Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o97. doi: 10.1107/S1600536810049366

Bis(2,4-dimeth­oxy­phen­yl)(phen­yl)phosphine selenide

Alfred Muller a,*
PMCID: PMC3050267  PMID: 21522806

Abstract

In the title mol­ecule, C22H23O4PSe, the P atom has a distorted tetra­hedral environment formed by the selenide atom [P=Se = 2.1219 (5) Å] and three aryl rings. The orientations of the meth­oxy groups in the two 2,4-dimeth­oxy­phenyl ligands are distinct, as seen from the torsion angles: C—C—O—C = 14.7 (3) and 175.97 (17)° in one ligand, and −9.1 (2) and 5.1 (3)° in the other. In the crystal, weak inter­molecular C—H⋯Se inter­actions link the mol­ecules into zigzag chains propagated in [010].

Related literature

For background to studies aimed at understanding the trans­ition metal–phosphorus bond, see: Muller et al. (2006); Roodt et al. (2003) Tolman (1977). As part of this systematic investigation we are now also studying selenium-bonded phosphorus ligands, see: Muller et al. (2008). For the synthesis of ortho-substituted aryl­alkyl­phosphanes, see: Riihimäki et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-00o97-scheme1.jpg

Experimental

Crystal data

  • C22H23O4PSe

  • M r = 461.33

  • Monoclinic, Inline graphic

  • a = 9.3840 (13) Å

  • b = 13.3023 (14) Å

  • c = 16.667 (2) Å

  • β = 95.311 (4)°

  • V = 2071.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 150 K

  • 0.34 × 0.28 × 0.06 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.566, T max = 0.891

  • 24588 measured reflections

  • 5151 independent reflections

  • 4413 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.078

  • S = 1.04

  • 5151 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049366/cv5007sup1.cif

e-67-00o97-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049366/cv5007Isup2.hkl

e-67-00o97-Isup2.hkl (247.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯Sei 0.98 2.94 3.8774 (19) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

supplementary crystallographic information

Comment

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own, with various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we are now also studying selenium bonded phosphorus ligands (see Muller et al., 2008) This way there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here is the first single-crystal structure of the compound PPh(2,4-OMe-C6H3)2 to date (Cambridge Structural Database; Version 5.31, update of August; Allen, 2002).

Crystals of the title compound, (I), packs in the P21/c (Z=4) space group with the molecules lying on general positions. All geometrical features of the molecule (Allen, 2002) are as expected with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1 and Table 1). The cone angle was found to be 176.9° when the Se—P distance is adjusted to 2.28 Å (the default value used in Tolman, 1977) Two different orientations for the methoxy moieties are noted and is probably due to some weak interactions (Table 1) forcing it into the conformations observed.

Experimental

PPh(2,4-OMe-C6H3)2 were prepared either by direct ortho metallation of anisole with BuLi followed the addition of the appropriate chlorophosphine or by metal/halogen exchange between BuLi and 1-bromo-2,4-dimethoxybenzene followed by the addition of PPhCl2 according to established methods (Riihimäki et al. 2003).

Eqimolar amounts of KSeCN and the PPh(2,4-OMe-C6H3)2 compound (ca 0.04 mmol) were dissolved in the minimum amounts of methanol (10 – 20 ml). The KSeCN solution was added dropwise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study.

Analytical data: 31P {H} NMR (CDCl3, 121.42 MHz): For PPh(2,4-OMe-C6H3)2δ = -36.54 (s) For SePPh(2,4-OMe-C6H3)2δ = 20.45 (t, 1JP—Se = 717.5 Hz)

Refinement

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) respectively, with torsion angles refined from the electron density for the methyl groups. The highest residual electron density was located 0.64 Å from H25.

Figures

Fig. 1.

Fig. 1.

View of (I) (50% probability displacement ellipsoids). H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring.

Crystal data

C22H23O4PSe F(000) = 944
Mr = 461.33 Dx = 1.479 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5013 reflections
a = 9.3840 (13) Å θ = 2.7–28.3°
b = 13.3023 (14) Å µ = 1.92 mm1
c = 16.667 (2) Å T = 150 K
β = 95.311 (4)° Plate, colourless
V = 2071.6 (4) Å3 0.34 × 0.28 × 0.06 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer 5151 independent reflections
graphite 4413 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1 Rint = 0.030
ω & φ scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.566, Tmax = 0.891 k = −17→16
24588 measured reflections l = −22→22

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0398P)2 + 1.21P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 1.41 e Å3
5151 reflections Δρmin = −0.20 e Å3
257 parameters

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1125 frames were collected with a frame width of 0.5° covering up to θ = 28.25° with 99.7% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Se 0.31675 (2) 0.914803 (13) 0.136815 (10) 0.02690 (7)
P 0.33832 (5) 0.78342 (3) 0.06676 (2) 0.01886 (10)
C11 0.22855 (19) 0.79244 (13) −0.02854 (9) 0.0193 (3)
C12 0.24045 (19) 0.72308 (12) −0.09174 (10) 0.0207 (3)
C13 0.1607 (2) 0.73473 (14) −0.16557 (10) 0.0234 (4)
H13 0.1699 0.6879 −0.2078 0.028*
C14 0.06675 (19) 0.81588 (14) −0.17707 (10) 0.0229 (3)
C15 0.05290 (19) 0.88571 (14) −0.11587 (11) 0.0234 (3)
H15 −0.0107 0.9411 −0.1241 0.028*
C16 0.13423 (19) 0.87254 (13) −0.04265 (10) 0.0221 (3)
H16 0.1251 0.9199 −0.0007 0.027*
C1 0.3774 (3) 0.58741 (14) −0.13985 (12) 0.0330 (5)
H1A 0.2998 0.5417 −0.1591 0.049*
H1B 0.4627 0.5483 −0.1213 0.049*
H1C 0.3996 0.632 −0.1838 0.049*
O1 0.33407 (15) 0.64596 (9) −0.07480 (7) 0.0271 (3)
C2 −0.1108 (2) 0.89791 (18) −0.26447 (13) 0.0367 (5)
H2A −0.1793 0.8935 −0.2237 0.055*
H2B −0.1616 0.89 −0.3182 0.055*
H2C −0.0633 0.9636 −0.2607 0.055*
O2 −0.00636 (14) 0.82027 (11) −0.25114 (8) 0.0297 (3)
C21 0.28849 (19) 0.66839 (13) 0.11441 (10) 0.0206 (3)
C22 0.35987 (19) 0.63756 (13) 0.18822 (10) 0.0210 (3)
C23 0.3213 (2) 0.54914 (13) 0.22579 (10) 0.0229 (3)
H23 0.371 0.5286 0.2753 0.028*
C24 0.2101 (2) 0.49165 (13) 0.19012 (11) 0.0254 (4)
C25 0.1364 (2) 0.52101 (14) 0.11711 (11) 0.0265 (4)
H25 0.0601 0.4812 0.0929 0.032*
C26 0.1761 (2) 0.60867 (14) 0.08048 (10) 0.0241 (4)
H26 0.1257 0.6288 0.031 0.029*
C3 0.5321 (2) 0.67676 (15) 0.29847 (11) 0.0275 (4)
H3A 0.4586 0.6798 0.3365 0.041*
H3B 0.6066 0.7267 0.3136 0.041*
H3C 0.5748 0.6095 0.2998 0.041*
O3 0.46854 (14) 0.69765 (10) 0.21903 (7) 0.0273 (3)
C4 0.2265 (3) 0.37696 (16) 0.30097 (12) 0.0376 (5)
H4A 0.3269 0.3586 0.2978 0.056*
H4B 0.1746 0.3194 0.3206 0.056*
H4C 0.2209 0.4336 0.3381 0.056*
O4 0.16333 (17) 0.40516 (10) 0.22236 (9) 0.0352 (3)
C31 0.52039 (19) 0.76605 (13) 0.04006 (10) 0.0206 (3)
C32 0.5942 (2) 0.84791 (14) 0.01235 (11) 0.0258 (4)
H32 0.5517 0.9128 0.011 0.031*
C33 0.7297 (2) 0.83512 (16) −0.01327 (12) 0.0315 (4)
H33 0.7795 0.8912 −0.0323 0.038*
C35 0.7206 (2) 0.65944 (16) 0.01708 (12) 0.0321 (4)
H35 0.7641 0.5949 0.0192 0.039*
C36 0.5850 (2) 0.67188 (14) 0.04235 (11) 0.0276 (4)
H36 0.5358 0.6156 0.0614 0.033*
C34 0.7925 (2) 0.74100 (17) −0.01121 (12) 0.0336 (4)
H343 0.8849 0.7324 −0.0292 0.04*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Se 0.04157 (12) 0.02049 (10) 0.01806 (10) 0.00414 (7) −0.00027 (7) −0.00378 (6)
P 0.0259 (2) 0.0170 (2) 0.01349 (19) 0.00107 (16) 0.00077 (16) 0.00097 (15)
C11 0.0237 (8) 0.0208 (8) 0.0134 (7) −0.0003 (6) 0.0014 (6) 0.0018 (6)
C12 0.0262 (9) 0.0186 (8) 0.0174 (8) −0.0006 (6) 0.0025 (6) 0.0025 (6)
C13 0.0297 (9) 0.0244 (9) 0.0158 (7) −0.0029 (7) 0.0005 (7) 0.0001 (6)
C14 0.0217 (8) 0.0286 (9) 0.0180 (8) −0.0046 (7) −0.0011 (6) 0.0050 (7)
C15 0.0213 (8) 0.0263 (9) 0.0227 (8) 0.0026 (7) 0.0020 (7) 0.0049 (7)
C16 0.0248 (9) 0.0235 (9) 0.0184 (8) 0.0007 (7) 0.0039 (6) 0.0006 (6)
C1 0.0545 (13) 0.0214 (9) 0.0234 (9) 0.0075 (8) 0.0059 (9) −0.0047 (7)
O1 0.0419 (8) 0.0225 (6) 0.0164 (6) 0.0092 (6) 0.0000 (5) −0.0015 (5)
C2 0.0274 (10) 0.0493 (13) 0.0317 (10) 0.0067 (9) −0.0061 (8) 0.0054 (9)
O2 0.0304 (7) 0.0358 (7) 0.0214 (6) 0.0008 (6) −0.0065 (5) 0.0035 (6)
C21 0.0286 (9) 0.0181 (8) 0.0155 (7) 0.0013 (7) 0.0039 (6) 0.0019 (6)
C22 0.0247 (9) 0.0206 (8) 0.0179 (8) 0.0020 (7) 0.0041 (6) 0.0008 (6)
C23 0.0299 (9) 0.0210 (8) 0.0182 (8) 0.0028 (7) 0.0039 (7) 0.0043 (6)
C24 0.0340 (10) 0.0195 (8) 0.0234 (8) 0.0001 (7) 0.0064 (7) 0.0022 (7)
C25 0.0333 (10) 0.0251 (9) 0.0212 (8) −0.0053 (7) 0.0027 (7) −0.0013 (7)
C26 0.0309 (9) 0.0234 (9) 0.0179 (8) 0.0012 (7) 0.0019 (7) 0.0004 (6)
C3 0.0284 (9) 0.0308 (10) 0.0221 (8) 0.0028 (8) −0.0045 (7) 0.0052 (7)
O3 0.0330 (7) 0.0272 (7) 0.0205 (6) −0.0056 (5) −0.0038 (5) 0.0062 (5)
C4 0.0573 (14) 0.0247 (10) 0.0301 (10) −0.0049 (9) −0.0003 (9) 0.0107 (8)
O4 0.0496 (9) 0.0254 (7) 0.0299 (7) −0.0115 (6) −0.0010 (6) 0.0090 (5)
C31 0.0246 (8) 0.0217 (8) 0.0152 (7) 0.0004 (6) 0.0000 (6) 0.0013 (6)
C32 0.0313 (10) 0.0216 (9) 0.0241 (9) −0.0002 (7) 0.0003 (7) 0.0035 (7)
C33 0.0316 (10) 0.0324 (10) 0.0303 (10) −0.0052 (8) 0.0028 (8) 0.0055 (8)
C35 0.0351 (11) 0.0305 (10) 0.0313 (10) 0.0093 (8) 0.0060 (8) 0.0051 (8)
C36 0.0335 (10) 0.0238 (9) 0.0260 (9) 0.0034 (7) 0.0059 (7) 0.0068 (7)
C34 0.0282 (10) 0.0425 (12) 0.0308 (10) 0.0039 (9) 0.0065 (8) 0.0052 (9)

Geometric parameters (Å, °)

Se—P 2.1219 (5) C23—C24 1.383 (3)
P—C21 1.8054 (17) C23—H23 0.95
P—C11 1.8154 (17) C24—O4 1.359 (2)
P—C31 1.8196 (18) C24—C25 1.398 (3)
C11—C16 1.391 (2) C25—C26 1.383 (3)
C11—C12 1.412 (2) C25—H25 0.95
C12—O1 1.363 (2) C26—H26 0.95
C12—C13 1.389 (2) C3—O3 1.428 (2)
C13—C14 1.395 (3) C3—H3A 0.98
C13—H13 0.95 C3—H3B 0.98
C14—O2 1.357 (2) C3—H3C 0.98
C14—C15 1.395 (3) C4—O4 1.437 (2)
C15—C16 1.389 (2) C4—H4A 0.98
C15—H15 0.95 C4—H4B 0.98
C16—H16 0.95 C4—H4C 0.98
C1—O1 1.425 (2) C31—C36 1.391 (3)
C1—H1A 0.98 C31—C32 1.392 (2)
C1—H1B 0.98 C32—C33 1.389 (3)
C1—H1C 0.98 C32—H32 0.95
C2—O2 1.427 (2) C33—C34 1.383 (3)
C2—H2A 0.98 C33—H33 0.95
C2—H2B 0.98 C35—C34 1.383 (3)
C2—H2C 0.98 C35—C36 1.387 (3)
C21—C26 1.397 (3) C35—H35 0.95
C21—C22 1.406 (2) C36—H36 0.95
C22—O3 1.359 (2) C34—H343 0.95
C22—C23 1.396 (2)
C21—P—C11 106.96 (8) C24—C23—C22 119.33 (16)
C21—P—C31 106.69 (8) C24—C23—H23 120.3
C11—P—C31 105.31 (8) C22—C23—H23 120.3
C21—P—Se 114.47 (6) O4—C24—C23 123.80 (17)
C11—P—Se 110.59 (6) O4—C24—C25 115.40 (17)
C31—P—Se 112.25 (6) C23—C24—C25 120.80 (16)
C16—C11—C12 117.86 (15) C26—C25—C24 119.22 (17)
C16—C11—P 119.94 (13) C26—C25—H25 120.4
C12—C11—P 122.12 (13) C24—C25—H25 120.4
O1—C12—C13 123.50 (15) C25—C26—C21 121.63 (16)
O1—C12—C11 115.53 (15) C25—C26—H26 119.2
C13—C12—C11 120.97 (16) C21—C26—H26 119.2
C12—C13—C14 119.33 (16) O3—C3—H3A 109.5
C12—C13—H13 120.3 O3—C3—H3B 109.5
C14—C13—H13 120.3 H3A—C3—H3B 109.5
O2—C14—C15 124.28 (17) O3—C3—H3C 109.5
O2—C14—C13 114.71 (16) H3A—C3—H3C 109.5
C15—C14—C13 121.01 (16) H3B—C3—H3C 109.5
C16—C15—C14 118.54 (17) C22—O3—C3 118.07 (14)
C16—C15—H15 120.7 O4—C4—H4A 109.5
C14—C15—H15 120.7 O4—C4—H4B 109.5
C15—C16—C11 122.29 (16) H4A—C4—H4B 109.5
C15—C16—H16 118.9 O4—C4—H4C 109.5
C11—C16—H16 118.9 H4A—C4—H4C 109.5
O1—C1—H1A 109.5 H4B—C4—H4C 109.5
O1—C1—H1B 109.5 C24—O4—C4 117.42 (16)
H1A—C1—H1B 109.5 C36—C31—C32 118.98 (17)
O1—C1—H1C 109.5 C36—C31—P 121.64 (14)
H1A—C1—H1C 109.5 C32—C31—P 119.29 (14)
H1B—C1—H1C 109.5 C33—C32—C31 120.27 (18)
C12—O1—C1 118.54 (14) C33—C32—H32 119.9
O2—C2—H2A 109.5 C31—C32—H32 119.9
O2—C2—H2B 109.5 C34—C33—C32 120.24 (18)
H2A—C2—H2B 109.5 C34—C33—H33 119.9
O2—C2—H2C 109.5 C32—C33—H33 119.9
H2A—C2—H2C 109.5 C34—C35—C36 120.01 (19)
H2B—C2—H2C 109.5 C34—C35—H35 120
C14—O2—C2 117.07 (15) C36—C35—H35 120
C26—C21—C22 117.95 (15) C35—C36—C31 120.61 (18)
C26—C21—P 121.36 (13) C35—C36—H36 119.7
C22—C21—P 120.67 (14) C31—C36—H36 119.7
O3—C22—C23 122.88 (15) C33—C34—C35 119.89 (19)
O3—C22—C21 116.05 (15) C33—C34—H343 120.1
C23—C22—C21 121.05 (16) C35—C34—H343 120.1
C21—P—C11—C16 118.16 (14) P—C21—C22—O3 −1.7 (2)
C31—P—C11—C16 −128.58 (14) C26—C21—C22—C23 1.1 (3)
Se—P—C11—C16 −7.10 (16) P—C21—C22—C23 179.51 (13)
C21—P—C11—C12 −65.25 (16) O3—C22—C23—C24 −179.45 (16)
C31—P—C11—C12 48.01 (16) C21—C22—C23—C24 −0.7 (3)
Se—P—C11—C12 169.49 (13) C22—C23—C24—O4 −179.15 (17)
C16—C11—C12—O1 −179.90 (15) C22—C23—C24—C25 0.1 (3)
P—C11—C12—O1 3.4 (2) O4—C24—C25—C26 179.37 (17)
C16—C11—C12—C13 0.1 (3) C23—C24—C25—C26 0.0 (3)
P—C11—C12—C13 −176.53 (14) C24—C25—C26—C21 0.4 (3)
O1—C12—C13—C14 179.58 (16) C22—C21—C26—C25 −0.9 (3)
C11—C12—C13—C14 −0.4 (3) P—C21—C26—C25 −179.33 (14)
C12—C13—C14—O2 −179.81 (16) C23—C22—O3—C3 −9.1 (2)
C12—C13—C14—C15 0.6 (3) C21—C22—O3—C3 172.14 (16)
O2—C14—C15—C16 −179.96 (16) C23—C24—O4—C4 5.1 (3)
C13—C14—C15—C16 −0.4 (3) C25—C24—O4—C4 −174.23 (18)
C14—C15—C16—C11 0.1 (3) C21—P—C31—C36 12.52 (17)
C12—C11—C16—C15 0.1 (3) C11—P—C31—C36 −100.93 (16)
P—C11—C16—C15 176.81 (14) Se—P—C31—C36 138.67 (14)
C13—C12—O1—C1 14.7 (3) C21—P—C31—C32 −171.12 (14)
C11—C12—O1—C1 −165.27 (17) C11—P—C31—C32 75.43 (15)
C15—C14—O2—C2 −4.4 (3) Se—P—C31—C32 −44.96 (15)
C13—C14—O2—C2 175.97 (17) C36—C31—C32—C33 0.6 (3)
C11—P—C21—C26 −4.58 (17) P—C31—C32—C33 −175.85 (14)
C31—P—C21—C26 −116.89 (15) C31—C32—C33—C34 −0.2 (3)
Se—P—C21—C26 118.29 (14) C34—C35—C36—C31 −0.4 (3)
C11—P—C21—C22 177.05 (14) C32—C31—C36—C35 −0.3 (3)
C31—P—C21—C22 64.74 (16) P—C31—C36—C35 176.06 (15)
Se—P—C21—C22 −60.07 (16) C32—C33—C34—C35 −0.5 (3)
C26—C21—C22—O3 179.91 (15) C36—C35—C34—C33 0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3C···Sei 0.98 2.94 3.8774 (19) 160.

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5007).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.
  8. Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. [DOI] [PubMed]
  9. Riihimäki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jääskeläinen, S., Haukka, M., Krause, A. O. I., Pakkanen, T. A. & Pursiainen, J. T. (2003). J. Mol. Catal. A Chem. 200, 81–94.
  10. Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049366/cv5007sup1.cif

e-67-00o97-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049366/cv5007Isup2.hkl

e-67-00o97-Isup2.hkl (247.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES