 0.0785 (18) −0.0124 (15)
S1 0.1041 (8) 0.0462 (7) 0.0685 (6) −0.0156 (6) 0.0561 (6) −0.0103 (5)
C1 0.057 (2) 0.065 (3) 0.054 (2) 0.004 (2) 0.0342 (19) 0.000 (2)
C2 0.061 (3) 0.058 (3) 0.069 (3) 0.001 (2) 0.034 (2) −0.011 (2)
C3 0.067 (3) 0.048 (3) 0.096 (3) −0.001 (2) 0.047 (3) 0.004 (2)
C4 0.083 (3) 0.071 (3) 0.079 (3) 0.002 (3) 0.057 (3) 0.016 (2)
C5 0.076 (3) 0.064 (3) 0.062 (2) −0.001 (2) 0.048 (2) 0.004 (2)
C6 0.052 (2) 0.059 (3) 0.053 (2) 0.007 (2) 0.0370 (19) 0.0055 (18)
C7 0.060 (2) 0.058 (3) 0.0501 (19) −0.003 (2) 0.0356 (19) 0.0014 (18)
C8 0.087 (3) 0.083 (4) 0.065 (2) −0.016 (3) 0.048 (2) 0.008 (2)
C9 0.063 (2) 0.067 (3) 0.056 (2) −0.003 (2) 0.039 (2) −0.0031 (19)
C10 0.071 (3) 0.053 (3) 0.065 (2) −0.001 (2) 0.042 (2) 0.003 (2)
C11 0.069 (3) 0.052 (3) 0.057 (2) −0.009 (2) 0.039 (2) 0.0017 (18)
C12 0.064 (2) 0.050 (3) 0.055 (2) −0.008 (2) 0.035 (2) 0.0020 (18)
C13 0.098 (3) 0.043 (3) 0.069 (2) −0.017 (2) 0.052 (2) −0.0034 (19)
C14 0.058 (2) 0.042 (2) 0.054 (2) −0.0026 (18) 0.0336 (19) −0.0028 (17)
C15 0.064 (2) 0.052 (3) 0.060 (2) 0.002 (2) 0.044 (2) −0.0001 (19)
C16 0.071 (3) 0.053 (3) 0.066 (2) 0.005 (2) 0.050 (2) −0.0013 (18)
C17 0.070 (3) 0.045 (3) 0.062 (2) 0.000 (2) 0.045 (2) 0.0029 (19)
C18 0.055 (2) 0.041 (2) 0.0541 (19) 0.0010 (18) 0.0355 (18) −0.0001 (17)
C19 0.089 (3) 0.051 (3) 0.058 (2) −0.001 (2) 0.051 (2) −0.0007 (19)
C20 0.099 (3) 0.048 (3) 0.065 (2) −0.001 (2) 0.059 (2) −0.0039 (19)
C21 0.072 (3) 0.053 (3) 0.063 (2) −0.007 (2) 0.048 (2) −0.0086 (19)
C22 0.078 (3) 0.054 (3) 0.069 (2) −0.010 (2) 0.052 (2) −0.001 (2)
C23 0.062 (2) 0.048 (3) 0.062 (2) −0.002 (2) 0.038 (2) −0.0016 (19)
C24 0.133 (4) 0.051 (3) 0.114 (4) −0.012 (3) 0.081 (3) −0.015 (3)
C25 0.127 (4) 0.065 (4) 0.111 (3) −0.012 (3) 0.081 (3) 0.012 (3)

Geometric parameters (Å, °)

Cl1—C16 1.779 (3) C9—C11 1.545 (5)
N1—C14 1.292 (4) C9—H9A 0.9700
N1—C12 1.389 (5) C9—H9B 0.9700
N2—C15 1.382 (4) C10—C11 1.558 (5)
N2—N3 1.404 (4) C10—H10A 0.9700
N2—C14 1.412 (5) C10—H10B 0.9700
N3—C17 1.276 (4) C11—C12 1.487 (5)
N4—C23 1.371 (5) C11—H11 0.9800
N4—C25 1.435 (5) C12—C13 1.345 (5)
N4—C24 1.441 (6) C13—H13 0.9300
O1—C15 1.217 (4) C15—C16 1.508 (5)
S1—C13 1.707 (4) C16—H16A 0.9700
S1—C14 1.743 (4) C16—H16B 0.9700
C1—C2 1.371 (6) C17—C18 1.450 (5)
C1—C6 1.385 (5) C17—H17 0.9300
C1—H1 0.9300 C18—C19 1.379 (5)
C2—C3 1.370 (6) C18—C21 1.392 (5)
C2—H2 0.9300 C19—C20 1.382 (5)
C3—C4 1.378 (6) C19—H19 0.9300
C3—H3 0.9300 C20—C23 1.396 (5)
C4—C5 1.374 (6) C20—H20 0.9300
C4—H4 0.9300 C21—C22 1.360 (5)
C5—C6 1.392 (5) C21—H21 0.9300
C5—H5 0.9300 C22—C23 1.405 (5)
C6—C7 1.514 (5) C22—H22 0.9300
C7—C8 1.528 (5) C24—H24A 0.9600
C7—C10 1.550 (5) C24—H24B 0.9600
C7—C9 1.560 (5) C24—H24C 0.9600
C8—H8A 0.9600 C25—H25A 0.9600
C8—H8B 0.9600 C25—H25B 0.9600
C8—H8C 0.9600 C25—H25C 0.9600
C14—N1—C12 110.6 (3) C12—C11—H11 110.9
C15—N2—N3 112.8 (3) C9—C11—H11 110.9
C15—N2—C14 120.9 (3) C10—C11—H11 110.9
N3—N2—C14 126.1 (3) C13—C12—N1 114.2 (3)
C17—N3—N2 122.9 (3) C13—C12—C11 127.0 (4)
C23—N4—C25 121.3 (4) N1—C12—C11 118.8 (3)
C23—N4—C24 120.5 (4) C12—C13—S1 112.0 (3)
C25—N4—C24 116.9 (4) C12—C13—H13 124.0
C13—S1—C14 87.95 (19) S1—C13—H13 124.0
C2—C1—C6 122.3 (4) N1—C14—N2 122.9 (3)
C2—C1—H1 118.9 N1—C14—S1 115.2 (3)
C6—C1—H1 118.9 N2—C14—S1 121.8 (3)
C3—C2—C1 119.9 (4) O1—C15—N2 121.0 (4)
C3—C2—H2 120.0 O1—C15—C16 123.8 (3)
C1—C2—H2 120.0 N2—C15—C16 115.2 (3)
C2—C3—C4 119.4 (4) C15—C16—Cl1 110.0 (3)
C2—C3—H3 120.3 C15—C16—H16A 109.7
C4—C3—H3 120.3 Cl1—C16—H16A 109.7
C5—C4—C3 120.3 (4) C15—C16—H16B 109.7
C5—C4—H4 119.9 Cl1—C16—H16B 109.7
C3—C4—H4 119.9 H16A—C16—H16B 108.2
C4—C5—C6 121.5 (4) N3—C17—C18 120.2 (4)
C4—C5—H5 119.3 N3—C17—H17 119.9
C6—C5—H5 119.3 C18—C17—H17 119.9
C1—C6—C5 116.6 (4) C19—C18—C21 116.4 (4)
C1—C6—C7 123.4 (3) C19—C18—C17 121.1 (4)
C5—C6—C7 120.0 (3) C21—C18—C17 122.5 (4)
C6—C7—C8 113.4 (3) C18—C19—C20 122.1 (4)
C6—C7—C10 116.2 (3) C18—C19—H19 118.9
C8—C7—C10 110.5 (4) C20—C19—H19 118.9
C6—C7—C9 116.2 (3) C19—C20—C23 121.6 (4)
C8—C7—C9 110.6 (3) C19—C20—H20 119.2
C10—C7—C9 87.2 (3) C23—C20—H20 119.2
C7—C8—H8A 109.5 C22—C21—C18 122.0 (4)
C7—C8—H8B 109.5 C22—C21—H21 119.0
H8A—C8—H8B 109.5 C18—C21—H21 119.0
C7—C8—H8C 109.5 C21—C22—C23 122.2 (4)
H8A—C8—H8C 109.5 C21—C22—H22 118.9
H8B—C8—H8C 109.5 C23—C22—H22 118.9
C11—C9—C7 90.3 (3) N4—C23—C20 122.3 (4)
C11—C9—H9A 113.6 N4—C23—C22 122.1 (4)
C7—C9—H9A 113.6 C20—C23—C22 115.6 (4)
C11—C9—H9B 113.6 N4—C24—H24A 109.5
C7—C9—H9B 113.6 N4—C24—H24B 109.5
H9A—C9—H9B 110.9 H24A—C24—H24B 109.5
C7—C10—C11 90.2 (3) N4—C24—H24C 109.5
C7—C10—H10A 113.6 H24A—C24—H24C 109.5
C11—C10—H10A 113.6 H24B—C24—H24C 109.5
C7—C10—H10B 113.6 N4—C25—H25A 109.5
C11—C10—H10B 113.6 N4—C25—H25B 109.5
H10A—C10—H10B 110.9 H25A—C25—H25B 109.5
C12—C11—C9 118.6 (3) N4—C25—H25C 109.5
C12—C11—C10 116.1 (3) H25A—C25—H25C 109.5
C9—C11—C10 87.5 (3) H25B—C25—H25C 109.5
C15—N2—N3—C17 −167.2 (3) C11—C12—C13—S1 177.2 (3)
C14—N2—N3—C17 18.0 (5) C14—S1—C13—C12 0.9 (3)
C6—C1—C2—C3 1.1 (6) C12—N1—C14—N2 −179.4 (3)
C1—C2—C3—C4 −1.4 (7) C12—N1—C14—S1 −0.1 (4)
C2—C3—C4—C5 0.5 (7) C15—N2—C14—N1 −168.1 (4)
C3—C4—C5—C6 0.9 (7) N3—N2—C14—N1 6.4 (6)
C2—C1—C6—C5 0.2 (6) C15—N2—C14—S1 12.6 (5)
C2—C1—C6—C7 179.1 (4) N3—N2—C14—S1 −172.9 (3)
C4—C5—C6—C1 −1.2 (6) C13—S1—C14—N1 −0.5 (3)
C4—C5—C6—C7 179.8 (4) C13—S1—C14—N2 178.8 (3)
C1—C6—C7—C8 7.8 (5) N3—N2—C15—O1 178.1 (4)
C5—C6—C7—C8 −173.3 (4) C14—N2—C15—O1 −6.8 (6)
C1—C6—C7—C10 137.5 (4) N3—N2—C15—C16 −0.4 (4)
C5—C6—C7—C10 −43.6 (5) C14—N2—C15—C16 174.7 (3)
C1—C6—C7—C9 −122.0 (4) O1—C15—C16—Cl1 0.7 (5)
C5—C6—C7—C9 56.8 (5) N2—C15—C16—Cl1 179.2 (3)
C6—C7—C9—C11 −134.4 (3) N2—N3—C17—C18 177.1 (3)
C8—C7—C9—C11 94.4 (4) N3—C17—C18—C19 179.4 (3)
C10—C7—C9—C11 −16.5 (3) N3—C17—C18—C21 −2.1 (6)
C6—C7—C10—C11 134.3 (3) C21—C18—C19—C20 0.9 (6)
C8—C7—C10—C11 −94.7 (3) C17—C18—C19—C20 179.5 (4)
C9—C7—C10—C11 16.3 (3) C18—C19—C20—C23 −0.8 (6)
C7—C9—C11—C12 134.9 (3) C19—C18—C21—C22 −0.1 (6)
C7—C9—C11—C10 16.4 (3) C17—C18—C21—C22 −178.7 (4)
C7—C10—C11—C12 −137.2 (3) C18—C21—C22—C23 −0.7 (6)
C7—C10—C11—C9 −16.5 (3) C25—N4—C23—C20 164.4 (4)
C14—N1—C12—C13 0.8 (5) C24—N4—C23—C20 −1.5 (7)
C14—N1—C12—C11 −177.7 (3) C25—N4—C23—C22 −17.7 (7)
C9—C11—C12—C13 140.8 (4) C24—N4—C23—C22 176.3 (4)
C10—C11—C12—C13 −117.0 (5) C19—C20—C23—N4 177.9 (4)
C9—C11—C12—N1 −40.9 (5) C19—C20—C23—C22 0.0 (6)
C10—C11—C12—N1 61.3 (5) C21—C22—C23—N4 −177.2 (4)
N1—C12—C13—S1 −1.2 (5) C21—C22—C23—C20 0.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17···N1 0.93 2.21 2.838 (5) 124.
C13—H13···O1i 0.93 2.50 3.374 (5) 157.
C16—H16A···Cg1ii 0.97 2.57 3.493 159

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2082).

References

  1. Allen, F. H. (1984). Acta Cryst. B40, 64–72.
  2. Brown, K., Cater, D. P., Cavalla, J. F., Green, D., Newberry, R. A. & Wilson, A. B. (1974). J. Med. Chem. 14, 1177–1181. [DOI] [PubMed]
  3. Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.
  4. Dehmlow, E. V. & Schmidt, S. S. (1990). Liebigs Ann. Chem., pp. 411–414.
  5. Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298–o299.
  6. Dinçer, M., Özdemir, N., Çukurovalı, A., Yılmaz, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1523–o1524. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Fita, P., Luzina, E., Dziembowska, T., Kopec, D., Piatkowski, P., Radzewicz, Cz. & Grabowska, A. (2005). Chem. Phys. Lett. 416, 305–310.
  10. Foerster, H., Hofer, W., Mues, V., Eue, L. & Schmidt, R. R. (1979). FRG Patent 2822155.
  11. Özdemir, N., Dinçer, M., Yılmaz, İ. & Çukurovalı, A. (2004). Acta Cryst. E60, o145–o147. [DOI] [PubMed]
  12. Roger, E., Pierre, C. J., Pualette, V., Gerard, G., Chepat, J. P. & Robert, G. (1977). Eur. J. Med. Chem. Chem. Ther. 12, 501–509.
  13. Sawhney, S. N., Arora, S. K. Singh, J. V., Bansal, O. P. & Singh, S. P. (1978). J. Indian Chem. Soc. Sect. B, 16, 605–609.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Slip, P. I., Closier, M. & Neville, M. (1974). J. Med. Chem. 17, 207–209. [DOI] [PubMed]
  16. Soylu, M. S., Çalışkan, N., Çukurovali, A., Yılmaz, I. & Büyükgüngör, O. (2005). Acta Cryst. C61, o725–o727. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Sridharan, V., Muthusubramanian, S., Sivasubramanian, S. & Polborn, K. (2004). J. Mol. Struct. 707, 161–167.
  19. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  20. Suzuki, N., Tanaka, Y. & Dohmori, R. (1979). Chem. Pharm. Bull. 27, 1–11. [DOI] [PubMed]
  21. Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049962/zs2082sup1.cif

e-67-0o131-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049962/zs2082Isup2.hkl

e-67-0o131-Isup2.hkl (213.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES