Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o102–o103. doi: 10.1107/S1600536810051196

2,9-Dimethyl-7-phenyl-N-(4-methyl­phen­yl)dibenzo[b,h][1,6]naphthyridin-6-amine

K N Vennila a, M Manoj b, K Prabha b, K J Rajendra Prasad b, D Velmurugan a,*
PMCID: PMC3050252  PMID: 21522616

Abstract

The title compound, C31H25N3, was synthesized from 6,4′,4′′-trimethyl-2,4-bis­(N-phenyl­amino)­quinoline and is the first structural example containing a phenyl and phenyl­amino fragment attached to a fused dibenzo[1,6]naphthyridine moiety. The fused tetra­cyclic ring system is essentially planar [r.m.s. deviation = 0.08 (3) Å]. The phenyl ring and the phenyl­amino group are inclined by 82.68 (6) and 35.31 (5)°, respectively, to the mean plane of the fused tetra­cyclic ring system. A weak intra­molecular N—H⋯π(arene) inter­action may in part influence the conformation of the mol­ecule. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯N hydrogen bonds into centrosymmetric dimers. Additional stabilization is provided by weak C—H⋯π and π–π stacking inter­actions [centroid–centroid distances = 3.834 (2) and 3.898 (1) Å].

Related literature

For the biological activity of [1,6]naphthyridine derivatives, see: Ruchelman et al. (2003, 2005); Hinschberger et al. (2003); Bedard et al. (2000); Feng et al. (2008). For the synthesis of the title compound, see: Manoj & Rajendra Prasad (2009). For the crystal structures of other [1,6]naphthrydine derivatives, see: Peng et al. (2009); Sivakumar et al. (2003); Seebacher et al. (2010); Vennila et al. (2010). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o102-scheme1.jpg

Experimental

Crystal data

  • C31H25N3

  • M r = 439.54

  • Monoclinic, Inline graphic

  • a = 11.9390 (4) Å

  • b = 10.5595 (4) Å

  • c = 19.6084 (7) Å

  • β = 107.369 (2)°

  • V = 2359.31 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.982, T max = 0.986

  • 17909 measured reflections

  • 2938 independent reflections

  • 2197 reflections with I > 2σ(I)

  • R int = 0.037

  • θmax = 22.1°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.132

  • S = 1.07

  • 2938 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051196/lh5177sup1.cif

e-67-0o102-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051196/lh5177Isup2.hkl

e-67-0o102-Isup2.hkl (144.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cg1 0.86 2.51 3.364 (3) 174
C18—H18⋯Cg2i 0.93 2.62 3.495 (3) 156
C29—H29BCg2ii 0.96 2.90 3.622 (3) 133
C22—H22⋯N2iii 0.93 2.51 3.419 (3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

DV acknowledges the Department of Science and Technology (DST) for providing data collection facilities under major research projects and is also thankful for financial support to the Department under the UGC–SAP and DST–FIST programs.

supplementary crystallographic information

Comment

The crystal structures of number of differently substituted naphthyridine derivatives have already been reported (e.g. Peng et al. 2009) but among those only few are dibenzo[1,6] naphthyridine compounds (e.g. Sivakumar et al. 2003; Seebacher et al., 2010). [1,6]Naphthyridine compounds are known to have biological activities (Ruchelman et al. 2005; Hinschberger et al. 2003; Feng et al., 2008). Dibenzo[1,6]naphthyridines are reported to have potent Topomerase I targeting, cytotoxic (Ruchelman et al., 2003) and are also proven anti-tumour agents. A series of [1,6] naphthyridine compounds were shown to exhibit potent activity against human cytomegalovirus (Bedard et al. , 2000). We are focused on preparing heterocyclic naphthyridine derivatives with potential biological properties. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1 The fused tetracyclic ring system is essentially planar (r.m.s. deviation = 0.08 (3)Å) as was reported for a previously determined structure (Vennila et al., 2010). The phenyl ring and the phenyl amino group are inclined by 82.68 (6)° and 35.31 (5)°, respectively to the mean plane of the fused tetracyclic ring system. The bond lengths (Allen et al., 1987) and angles are in the normal ranges. In the crystal structure (Fig. 2), molecules are linked by weak intermolecular C-H···N hydrogen bonds into centrosymmetric dimers. Additional stabilization is provided by weak C-H···π and π–π stacking interactions.

Experimental

The synthesis follows the procedure of Manoj & Rajendra Prasad (2009). Preparation of 6,4',4''-Trimethyl-2,4-bis-(N-phenylamino)quinoline: A mixture of appropriate 2,4-dichloro-6-methylquinoline (0.010 mol) and p-toluidine (0.010 mol) was heated at 433K for half an hour. The product obtained was washed with water, dried and purified by column chromatography over silica gel and eluted with ethyl acetate : methanol mixture (95 : 5) to yield a white solid. The product was recrytallized from methanol. Preparation of 2,9,4'-Trimethyl-7-phenyl-6-(N-phenylamino) dibenzo[b,h][1,6] naphthyridine: An mixture of 6,4',4''-trimethyl-2,4-bis-(N-phenylamino) quinoline (0.0010 mol) and benzoic acid (0.0011 mol) was added to polyphosphoric acid (3 g of P2O5 in 1.5 mL of H3PO4) and kept at 323-328 K for 5 hours. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was poured into ice water and neutralised with saturated NaHCO3 solution to remove the excess benzoic acid. The precipitate was filtered, dried and purified by column chromatography over silica gel using petroleum ether : ethyl acetate (99 : 1) mixture to obtain yellow solid. The yellow solid was dissolved in ethylacetate and left to crystallize at 277K for about 6 months. Only few crystals were obtained and the best available was used for the X-ray structure analysis.

Refinement

The H-atoms were positioned geometrically and treated as riding atoms: C—H =0.93 Å H-aromatic, C—H = 0.96 Å H-methyl, and N—H = 0.86 Å, with Uiso = k×Ueq(parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms. The low percentage of data used (because of low theta cut-off) may affect the precision of the structure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the thermal ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing viewed along the b-axis with weak hydrogen bonds and C-H..π interactions shown as dotted lines

Crystal data

C31H25N3 F(000) = 928
Mr = 439.54 Dx = 1.237 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2938 reflections
a = 11.9390 (4) Å θ = 2.2–21.2°
b = 10.5595 (4) Å µ = 0.07 mm1
c = 19.6084 (7) Å T = 293 K
β = 107.369 (2)° Prismatic, yellow
V = 2359.31 (15) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2938 independent reflections
Radiation source: fine-focus sealed tube 2197 reflections with I > 2σ(I)
graphite Rint = 0.037
ω and φ scans θmax = 22.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.982, Tmax = 0.986 k = −11→11
17909 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.4411P] where P = (Fo2 + 2Fc2)/3
2938 reflections (Δ/σ)max = 0.034
310 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.21879 (18) 0.4613 (2) 0.03581 (11) 0.0434 (6)
N1 0.32355 (16) 0.27439 (18) 0.01274 (10) 0.0508 (5)
N2 0.12176 (16) 0.44039 (18) 0.12785 (10) 0.0529 (5)
C3 0.18596 (18) 0.3921 (2) 0.08942 (12) 0.0448 (6)
C4 0.22420 (18) 0.2617 (2) 0.10461 (12) 0.0448 (6)
C12 0.08099 (19) 0.5597 (2) 0.11381 (12) 0.0511 (6)
N3 0.32400 (17) 0.45075 (18) −0.05365 (10) 0.0569 (6)
H3 0.3031 0.5288 −0.0607 0.068*
C11 0.10670 (18) 0.6366 (2) 0.06154 (12) 0.0461 (6)
C5 0.29150 (19) 0.2088 (2) 0.06518 (12) 0.0473 (6)
C1 0.29049 (18) 0.3908 (2) −0.00132 (12) 0.0459 (6)
C10 0.18035 (18) 0.5874 (2) 0.02346 (11) 0.0448 (6)
C9 0.19467 (19) 0.1887 (2) 0.15606 (12) 0.0512 (6)
H9 0.1499 0.2250 0.1824 0.061*
C8 0.2296 (2) 0.0654 (2) 0.16883 (12) 0.0523 (6)
C17 0.21691 (19) 0.6767 (2) −0.02498 (13) 0.0464 (6)
C23 0.38787 (19) 0.4030 (2) −0.09768 (12) 0.0480 (6)
C16 0.0570 (2) 0.7604 (2) 0.05065 (13) 0.0546 (6)
H16 0.0741 0.8128 0.0169 0.066*
C6 0.3278 (2) 0.0832 (2) 0.07839 (13) 0.0592 (7)
H6 0.3736 0.0465 0.0528 0.071*
C14 −0.0376 (2) 0.7257 (3) 0.13967 (14) 0.0659 (7)
H14 −0.0858 0.7554 0.1657 0.079*
C13 0.0083 (2) 0.6078 (3) 0.15287 (14) 0.0666 (7)
H13 −0.0082 0.5581 0.1879 0.080*
C7 0.2968 (2) 0.0136 (2) 0.12858 (13) 0.0604 (7)
H7 0.3210 −0.0702 0.1361 0.073*
C24 0.4578 (2) 0.4875 (2) −0.11974 (13) 0.0548 (6)
H24 0.4660 0.5699 −0.1022 0.066*
C15 −0.0144 (2) 0.8045 (2) 0.08782 (14) 0.0575 (7)
C29 0.1979 (2) −0.0121 (3) 0.22479 (14) 0.0678 (8)
H29A 0.1430 0.0340 0.2424 0.102*
H29B 0.2674 −0.0292 0.2635 0.102*
H29C 0.1632 −0.0906 0.2042 0.102*
C22 0.1465 (2) 0.7020 (2) −0.09377 (14) 0.0617 (7)
H22 0.0736 0.6633 −0.1112 0.074*
C28 0.3782 (2) 0.2810 (2) −0.12414 (13) 0.0571 (7)
H28 0.3323 0.2220 −0.1094 0.069*
C27 0.4362 (2) 0.2465 (3) −0.17227 (13) 0.0632 (7)
H27 0.4281 0.1641 −0.1898 0.076*
C26 0.5057 (2) 0.3298 (3) −0.19527 (13) 0.0617 (7)
C25 0.5157 (2) 0.4509 (3) −0.16770 (13) 0.0609 (7)
H25 0.5628 0.5093 −0.1818 0.073*
C18 0.3242 (2) 0.7371 (2) −0.00024 (15) 0.0591 (7)
H18 0.3714 0.7220 0.0462 0.071*
C21 0.1851 (3) 0.7849 (3) −0.13643 (16) 0.0780 (9)
H21 0.1380 0.8018 −0.1827 0.094*
C30 −0.0682 (2) 0.9343 (2) 0.07514 (16) 0.0744 (8)
H30A −0.0115 0.9959 0.0999 0.112*
H30B −0.1353 0.9375 0.0925 0.112*
H30C −0.0921 0.9525 0.0249 0.112*
C20 0.2927 (3) 0.8426 (3) −0.1109 (2) 0.0818 (10)
H20 0.3183 0.8980 −0.1399 0.098*
C19 0.3623 (3) 0.8190 (3) −0.04288 (19) 0.0752 (8)
H19 0.4351 0.8582 −0.0257 0.090*
C31 0.5664 (3) 0.2936 (3) −0.24940 (15) 0.0941 (11)
H31A 0.5255 0.3305 −0.2948 0.141*
H31B 0.5666 0.2031 −0.2539 0.141*
H31C 0.6457 0.3242 −0.2341 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0396 (12) 0.0431 (14) 0.0481 (14) 0.0009 (10) 0.0139 (11) −0.0022 (11)
N1 0.0549 (12) 0.0442 (13) 0.0578 (13) 0.0076 (9) 0.0240 (10) 0.0019 (10)
N2 0.0570 (12) 0.0496 (13) 0.0591 (13) 0.0049 (10) 0.0277 (10) 0.0003 (10)
C3 0.0415 (13) 0.0463 (14) 0.0475 (14) 0.0003 (10) 0.0149 (11) −0.0041 (11)
C4 0.0427 (13) 0.0444 (14) 0.0461 (14) −0.0006 (10) 0.0115 (11) −0.0010 (11)
C12 0.0506 (14) 0.0493 (16) 0.0578 (15) 0.0032 (12) 0.0228 (12) −0.0040 (13)
N3 0.0722 (14) 0.0440 (12) 0.0677 (14) 0.0125 (10) 0.0410 (12) 0.0060 (10)
C11 0.0436 (13) 0.0410 (14) 0.0549 (15) 0.0023 (10) 0.0165 (11) −0.0046 (11)
C5 0.0470 (13) 0.0435 (15) 0.0508 (14) 0.0027 (11) 0.0138 (11) −0.0007 (12)
C1 0.0434 (13) 0.0448 (15) 0.0507 (15) 0.0025 (11) 0.0158 (11) −0.0020 (12)
C10 0.0422 (13) 0.0435 (15) 0.0485 (14) 0.0001 (10) 0.0133 (11) −0.0023 (11)
C9 0.0489 (14) 0.0526 (17) 0.0526 (15) 0.0011 (11) 0.0158 (12) −0.0003 (12)
C8 0.0520 (14) 0.0495 (16) 0.0509 (15) −0.0005 (12) 0.0088 (12) 0.0042 (12)
C17 0.0485 (14) 0.0387 (14) 0.0565 (16) 0.0069 (11) 0.0225 (12) 0.0006 (12)
C23 0.0508 (14) 0.0473 (15) 0.0492 (14) 0.0090 (11) 0.0198 (12) 0.0027 (12)
C16 0.0553 (14) 0.0475 (15) 0.0620 (16) 0.0045 (11) 0.0189 (13) −0.0021 (12)
C6 0.0664 (16) 0.0510 (17) 0.0650 (17) 0.0116 (13) 0.0266 (14) 0.0006 (13)
C14 0.0642 (16) 0.0645 (19) 0.080 (2) 0.0080 (14) 0.0376 (15) −0.0138 (15)
C13 0.0743 (18) 0.0638 (19) 0.0756 (18) 0.0079 (14) 0.0437 (15) −0.0024 (15)
C7 0.0693 (17) 0.0465 (16) 0.0641 (18) 0.0089 (12) 0.0178 (14) 0.0072 (13)
C24 0.0616 (15) 0.0505 (16) 0.0568 (16) 0.0037 (12) 0.0244 (13) 0.0030 (12)
C15 0.0507 (14) 0.0545 (16) 0.0683 (17) 0.0057 (12) 0.0193 (13) −0.0115 (14)
C29 0.0722 (18) 0.0643 (18) 0.0665 (18) −0.0023 (13) 0.0200 (14) 0.0124 (14)
C22 0.0666 (16) 0.0567 (17) 0.0641 (18) 0.0094 (13) 0.0230 (15) 0.0042 (14)
C28 0.0601 (15) 0.0553 (17) 0.0623 (16) 0.0010 (12) 0.0280 (13) −0.0026 (13)
C27 0.0730 (17) 0.0601 (17) 0.0597 (17) 0.0098 (14) 0.0248 (14) −0.0055 (13)
C26 0.0681 (17) 0.071 (2) 0.0508 (16) 0.0211 (14) 0.0254 (13) 0.0070 (14)
C25 0.0569 (15) 0.073 (2) 0.0594 (16) 0.0070 (13) 0.0274 (13) 0.0154 (15)
C18 0.0631 (16) 0.0503 (16) 0.0694 (17) −0.0022 (13) 0.0282 (14) −0.0012 (13)
C21 0.111 (3) 0.070 (2) 0.0632 (19) 0.0262 (19) 0.0413 (18) 0.0143 (16)
C30 0.0693 (17) 0.0624 (18) 0.091 (2) 0.0197 (14) 0.0233 (15) −0.0106 (16)
C20 0.118 (3) 0.0528 (19) 0.105 (3) 0.0048 (18) 0.079 (2) 0.0082 (18)
C19 0.084 (2) 0.0567 (19) 0.101 (3) −0.0073 (15) 0.052 (2) −0.0060 (18)
C31 0.115 (3) 0.111 (3) 0.076 (2) 0.033 (2) 0.058 (2) 0.0119 (19)

Geometric parameters (Å, °)

C2—C10 1.406 (3) C14—C15 1.403 (3)
C2—C3 1.428 (3) C14—H14 0.9300
C2—C1 1.480 (3) C13—H13 0.9300
N1—C1 1.295 (3) C7—H7 0.9300
N1—C5 1.385 (3) C24—C25 1.379 (3)
N2—C3 1.327 (3) C24—H24 0.9300
N2—C12 1.349 (3) C15—C30 1.503 (3)
C3—C4 1.453 (3) C29—H29A 0.9600
C4—C5 1.388 (3) C29—H29B 0.9600
C4—C9 1.396 (3) C29—H29C 0.9600
C12—C11 1.411 (3) C22—C21 1.381 (4)
C12—C13 1.412 (3) C22—H22 0.9300
N3—C1 1.364 (3) C28—C27 1.376 (3)
N3—C23 1.405 (3) C28—H28 0.9300
N3—H3 0.8600 C27—C26 1.374 (4)
C11—C10 1.412 (3) C27—H27 0.9300
C11—C16 1.424 (3) C26—C25 1.380 (4)
C5—C6 1.396 (3) C26—C31 1.502 (3)
C10—C17 1.493 (3) C25—H25 0.9300
C9—C8 1.368 (3) C18—C19 1.371 (4)
C9—H9 0.9300 C18—H18 0.9300
C8—C7 1.394 (3) C21—C20 1.374 (4)
C8—C29 1.505 (3) C21—H21 0.9300
C17—C18 1.383 (3) C30—H30A 0.9600
C17—C22 1.386 (3) C30—H30B 0.9600
C23—C24 1.377 (3) C30—H30C 0.9600
C23—C28 1.381 (3) C20—C19 1.367 (4)
C16—C15 1.359 (3) C20—H20 0.9300
C16—H16 0.9300 C19—H19 0.9300
C6—C7 1.365 (3) C31—H31A 0.9600
C6—H6 0.9300 C31—H31B 0.9600
C14—C13 1.354 (3) C31—H31C 0.9600
C10—C2—C3 117.67 (19) C6—C7—H7 119.2
C10—C2—C1 126.8 (2) C8—C7—H7 119.2
C3—C2—C1 115.5 (2) C23—C24—C25 120.4 (2)
C1—N1—C5 119.88 (18) C23—C24—H24 119.8
C3—N2—C12 118.52 (19) C25—C24—H24 119.8
N2—C3—C2 123.6 (2) C16—C15—C14 118.5 (2)
N2—C3—C4 116.57 (19) C16—C15—C30 121.9 (2)
C2—C3—C4 119.82 (18) C14—C15—C30 119.6 (2)
C5—C4—C9 119.6 (2) C8—C29—H29A 109.5
C5—C4—C3 117.8 (2) C8—C29—H29B 109.5
C9—C4—C3 122.7 (2) H29A—C29—H29B 109.5
N2—C12—C11 122.84 (19) C8—C29—H29C 109.5
N2—C12—C13 117.9 (2) H29A—C29—H29C 109.5
C11—C12—C13 119.3 (2) H29B—C29—H29C 109.5
C1—N3—C23 129.1 (2) C21—C22—C17 119.8 (3)
C1—N3—H3 115.4 C21—C22—H22 120.1
C23—N3—H3 115.4 C17—C22—H22 120.1
C10—C11—C12 118.5 (2) C27—C28—C23 120.1 (2)
C10—C11—C16 123.7 (2) C27—C28—H28 119.9
C12—C11—C16 117.8 (2) C23—C28—H28 119.9
N1—C5—C4 123.1 (2) C28—C27—C26 122.2 (3)
N1—C5—C6 118.3 (2) C28—C27—H27 118.9
C4—C5—C6 118.6 (2) C26—C27—H27 118.9
N1—C1—N3 117.50 (19) C27—C26—C25 117.1 (2)
N1—C1—C2 123.9 (2) C27—C26—C31 122.4 (3)
N3—C1—C2 118.6 (2) C25—C26—C31 120.6 (3)
C2—C10—C11 118.7 (2) C24—C25—C26 121.7 (2)
C2—C10—C17 124.41 (19) C24—C25—H25 119.2
C11—C10—C17 116.81 (19) C26—C25—H25 119.2
C8—C9—C4 122.0 (2) C19—C18—C17 121.2 (3)
C8—C9—H9 119.0 C19—C18—H18 119.4
C4—C9—H9 119.0 C17—C18—H18 119.4
C9—C8—C7 117.7 (2) C20—C21—C22 120.3 (3)
C9—C8—C29 121.5 (2) C20—C21—H21 119.9
C7—C8—C29 120.8 (2) C22—C21—H21 119.9
C18—C17—C22 118.8 (2) C15—C30—H30A 109.5
C18—C17—C10 119.0 (2) C15—C30—H30B 109.5
C22—C17—C10 122.3 (2) H30A—C30—H30B 109.5
C24—C23—C28 118.5 (2) C15—C30—H30C 109.5
C24—C23—N3 116.8 (2) H30A—C30—H30C 109.5
C28—C23—N3 124.4 (2) H30B—C30—H30C 109.5
C15—C16—C11 122.3 (2) C19—C20—C21 120.3 (3)
C15—C16—H16 118.9 C19—C20—H20 119.8
C11—C16—H16 118.9 C21—C20—H20 119.8
C7—C6—C5 120.6 (2) C20—C19—C18 119.6 (3)
C7—C6—H6 119.7 C20—C19—H19 120.2
C5—C6—H6 119.7 C18—C19—H19 120.2
C13—C14—C15 121.8 (2) C26—C31—H31A 109.5
C13—C14—H14 119.1 C26—C31—H31B 109.5
C15—C14—H14 119.1 H31A—C31—H31B 109.5
C14—C13—C12 120.4 (2) C26—C31—H31C 109.5
C14—C13—H13 119.8 H31A—C31—H31C 109.5
C12—C13—H13 119.8 H31B—C31—H31C 109.5
C6—C7—C8 121.6 (2)
C12—N2—C3—C2 2.8 (3) C4—C9—C8—C7 0.2 (3)
C12—N2—C3—C4 −177.8 (2) C4—C9—C8—C29 179.5 (2)
C10—C2—C3—N2 −0.1 (3) C2—C10—C17—C18 −80.6 (3)
C1—C2—C3—N2 −179.91 (19) C11—C10—C17—C18 96.2 (3)
C10—C2—C3—C4 −179.53 (19) C2—C10—C17—C22 100.0 (3)
C1—C2—C3—C4 0.6 (3) C11—C10—C17—C22 −83.2 (3)
N2—C3—C4—C5 180.0 (2) C1—N3—C23—C24 −149.1 (2)
C2—C3—C4—C5 −0.5 (3) C1—N3—C23—C28 36.0 (4)
N2—C3—C4—C9 0.8 (3) C10—C11—C16—C15 179.4 (2)
C2—C3—C4—C9 −179.7 (2) C12—C11—C16—C15 −1.0 (3)
C3—N2—C12—C11 −2.0 (3) N1—C5—C6—C7 −178.8 (2)
C3—N2—C12—C13 177.1 (2) C4—C5—C6—C7 0.6 (4)
N2—C12—C11—C10 −1.4 (3) C15—C14—C13—C12 −0.5 (4)
C13—C12—C11—C10 179.5 (2) N2—C12—C13—C14 −178.3 (2)
N2—C12—C11—C16 179.0 (2) C11—C12—C13—C14 0.9 (4)
C13—C12—C11—C16 −0.1 (3) C5—C6—C7—C8 −0.9 (4)
C1—N1—C5—C4 0.0 (3) C9—C8—C7—C6 0.4 (4)
C1—N1—C5—C6 179.4 (2) C29—C8—C7—C6 −178.9 (2)
C9—C4—C5—N1 179.4 (2) C28—C23—C24—C25 0.6 (3)
C3—C4—C5—N1 0.2 (3) N3—C23—C24—C25 −174.7 (2)
C9—C4—C5—C6 0.0 (3) C11—C16—C15—C14 1.4 (4)
C3—C4—C5—C6 −179.2 (2) C11—C16—C15—C30 −178.9 (2)
C5—N1—C1—N3 −179.7 (2) C13—C14—C15—C16 −0.6 (4)
C5—N1—C1—C2 0.1 (3) C13—C14—C15—C30 179.7 (2)
C23—N3—C1—N1 2.3 (4) C18—C17—C22—C21 1.0 (3)
C23—N3—C1—C2 −177.5 (2) C10—C17—C22—C21 −179.6 (2)
C10—C2—C1—N1 179.7 (2) C24—C23—C28—C27 −0.9 (4)
C3—C2—C1—N1 −0.5 (3) N3—C23—C28—C27 173.9 (2)
C10—C2—C1—N3 −0.4 (3) C23—C28—C27—C26 0.5 (4)
C3—C2—C1—N3 179.37 (19) C28—C27—C26—C25 0.3 (4)
C3—C2—C10—C11 −3.4 (3) C28—C27—C26—C31 −178.2 (2)
C1—C2—C10—C11 176.4 (2) C23—C24—C25—C26 0.2 (4)
C3—C2—C10—C17 173.4 (2) C27—C26—C25—C24 −0.7 (4)
C1—C2—C10—C17 −6.8 (4) C31—C26—C25—C24 177.8 (2)
C12—C11—C10—C2 4.1 (3) C22—C17—C18—C19 −1.2 (4)
C16—C11—C10—C2 −176.3 (2) C10—C17—C18—C19 179.3 (2)
C12—C11—C10—C17 −172.9 (2) C17—C22—C21—C20 −0.2 (4)
C16—C11—C10—C17 6.6 (3) C22—C21—C20—C19 −0.3 (4)
C5—C4—C9—C8 −0.4 (3) C21—C20—C19—C18 0.1 (4)
C3—C4—C9—C8 178.8 (2) C17—C18—C19—C20 0.7 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.
D—H···A D—H H···A D···A D—H···A
N3—H3···Cg1 0.86 2.51 3.364 (3) 174
C18—H18···Cg2i 0.93 2.62 3.495 (3) 156
C29—H29B···Cg2ii 0.96 2.90 3.622 (3) 133
C22—H22···N2iii 0.93 2.51 3.419 (3) 166
C28—H28···N1 0.93 2.49 2.946 (3) 110

Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y−1/2, z−1/2; (iii) −x, −y+1, −z.

Table 2 π–π interactions [Å]

Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C5, N2/C2/C3/C10–C12 and C11–C16 rings, respectively.

Cg(I) Cg(J) Centroid-to-Centroid
Cg(2) Cg(4i) 3.834 (2)
Cg(3) Cg(3i) 3.898 (1)

Symmetry code (i): -x, 1-y, -z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5177).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bedard, J., May, S., Heureux, L. L., Stamminger, T., Copsey, A., Drach, G., Huffman, J., Chan, L., Jin, H. & Rando, F. R. (2000). Antimicrob. Agents Chemother. 44, 929–937. [DOI] [PMC free article] [PubMed]
  3. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Feng, W., Satyanarayana, M., Cheng, L., Liu, A., Tsai, Y. C., Liu, L. F. & LaVoie, E. J. (2008). Bioorg. Med. Chem. 16, 9295–9301. [DOI] [PMC free article] [PubMed]
  5. Hinschberger, A., Butt, S., Lelong, V., Boulouard, M., Dumuis, A., Dauphin, F., Bureau, R., Pfeiffer, B., Renard, P. & Rault, S. (2003). J. Med. Chem. 43, 138–147. [DOI] [PubMed]
  6. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  7. Manoj, M. & Rajendra Prasad, K. J. (2009). J. Chem. Res. pp. 485–488.
  8. Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109–o1110. [DOI] [PMC free article] [PubMed]
  9. Ruchelman, A. L., Houghton, P. J., Zhou, N., Liu, A., Liu, L. F. & LaVoie, E. J. (2005). J. Med Chem. 48, 792–804. [DOI] [PubMed]
  10. Ruchelman, A. L., Singh, K. S., Ray, A., Wu, H. X., Yang, M. J., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073. [DOI] [PubMed]
  11. Seebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153–o155. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Vennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010). Acta Cryst. E66, o2426–o2427. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051196/lh5177sup1.cif

e-67-0o102-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051196/lh5177Isup2.hkl

e-67-0o102-Isup2.hkl (144.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES