Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):o35–o36. doi: 10.1107/S1600536810050191

4a-Hy­droxy-9-(2-meth­oxy­phen­yl)-4,4a,5,6,7,8,9,9a-octa­hydro-3H-xanthene-1,8(2H)-dione

Wan-Sin Loh a,, Hoong-Kun Fun a,*,§, B Palakshi Reddy b, V Vijayakumar b, S Sarveswari b
PMCID: PMC3050262  PMID: 21522746

Abstract

In the title compound, C20H22O5, an S(6) ring motif is formed by an intra­molecular C—H⋯O hydrogen bond, which contributes to the stabilization of the mol­ecule. In the xanthene system, the cyclo­hexane ring adopts a chair conformation, the cyclo­hexene ring adopts a half-boat conformation and the tetra­hydro­pyran ring adopts a half-chair conformation. The mean plane of the four essentially planar atoms of the tetra­hydro­pyran ring [r.m.s deviation = 0.092 (1) Å] forms a dihedral angle of 64.13 (6)° with the mean plane of the meth­oxy­phenyl group. In the crystal, inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds link mol­ecules into chains along the a axis, which are further stabilized by C—H⋯π inter­actions.

Related literature

For background to and the biological activity of xanthenes and their derivatives, see: Menchen et al. (2003); Saint-Ruf et al. (1972); Ion et al. (1998); Knight & Stephens (1989); Jonathan et al. (1988). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987). For a related structure, see: Reddy et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-00o35-scheme1.jpg

Experimental

Crystal data

  • C20H22O5

  • M r = 342.38

  • Triclinic, Inline graphic

  • a = 7.1060 (1) Å

  • b = 7.8897 (1) Å

  • c = 15.1001 (2) Å

  • α = 91.285 (1)°

  • β = 101.251 (1)°

  • γ = 101.129 (1)°

  • V = 813.10 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.44 × 0.23 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.957, T max = 0.990

  • 21213 measured reflections

  • 4715 independent reflections

  • 4132 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.110

  • S = 1.05

  • 4715 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050191/lh5179sup1.cif

e-67-00o35-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050191/lh5179Isup2.hkl

e-67-00o35-Isup2.hkl (230.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O3i 0.87 (2) 1.93 (2) 2.7877 (11) 166.3 (18)
C6—H6A⋯O4 0.98 2.32 2.9266 (12) 120
C16—H16A⋯O5ii 0.93 2.53 3.4172 (13) 160
C20—H20BCg1ii 0.96 2.67 3.5206 (13) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Xanthene derivatives are very important heterocyclic compounds and due to their useful spectroscopic properties, they have been widely used as dyes, fluorescent materials for visualization of bio-molecules and in laser technologies (Menchen et al., 2003; Saint-Ruf et al., 1972; Ion et al., 1998). They have been reported for their agricultural bactericide activity, photodynamic therapy, antiflammatory effect and antiviral activity (Knight & Stephens, 1989; Jonathan et al., 1988). Due to their wide range of applications, these compounds have received a great deal of attention in connection with their synthesis. In the synthesis of these compounds, intermediates play a key role, because these compounds can be easily converted into acridines and other biological active compounds.

In the title compound, an intramolecular C6—H6A···O4 hydrogen bond (Table 1) contributes to the stabilization of the molecule (Fig. 1), forming an S(6) ring motif (Bernstein et al., 1995). The xanthene ring system consists of three rings which adopt different conformations. The cyclohexane ring (C1–C6) adopts a chair conformation with the puckering parameters Q = 0.5427 (11) Å, Θ = 4.67 (12)°, φ = 169.6 (15)° (Cremer & Pople, 1975). The cyclohexene ring (C8–C13) and the tetrahydropyran ring (O1/C1/C6/C7/C8/C13) adopt half-boat and half-chair conformations, with the puckering parameters, Q = 0.4831 (11) Å, Θ = 61.06 (13)°, φ = 176.13 (15)° and Q = 0.4497 (10) Å, Θ = 47.24 (13)°, φ = 87.44 (17)° (Cremer & Pople, 1975), respectively. The mean plane of the essentially planar atoms of the tetrahydropyran ring (C7/C8/C13/O1) [r.m.s deviation = 0.092 (1) Å] forms a dihedral angle of 64.13 (6)° with the methoxyphenyl group (C14–C20/O4). The bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to the related structure (Reddy et al., 2009).

In the crystal packing (Fig. 2), intermolecular O5—H1O5···O3i and C16—H16A···O5ii hydrogen bonds (see Table 1 for symmetry codes) link molecules into chains along the a axis which are further stabilized by C—H···Cg1ii interactions (Table 1), involving C14–C19 ring.

Experimental

A mixture of 2-methoxybenzaldehyde (0.365 ml, 0.0025 mol) and 1,3-cyclohexanedione (0.56 g, 0.005 mol) was refluxed in acetonitrile for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, it was kept for 2 days for solid formation. The pure product was obtained by recrystallization of the crude product from ethanol. M.p.: 493–495 K, yield: 72%.

Refinement

Atom H1O5 was located from the difference Fourier map and was refined freely [O–H = 0.874 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis, showing a chain along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C20H22O5 Z = 2
Mr = 342.38 F(000) = 364
Triclinic, P1 Dx = 1.398 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1060 (1) Å Cell parameters from 9956 reflections
b = 7.8897 (1) Å θ = 2.6–37.2°
c = 15.1001 (2) Å µ = 0.10 mm1
α = 91.285 (1)° T = 100 K
β = 101.251 (1)° Block, colourless
γ = 101.129 (1)° 0.44 × 0.23 × 0.10 mm
V = 813.10 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4715 independent reflections
Radiation source: fine-focus sealed tube 4132 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.957, Tmax = 0.990 k = −11→11
21213 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.057P)2 + 0.3385P] where P = (Fo2 + 2Fc2)/3
4715 reflections (Δ/σ)max < 0.001
231 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.99328 (11) 0.05712 (9) 0.14023 (5) 0.01184 (15)
O2 0.70333 (12) 0.35590 (10) 0.19525 (6) 0.01849 (17)
O3 0.34225 (11) −0.15228 (10) 0.17249 (5) 0.01475 (16)
O4 0.74431 (12) 0.15152 (9) 0.43898 (5) 0.01407 (16)
O5 1.11520 (11) −0.03057 (9) 0.28104 (5) 0.01311 (15)
C1 1.06767 (15) 0.11229 (12) 0.23546 (6) 0.01072 (18)
C2 1.24660 (15) 0.25412 (13) 0.23649 (7) 0.01350 (19)
H2A 1.3340 0.2104 0.2039 0.016*
H2B 1.3158 0.2835 0.2986 0.016*
C3 1.19583 (16) 0.41749 (13) 0.19413 (7) 0.0163 (2)
H3A 1.1438 0.3927 0.1298 0.020*
H3B 1.3137 0.5066 0.2015 0.020*
C4 1.04414 (17) 0.48393 (13) 0.23831 (8) 0.0172 (2)
H4A 1.1005 0.5208 0.3012 0.021*
H4B 1.0064 0.5825 0.2075 0.021*
C5 0.86650 (16) 0.34065 (13) 0.23232 (7) 0.01310 (19)
C6 0.90683 (15) 0.17311 (12) 0.27485 (6) 0.01074 (18)
H6A 0.9570 0.2001 0.3398 0.013*
C7 0.71877 (15) 0.03250 (12) 0.26338 (6) 0.01037 (18)
H7A 0.6112 0.0933 0.2644 0.012*
C8 0.67731 (15) −0.05984 (12) 0.17062 (6) 0.01066 (18)
C9 0.47820 (15) −0.15295 (12) 0.13264 (6) 0.01103 (18)
C10 0.43704 (15) −0.24679 (13) 0.04013 (7) 0.01356 (19)
H10A 0.3871 −0.1725 −0.0052 0.016*
H10B 0.3363 −0.3499 0.0383 0.016*
C11 0.61838 (16) −0.29864 (13) 0.01678 (7) 0.01432 (19)
H11A 0.6579 −0.3863 0.0563 0.017*
H11B 0.5882 −0.3473 −0.0451 0.017*
C12 0.78507 (16) −0.14125 (13) 0.02780 (7) 0.01329 (19)
H12A 0.9051 −0.1781 0.0224 0.016*
H12B 0.7561 −0.0643 −0.0200 0.016*
C13 0.81329 (15) −0.04614 (12) 0.11791 (6) 0.01064 (18)
C14 0.71718 (14) −0.09100 (12) 0.33983 (6) 0.01062 (18)
C15 0.72872 (15) −0.02412 (12) 0.42848 (7) 0.01140 (18)
C16 0.72200 (16) −0.13289 (13) 0.49996 (7) 0.01399 (19)
H16A 0.7337 −0.0869 0.5585 0.017*
C17 0.69757 (16) −0.31127 (13) 0.48290 (7) 0.0150 (2)
H17A 0.6903 −0.3844 0.5301 0.018*
C18 0.68398 (16) −0.38035 (13) 0.39597 (7) 0.0146 (2)
H18A 0.6674 −0.4992 0.3847 0.018*
C19 0.69553 (15) −0.26938 (13) 0.32551 (7) 0.01285 (19)
H19A 0.6886 −0.3158 0.2675 0.015*
C20 0.79471 (17) 0.22709 (13) 0.52994 (7) 0.0154 (2)
H20A 0.8251 0.3509 0.5289 0.023*
H20B 0.9066 0.1875 0.5625 0.023*
H20C 0.6861 0.1934 0.5593 0.023*
H1O5 1.201 (3) −0.067 (2) 0.2552 (12) 0.027 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0112 (3) 0.0143 (3) 0.0096 (3) −0.0001 (3) 0.0038 (3) −0.0002 (2)
O2 0.0168 (4) 0.0169 (4) 0.0226 (4) 0.0053 (3) 0.0039 (3) 0.0048 (3)
O3 0.0130 (4) 0.0158 (3) 0.0160 (3) 0.0021 (3) 0.0054 (3) −0.0011 (3)
O4 0.0207 (4) 0.0119 (3) 0.0100 (3) 0.0039 (3) 0.0036 (3) −0.0005 (2)
O5 0.0144 (4) 0.0141 (3) 0.0132 (3) 0.0058 (3) 0.0053 (3) 0.0034 (3)
C1 0.0112 (4) 0.0117 (4) 0.0091 (4) 0.0014 (3) 0.0027 (3) 0.0007 (3)
C2 0.0111 (4) 0.0148 (4) 0.0141 (4) −0.0001 (4) 0.0041 (3) 0.0004 (3)
C3 0.0160 (5) 0.0134 (4) 0.0194 (5) −0.0004 (4) 0.0065 (4) 0.0020 (3)
C4 0.0175 (5) 0.0116 (4) 0.0229 (5) 0.0006 (4) 0.0076 (4) 0.0002 (4)
C5 0.0158 (5) 0.0115 (4) 0.0129 (4) 0.0022 (4) 0.0058 (4) 0.0000 (3)
C6 0.0114 (4) 0.0110 (4) 0.0098 (4) 0.0015 (3) 0.0030 (3) 0.0000 (3)
C7 0.0110 (4) 0.0109 (4) 0.0093 (4) 0.0018 (3) 0.0026 (3) 0.0003 (3)
C8 0.0119 (4) 0.0099 (4) 0.0099 (4) 0.0019 (3) 0.0021 (3) 0.0003 (3)
C9 0.0125 (4) 0.0097 (4) 0.0112 (4) 0.0026 (3) 0.0029 (3) 0.0014 (3)
C10 0.0132 (5) 0.0143 (4) 0.0122 (4) 0.0009 (4) 0.0025 (4) −0.0024 (3)
C11 0.0161 (5) 0.0126 (4) 0.0140 (4) 0.0012 (4) 0.0044 (4) −0.0025 (3)
C12 0.0156 (5) 0.0137 (4) 0.0108 (4) 0.0014 (4) 0.0052 (4) −0.0016 (3)
C13 0.0119 (4) 0.0098 (4) 0.0099 (4) 0.0016 (3) 0.0021 (3) 0.0010 (3)
C14 0.0098 (4) 0.0121 (4) 0.0100 (4) 0.0017 (3) 0.0027 (3) 0.0014 (3)
C15 0.0106 (4) 0.0121 (4) 0.0118 (4) 0.0021 (3) 0.0032 (3) 0.0004 (3)
C16 0.0155 (5) 0.0157 (4) 0.0109 (4) 0.0028 (4) 0.0035 (4) 0.0014 (3)
C17 0.0162 (5) 0.0153 (4) 0.0139 (4) 0.0025 (4) 0.0039 (4) 0.0046 (3)
C18 0.0159 (5) 0.0119 (4) 0.0155 (4) 0.0020 (4) 0.0026 (4) 0.0017 (3)
C19 0.0130 (5) 0.0130 (4) 0.0122 (4) 0.0022 (4) 0.0022 (3) −0.0003 (3)
C20 0.0189 (5) 0.0158 (4) 0.0112 (4) 0.0043 (4) 0.0020 (4) −0.0025 (3)

Geometric parameters (Å, °)

O1—C13 1.3529 (12) C8—C13 1.3574 (14)
O1—C1 1.4570 (11) C8—C9 1.4607 (14)
O2—C5 1.2148 (13) C9—C10 1.5151 (13)
O3—C9 1.2345 (12) C10—C11 1.5253 (15)
O4—C15 1.3718 (12) C10—H10A 0.9700
O4—C20 1.4350 (12) C10—H10B 0.9700
O5—C1 1.3962 (11) C11—C12 1.5227 (14)
O5—H1O5 0.874 (18) C11—H11A 0.9700
C1—C2 1.5203 (14) C11—H11B 0.9700
C1—C6 1.5345 (14) C12—C13 1.4982 (13)
C2—C3 1.5255 (14) C12—H12A 0.9700
C2—H2A 0.9700 C12—H12B 0.9700
C2—H2B 0.9700 C14—C19 1.3931 (13)
C3—C4 1.5378 (16) C14—C15 1.4091 (13)
C3—H3A 0.9700 C15—C16 1.3964 (13)
C3—H3B 0.9700 C16—C17 1.3961 (14)
C4—C5 1.5098 (15) C16—H16A 0.9300
C4—H4A 0.9700 C17—C18 1.3884 (14)
C4—H4B 0.9700 C17—H17A 0.9300
C5—C6 1.5344 (13) C18—C19 1.3976 (14)
C6—C7 1.5412 (14) C18—H18A 0.9300
C6—H6A 0.9800 C19—H19A 0.9300
C7—C8 1.5133 (13) C20—H20A 0.9600
C7—C14 1.5276 (13) C20—H20B 0.9600
C7—H7A 0.9800 C20—H20C 0.9600
C13—O1—C1 117.22 (7) C8—C9—C10 118.74 (9)
C15—O4—C20 116.87 (8) C9—C10—C11 112.70 (8)
C1—O5—H1O5 106.7 (11) C9—C10—H10A 109.1
O5—C1—O1 107.99 (7) C11—C10—H10A 109.1
O5—C1—C2 112.32 (8) C9—C10—H10B 109.1
O1—C1—C2 104.81 (7) C11—C10—H10B 109.1
O5—C1—C6 108.38 (8) H10A—C10—H10B 107.8
O1—C1—C6 109.47 (8) C12—C11—C10 110.02 (8)
C2—C1—C6 113.68 (8) C12—C11—H11A 109.7
C1—C2—C3 113.12 (9) C10—C11—H11A 109.7
C1—C2—H2A 109.0 C12—C11—H11B 109.7
C3—C2—H2A 109.0 C10—C11—H11B 109.7
C1—C2—H2B 109.0 H11A—C11—H11B 108.2
C3—C2—H2B 109.0 C13—C12—C11 110.92 (8)
H2A—C2—H2B 107.8 C13—C12—H12A 109.5
C2—C3—C4 111.06 (9) C11—C12—H12A 109.5
C2—C3—H3A 109.4 C13—C12—H12B 109.5
C4—C3—H3A 109.4 C11—C12—H12B 109.5
C2—C3—H3B 109.4 H12A—C12—H12B 108.0
C4—C3—H3B 109.4 O1—C13—C8 123.96 (9)
H3A—C3—H3B 108.0 O1—C13—C12 111.00 (8)
C5—C4—C3 109.20 (8) C8—C13—C12 125.03 (9)
C5—C4—H4A 109.8 C19—C14—C15 117.89 (9)
C3—C4—H4A 109.8 C19—C14—C7 122.94 (8)
C5—C4—H4B 109.8 C15—C14—C7 119.10 (8)
C3—C4—H4B 109.8 O4—C15—C16 123.04 (9)
H4A—C4—H4B 108.3 O4—C15—C14 115.90 (8)
O2—C5—C4 122.38 (9) C16—C15—C14 121.05 (9)
O2—C5—C6 122.26 (9) C17—C16—C15 119.48 (9)
C4—C5—C6 115.35 (9) C17—C16—H16A 120.3
C5—C6—C1 109.28 (8) C15—C16—H16A 120.3
C5—C6—C7 111.86 (8) C18—C17—C16 120.50 (9)
C1—C6—C7 112.48 (8) C18—C17—H17A 119.8
C5—C6—H6A 107.7 C16—C17—H17A 119.8
C1—C6—H6A 107.7 C17—C18—C19 119.31 (9)
C7—C6—H6A 107.7 C17—C18—H18A 120.3
C8—C7—C14 113.17 (8) C19—C18—H18A 120.3
C8—C7—C6 109.55 (8) C14—C19—C18 121.74 (9)
C14—C7—C6 114.28 (8) C14—C19—H19A 119.1
C8—C7—H7A 106.4 C18—C19—H19A 119.1
C14—C7—H7A 106.4 O4—C20—H20A 109.5
C6—C7—H7A 106.4 O4—C20—H20B 109.5
C13—C8—C9 118.53 (9) H20A—C20—H20B 109.5
C13—C8—C7 122.45 (9) O4—C20—H20C 109.5
C9—C8—C7 118.73 (8) H20A—C20—H20C 109.5
O3—C9—C8 121.80 (9) H20B—C20—H20C 109.5
O3—C9—C10 119.41 (9)
C13—O1—C1—O5 71.99 (10) C7—C8—C9—C10 −179.45 (8)
C13—O1—C1—C2 −168.09 (8) O3—C9—C10—C11 −156.92 (9)
C13—O1—C1—C6 −45.81 (10) C8—C9—C10—C11 25.45 (12)
O5—C1—C2—C3 −175.06 (8) C9—C10—C11—C12 −53.49 (11)
O1—C1—C2—C3 67.95 (10) C10—C11—C12—C13 50.03 (11)
C6—C1—C2—C3 −51.54 (11) C1—O1—C13—C8 20.22 (13)
C1—C2—C3—C4 54.04 (11) C1—O1—C13—C12 −160.09 (8)
C2—C3—C4—C5 −55.21 (12) C9—C8—C13—O1 169.98 (8)
C3—C4—C5—O2 −122.06 (11) C7—C8—C13—O1 −3.74 (15)
C3—C4—C5—C6 56.91 (11) C9—C8—C13—C12 −9.66 (14)
O2—C5—C6—C1 125.76 (10) C7—C8—C13—C12 176.62 (9)
C4—C5—C6—C1 −53.20 (11) C11—C12—C13—O1 160.59 (8)
O2—C5—C6—C7 0.54 (13) C11—C12—C13—C8 −19.73 (13)
C4—C5—C6—C7 −178.43 (8) C8—C7—C14—C19 4.92 (14)
O5—C1—C6—C5 174.47 (8) C6—C7—C14—C19 −121.40 (10)
O1—C1—C6—C5 −67.98 (10) C8—C7—C14—C15 −171.98 (9)
C2—C1—C6—C5 48.83 (11) C6—C7—C14—C15 61.70 (12)
O5—C1—C6—C7 −60.66 (10) C20—O4—C15—C16 12.66 (14)
O1—C1—C6—C7 56.89 (10) C20—O4—C15—C14 −168.10 (9)
C2—C1—C6—C7 173.70 (8) C19—C14—C15—O4 −178.20 (9)
C5—C6—C7—C8 82.61 (9) C7—C14—C15—O4 −1.14 (14)
C1—C6—C7—C8 −40.82 (10) C19—C14—C15—C16 1.06 (15)
C5—C6—C7—C14 −149.21 (8) C7—C14—C15—C16 178.12 (9)
C1—C6—C7—C14 87.36 (10) O4—C15—C16—C17 177.27 (10)
C14—C7—C8—C13 −114.03 (10) C14—C15—C16—C17 −1.94 (16)
C6—C7—C8—C13 14.77 (12) C15—C16—C17—C18 1.30 (16)
C14—C7—C8—C9 72.27 (11) C16—C17—C18—C19 0.17 (16)
C6—C7—C8—C9 −158.94 (8) C15—C14—C19—C18 0.46 (15)
C13—C8—C9—O3 −170.97 (9) C7—C14—C19—C18 −176.48 (9)
C7—C8—C9—O3 2.98 (14) C17—C18—C19—C14 −1.07 (16)
C13—C8—C9—C10 6.60 (13)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.
D—H···A D—H H···A D···A D—H···A
O5—H1O5···O3i 0.87 (2) 1.93 (2) 2.7877 (11) 166.3 (18)
C6—H6A···O4 0.98 2.32 2.9266 (12) 120
C16—H16A···O5ii 0.93 2.53 3.4172 (13) 160
C20—H20B···Cg1ii 0.96 2.67 3.5206 (13) 147

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5179).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Ion, R. M., Frackowiak, D., Planner, A. & Wiktorowicz, K. (1998). Acta Biochim. Pol. 45, 833–845. [PubMed]
  7. Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.
  8. Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–689. [DOI] [PMC free article] [PubMed]
  9. Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.
  10. Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916. [DOI] [PMC free article] [PubMed]
  11. Saint-Ruf, G., De, A. & Hieu, H. T. (1972). Bull. Chim. Ther. 7, 83–86.
  12. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050191/lh5179sup1.cif

e-67-00o35-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050191/lh5179Isup2.hkl

e-67-00o35-Isup2.hkl (230.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES