Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o90. doi: 10.1107/S1600536810049238

1,4-Bis(1H-benzimidazol-2-yl)benzene methanol monosolvate

Jiang-Bo Su a, Shen Lin a,*, Li-Juan Chen a, Ming-Xing Yang a, Hua Huang a
PMCID: PMC3050263  PMID: 21522799

Abstract

The asymmetric unit of the title compound, C20H14N4·CH4O, contains two independent half-mol­ecules, each located on an inversion centre, and a methanol solvent mol­ecule. The benzimidazolyl groups form different dihedral angles [24.0 (1) and 11.6 (1)°] with the plane of the central benzene ring in the two mol­ecules. In the crystal, a two-dimensional network is formed through N—H⋯ N, N—H⋯O and O—H⋯N hydrogen-bonding inter­actions between the benzimidazole units and methanol solvent mol­ecules. π–π stacking inter­actions also occur between the benzimidazole rings of adjacent mol­ecules, with centroid–centroid distances of 3.720 (14) Å and inter­planar distances of 3.53 (1) Å .

Related literature

For the synthesis of the title compound see: Wu et al. (2009). For the properties and applications of benzimidazoles, see: Tidwell et al. (1993); Salunke et al. (1994); Hoorn et al. (1995); van Berkel et al. (1995); Dinolfo et al. (2005); Yang et al. (2008). For structures of 1,4-bis­(benzimidazol-2-yl)benzene analogues, see: Bei et al. (2000); Wu et al. (2009). For bond lengths and angles in similar structures, see: Matthews et al. (1996); Ozbey et al. (1998).graphic file with name e-67-00o90-scheme1.jpg

Experimental

Crystal data

  • C20H14N4·CH4O

  • M r = 342.39

  • Triclinic, Inline graphic

  • a = 7.1730 (14) Å

  • b = 10.599 (2) Å

  • c = 12.260 (3) Å

  • α = 76.21 (3)°

  • β = 88.37 (3)°

  • γ = 77.01 (3)°

  • V = 881.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.31 × 0.16 × 0.12 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) T min = 0.432, T max = 1.000

  • 4565 measured reflections

  • 3139 independent reflections

  • 2577 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.119

  • S = 1.04

  • 3139 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049238/bg2370sup1.cif

e-67-00o90-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049238/bg2370Isup2.hkl

e-67-00o90-Isup2.hkl (154KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.93 (3) 1.93 (3) 2.829 (2) 162 (2)
N2—H2A⋯N3 0.86 2.03 2.873 (2) 168
N4—H4A⋯O1i 0.86 1.99 2.855 (2) 179

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20771024), the Natural Science Foundation of Fujian Province (No. 2008 J0142) and the Key Project Fund of Science and Technology of Fujian Province (No. 2008I0013).

supplementary crystallographic information

Comment

In earlier communications (Tidwell, et al., 1993; Salunke, et al., 1994; Hoorn, et al., 1995; van Berkel, et al., 1995; Dinolfo et al., 2005; Yang et al., 2008;) it has been reported that the benzimidazole moiety is an important heterocyclic ring not only because of its wide-ranging antivirus activity, its importance in selective ion-exchange resin, but also because of the interest in the coordination chemistry of azoles acting as ligands in transition metal compounds. However, the crystal structure of 1,4-bis(benzimidazol-2-yl)benzene analogues have rarely been reported (Bei, et al., 2000; Wu, et al., 2009;). Herein, we report the crystal structure of the title compound, 1,4-bis(benzimidazol-2-yl)benzene methanol solvate (1).

The structure of title compound is illustrated in Fig. 1. The asymmetric unit contains two different molecules halved by inversion centres at (1/2, 1/2, 1/2) and (0, 1, 0), respectively, and a methanol solvent. Bond lengths and angles have normal values and are comparable to those reported in similar structures (Matthews et al., 1996; Ozbey et al., 1998). The benzimidazoyl moieties form different dihedral angles with the plane of the central benzene ring (24.0 (1)°, 11.6 (1)° for A and B, respectively, Fig. 1). C—N bond lengths in the imidazole ring are in the range 1.328 (2)–1.391 (2) Å, shorter than typical single C—N bond lengths (ca 1.48 Å) and longer than typical C=N ones (ca 1.28 Å), indicating partial double-bond character. This can be interpreted in terms of conjugation in the heterocycle(Fig. 1, Table 1).

In the solid state the 1,4-bis(Benzimidazol-2-yl)benzene moieties are connected to form a two-dimensional network through intermolecular N—H··· N, N—H···O and O—H···N hydrogen bonds (Fig.2, Table 2). Moreover, there exists π-π stacking interactions between the aromatic and imidazole rings of adjacent molecules, with intercentroid/interplanar distances of about 3.72 (1) Å /3.53 (1) Å, respectively.

Experimental

All reagents were of AR grade available commercially and used without further purification. To a mixed solvent of polyphosphoric acid (5 ml) and Phosphoric acid (15 ml, 85%) was added benzene-1,4-dicarboxylic acid (1.67 g, 10.0 mmol) and 1,2-diaminobenzene (2.16 g, 20.0 mmol). The mixture was heated slowly to 398 K, and the resulting solution was stirred at 453 K for five hours, and was poured into 300 ml water. Then the mixture was neutralized with 50% sodium hydroxide solution. The crude product was collected by filtration, dried and recrystallized (yield 67%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution.

Refinement

The (C)H and (N)H atoms of the title compound were placed in calculated positions (C—H = 0.93 and N—H = 0.86 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). The (C)H atoms of the methanol molecule were placed geometrically (C—H = 0.96 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The (O)H atom of the methanol molecule was located in a difference Fourier map and refined with restrained O—H = 0.93 (3) Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

A molecular drawing of (1), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (1). Broken lines indicate the intermolecular N—H···N hydrogen bonds, N—H···O hydrogen bonds and N—H···O interactions.

Crystal data

C20H14N4·CH4O Z = 2
Mr = 342.39 F(000) = 360
Triclinic, P1 Dx = 1.290 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1730 (14) Å Cell parameters from 3188 reflections
b = 10.599 (2) Å θ = 3.0–27.5°
c = 12.260 (3) Å µ = 0.08 mm1
α = 76.21 (3)° T = 293 K
β = 88.37 (3)° Prism, yellow
γ = 77.01 (3)° 0.31 × 0.16 × 0.12 mm
V = 881.7 (3) Å3

Data collection

Rigaku Mercury CCD diffractometer 3139 independent reflections
Radiation source: fine-focus sealed tube 2577 reflections with I > 2σ(I)
graphite Rint = 0.016
ω scans θmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) h = −8→8
Tmin = 0.432, Tmax = 1.000 k = −12→11
4565 measured reflections l = −12→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.058P)2 + 0.2072P] where P = (Fo2 + 2Fc2)/3
3139 reflections (Δ/σ)max = 0.001
240 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4353 (2) 0.72851 (15) −0.20907 (11) 0.0655 (4)
H1 0.466 (4) 0.773 (3) −0.157 (2) 0.099 (9)*
N1 0.5137 (2) 0.81332 (14) −0.01667 (11) 0.0462 (4)
N2 0.4593 (2) 0.81243 (13) 0.16469 (11) 0.0431 (4)
H2A 0.3999 0.8285 0.2236 0.052*
N3 0.3135 (2) 0.86666 (13) 0.37352 (11) 0.0404 (3)
N4 0.34446 (19) 0.84695 (13) 0.55855 (11) 0.0388 (3)
H4A 0.3731 0.8106 0.6283 0.047*
C1 0.6775 (3) 0.74325 (16) 0.04753 (14) 0.0438 (4)
C2 0.8563 (3) 0.67915 (19) 0.01578 (17) 0.0569 (5)
H2B 0.8818 0.6801 −0.0592 0.068*
C3 0.9931 (3) 0.6147 (2) 0.09908 (19) 0.0624 (6)
H3B 1.1126 0.5717 0.0795 0.075*
C4 0.9576 (3) 0.61209 (19) 0.21223 (18) 0.0584 (5)
H4B 1.0536 0.5670 0.2660 0.070*
C5 0.7826 (3) 0.67513 (18) 0.24601 (16) 0.0502 (5)
H5A 0.7584 0.6733 0.3212 0.060*
C6 0.6448 (2) 0.74142 (16) 0.16162 (14) 0.0412 (4)
C7 0.3870 (3) 0.85267 (16) 0.05676 (13) 0.0403 (4)
C8 0.1892 (2) 0.92809 (15) 0.02858 (13) 0.0394 (4)
C9 0.1321 (3) 0.98685 (17) −0.08376 (14) 0.0456 (4)
H9A 0.2204 0.9784 −0.1401 0.055*
C10 −0.0540 (3) 1.05739 (17) −0.11194 (13) 0.0451 (4)
H10A −0.0896 1.0955 −0.1870 0.068*
C11 0.2500 (2) 0.99128 (16) 0.39671 (14) 0.0394 (4)
C12 0.1739 (3) 1.11565 (18) 0.32434 (16) 0.0541 (5)
H12A 0.1647 1.1252 0.2472 0.065*
C13 0.1133 (3) 1.22324 (18) 0.37161 (18) 0.0590 (5)
H13A 0.0613 1.3065 0.3254 0.071*
C14 0.1282 (3) 1.21002 (18) 0.48749 (18) 0.0551 (5)
H14A 0.0844 1.2846 0.5164 0.066*
C15 0.2059 (3) 1.08975 (17) 0.55992 (16) 0.0484 (4)
H15A 0.2173 1.0816 0.6368 0.058*
C16 0.2667 (2) 0.98057 (16) 0.51249 (13) 0.0379 (4)
C17 0.3672 (2) 0.78377 (15) 0.47268 (13) 0.0358 (4)
C18 0.4362 (2) 0.63846 (15) 0.48859 (13) 0.0356 (4)
C19 0.5493 (2) 0.55926 (16) 0.58125 (13) 0.0421 (4)
H19C 0.5829 0.5982 0.6360 0.063*
C20 0.3879 (3) 0.57685 (16) 0.40750 (14) 0.0426 (4)
H20B 0.3125 0.6281 0.3452 0.064*
C21 0.3492 (5) 0.6260 (3) −0.1553 (2) 0.0971 (9)
H21A 0.2685 0.6545 −0.0979 0.117*
H21B 0.4481 0.5516 −0.1190 0.117*
H21C 0.2739 0.5965 −0.2043 0.174 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1004 (12) 0.0687 (9) 0.0363 (7) −0.0341 (8) 0.0012 (7) −0.0157 (7)
N1 0.0571 (9) 0.0468 (8) 0.0349 (8) −0.0070 (7) −0.0014 (7) −0.0143 (6)
N2 0.0505 (9) 0.0457 (8) 0.0305 (7) −0.0023 (7) −0.0035 (6) −0.0115 (6)
N3 0.0500 (8) 0.0365 (7) 0.0327 (7) −0.0029 (6) −0.0045 (6) −0.0097 (6)
N4 0.0495 (8) 0.0389 (8) 0.0280 (7) −0.0082 (6) −0.0005 (6) −0.0093 (6)
C1 0.0525 (11) 0.0401 (9) 0.0406 (9) −0.0095 (8) 0.0004 (8) −0.0138 (7)
C2 0.0608 (13) 0.0566 (12) 0.0539 (12) −0.0086 (10) 0.0084 (10) −0.0195 (9)
C3 0.0517 (12) 0.0574 (12) 0.0775 (15) −0.0048 (10) 0.0052 (11) −0.0226 (11)
C4 0.0532 (12) 0.0514 (11) 0.0690 (14) −0.0085 (9) −0.0142 (10) −0.0125 (10)
C5 0.0556 (12) 0.0501 (11) 0.0451 (10) −0.0100 (9) −0.0089 (8) −0.0126 (8)
C6 0.0481 (10) 0.0373 (9) 0.0392 (9) −0.0085 (7) −0.0028 (7) −0.0117 (7)
C7 0.0546 (10) 0.0354 (8) 0.0315 (8) −0.0086 (7) −0.0031 (7) −0.0100 (7)
C8 0.0524 (10) 0.0336 (8) 0.0320 (9) −0.0073 (7) −0.0060 (7) −0.0087 (7)
C9 0.0550 (11) 0.0481 (10) 0.0310 (9) −0.0064 (8) 0.0005 (7) −0.0090 (7)
C10 0.0585 (11) 0.0451 (10) 0.0281 (8) −0.0057 (8) −0.0069 (8) −0.0063 (7)
C11 0.0417 (9) 0.0366 (9) 0.0400 (9) −0.0066 (7) −0.0033 (7) −0.0108 (7)
C12 0.0682 (13) 0.0429 (10) 0.0471 (11) −0.0068 (9) −0.0139 (9) −0.0063 (8)
C13 0.0660 (13) 0.0350 (10) 0.0711 (14) −0.0029 (9) −0.0159 (10) −0.0092 (9)
C14 0.0553 (12) 0.0420 (10) 0.0718 (14) −0.0055 (9) −0.0010 (10) −0.0254 (9)
C15 0.0542 (11) 0.0471 (10) 0.0491 (10) −0.0115 (8) 0.0049 (8) −0.0222 (8)
C16 0.0392 (9) 0.0377 (9) 0.0386 (9) −0.0096 (7) 0.0021 (7) −0.0118 (7)
C17 0.0380 (9) 0.0388 (9) 0.0313 (8) −0.0075 (7) −0.0006 (6) −0.0109 (7)
C18 0.0380 (9) 0.0366 (8) 0.0313 (8) −0.0063 (7) −0.0011 (7) −0.0082 (7)
C19 0.0541 (11) 0.0405 (9) 0.0332 (9) −0.0089 (8) −0.0084 (7) −0.0122 (7)
C20 0.0526 (10) 0.0392 (9) 0.0337 (9) −0.0063 (8) −0.0122 (7) −0.0064 (7)
C21 0.141 (3) 0.107 (2) 0.0643 (16) −0.072 (2) 0.0164 (16) −0.0224 (15)

Geometric parameters (Å, °)

O1—C21 1.391 (3) C9—C10 1.384 (3)
O1—H1 0.93 (3) C9—H9A 0.9300
N1—C7 1.331 (2) C10—C8i 1.400 (2)
N1—C1 1.391 (2) C10—H10A 0.9300
N2—C7 1.368 (2) C11—C16 1.403 (2)
N2—C6 1.378 (2) C11—C12 1.403 (2)
N2—H2A 0.8600 C12—C13 1.380 (3)
N3—C17 1.328 (2) C12—H12A 0.9300
N3—C11 1.391 (2) C13—C14 1.399 (3)
N4—C17 1.3640 (19) C13—H13A 0.9300
N4—C16 1.385 (2) C14—C15 1.376 (3)
N4—H4A 0.8600 C14—H14A 0.9300
C1—C2 1.401 (3) C15—C16 1.395 (2)
C1—C6 1.408 (2) C15—H15A 0.9300
C2—C3 1.377 (3) C17—C18 1.475 (2)
C2—H2B 0.9300 C18—C19 1.395 (2)
C3—C4 1.398 (3) C18—C20 1.402 (2)
C3—H3B 0.9300 C19—C20ii 1.386 (2)
C4—C5 1.385 (3) C19—H19C 0.9300
C4—H4B 0.9300 C20—C19ii 1.386 (2)
C5—C6 1.393 (2) C20—H20B 0.9300
C5—H5A 0.9300 C21—H21A 0.9600
C7—C8 1.469 (2) C21—H21B 0.9600
C8—C10i 1.400 (2) C21—H21C 0.9600
C8—C9 1.400 (2)
C21—O1—H1 109.8 (16) C8i—C10—H10A 119.7
C7—N1—C1 104.98 (14) N3—C11—C16 110.02 (14)
C7—N2—C6 107.32 (14) N3—C11—C12 130.11 (16)
C7—N2—H2A 126.3 C16—C11—C12 119.85 (16)
C6—N2—H2A 126.3 C13—C12—C11 117.72 (18)
C17—N3—C11 104.91 (13) C13—C12—H12A 121.1
C17—N4—C16 107.26 (13) C11—C12—H12A 121.1
C17—N4—H4A 126.4 C12—C13—C14 121.53 (18)
C16—N4—H4A 126.4 C12—C13—H13A 119.2
N1—C1—C2 130.63 (17) C14—C13—H13A 119.2
N1—C1—C6 109.80 (15) C15—C14—C13 121.84 (17)
C2—C1—C6 119.57 (17) C15—C14—H14A 119.1
C3—C2—C1 117.88 (19) C13—C14—H14A 119.1
C3—C2—H2B 121.1 C14—C15—C16 116.80 (17)
C1—C2—H2B 121.1 C14—C15—H15A 121.6
C2—C3—C4 121.92 (19) C16—C15—H15A 121.6
C2—C3—H3B 119.0 N4—C16—C15 132.62 (16)
C4—C3—H3B 119.0 N4—C16—C11 105.12 (14)
C5—C4—C3 121.46 (19) C15—C16—C11 122.22 (16)
C5—C4—H4B 119.3 N3—C17—N4 112.68 (14)
C3—C4—H4B 119.3 N3—C17—C18 123.53 (14)
C4—C5—C6 116.64 (18) N4—C17—C18 123.74 (14)
C4—C5—H5A 121.7 C19—C18—C20 118.34 (15)
C6—C5—H5A 121.7 C19—C18—C17 122.54 (14)
N2—C6—C5 132.09 (16) C20—C18—C17 119.12 (14)
N2—C6—C1 105.38 (15) C20ii—C19—C18 120.63 (15)
C5—C6—C1 122.52 (17) C20ii—C19—H19C 119.7
N1—C7—N2 112.51 (15) C18—C19—H19C 119.7
N1—C7—C8 125.12 (15) C19ii—C20—C18 121.03 (15)
N2—C7—C8 122.36 (15) C19ii—C20—H20B 119.5
C10i—C8—C9 118.54 (16) C18—C20—H20B 119.5
C10i—C8—C7 121.45 (15) O1—C21—H21A 109.0
C9—C8—C7 120.00 (16) O1—C21—H21B 108.1
C10—C9—C8 120.80 (16) H21A—C21—H21B 107.6
C10—C9—H9A 119.6 O1—C21—H21C 114.6
C8—C9—H9A 119.6 H21A—C21—H21C 108.7
C9—C10—C8i 120.66 (15) H21B—C21—H21C 108.7
C9—C10—H10A 119.7

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.93 (3) 1.93 (3) 2.829 (2) 162 (2)
N2—H2A···N3 0.86 2.03 2.873 (2) 168.
N4—H4A···O1iii 0.86 1.99 2.855 (2) 179.

Symmetry codes: (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2370).

References

  1. Bei, F., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718–719.
  2. Berkel, P. M. van, Dijkstra, D. J., Driessen, W. L., Reedijk, J. & Sherrington, D. C. (1995). React. Funct. Polym 28, 39–54.
  3. Dinolfo, P. H., Benkstein, K. D., Stern, C. L. & Hupp, J. T. (2005). Inorg. Chem. 44, 8707–8714. [DOI] [PubMed]
  4. Hoorn, H. J., Joode, P., Driessen, W. L. & Reedijk, J. (1995). React. Funct. Polym. 27, 223–235.
  5. Matthews, C. C., Elsegood, J. W., Leese, M. R. J., Thorp, T. A., Thornton, D. P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531–1538.
  6. Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23–30.
  7. Rigaku (2002). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Salunke, N. M., Revankar, V. K. & Mahale, V. B. (1994). Transition Met. Chem. 19, 53–56.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra, C. C. & Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713–1716. [DOI] [PMC free article] [PubMed]
  11. Wu, D.-H. & Hu, L. (2009). Acta Cryst. E65, o522. [DOI] [PMC free article] [PubMed]
  12. Yang, Q. F., Cui, X. B., Yu, J. H., Lu, J., Yu, X. Y., Zhang, X., Xu, J. Q., Hou, Q. & Wang, T. G. (2008). CrystEngComm, 10, 1534–1541.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049238/bg2370sup1.cif

e-67-00o90-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049238/bg2370Isup2.hkl

e-67-00o90-Isup2.hkl (154KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES