Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):m19–m20. doi: 10.1107/S1600536810049779

Poly[[μ2-aqua-tetraaquadi-μ3-malonato-nickel(II)strontium(II)] dihydrate]

Ming-Lin Guo a,*, Long Liu a, Cong-Cong Lu a
PMCID: PMC3050271  PMID: 21522545

Abstract

The unit-cell parameters for the title mixed-metal coordination polymer, {[NiSr(C3H2O4)2(H2O)5]·2H2O}n, which is isostructural with its Co-containing analogue, were reported previously [Gil de Muro et al. (1999). Eur. J. Inorg. Chem. pp. 935–943]; the full crystal structure including a description of the hydrogen bonding is reported here. The Sr2+ ion is bonded to five O atoms from three different malonate dianions and four water mol­ecules, displaying a distorted tricapped trigonal–prismatic coordination geometry. Two malonate dianions, two water mol­ecules and one Ni2+ ion build up a dianionic [Ni(C3H2O4)2(H2O)2]2− unit incorporating a slightly distorted NiO6 octa­hedron, which coordinates to three nearby Sr2+ ions. This arrangement creates a metal-organic framework having a 20-membered ring with four Ni and six Sr atoms lying in the bc plane. The coordinated and uncoordinated water mol­ecules are responsible for the formation of two D5 hydrogen-bonded water chains within the 20-membered ring and they are linked into an R4 water cluster via two bifurcated O—H⋯(O,O) links.

Related literature

For the cobalt-containing analogue of the title compound and the previous unit-cell determination, see: Gil de Muro et al. (1999). For a related structure, see: Gil de Muro et al. (2000). For hydrogen-bonded water clusters, see: Infantes & Motherwell (2002). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-00m19-scheme1.jpg

Experimental

Crystal data

  • [NiSr(C3H2O4)2(H2O)5]·2H2O

  • M r = 476.53

  • Monoclinic, Inline graphic

  • a = 6.7745 (14) Å

  • b = 14.220 (3) Å

  • c = 15.629 (3) Å

  • β = 101.10 (3)°

  • V = 1477.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 294 K

  • 0.12 × 0.06 × 0.04 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.548, T max = 0.712

  • 9983 measured reflections

  • 2609 independent reflections

  • 2235 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.098

  • S = 1.05

  • 2609 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049779/hb5748sup1.cif

e-67-00m19-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049779/hb5748Isup2.hkl

e-67-00m19-Isup2.hkl (128.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sr1—O11 2.556 (2)
Sr1—O12 2.574 (3)
Sr1—O2i 2.581 (3)
Sr1—O6ii 2.598 (3)
Sr1—O13 2.618 (3)
Sr1—O2 2.660 (3)
Sr1—O13iii 2.688 (2)
Sr1—O1 2.751 (3)
Sr1—O5ii 2.816 (3)
Ni1—O4 2.020 (3)
Ni1—O7 2.024 (3)
Ni1—O5 2.026 (2)
Ni1—O1 2.032 (3)
Ni1—O9 2.038 (3)
Ni1—O10 2.064 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15A⋯O14iv 0.84 2.26 2.997 (5) 148
O15—H15A⋯O14 0.84 2.33 2.867 (5) 123
O15—H15B⋯O3v 0.85 2.29 2.881 (7) 127
O14—H14B⋯O8vi 0.86 2.21 3.072 (5) 176
O14—H14A⋯O10ii 0.86 2.14 2.936 (4) 152
O13—H13B⋯O11i 0.85 1.93 2.728 (4) 155
O13—H13A⋯O7iii 0.85 2.01 2.836 (4) 163
O12—H12B⋯O7 0.85 2.42 3.080 (4) 135
O12—H12B⋯O9 0.85 2.36 3.094 (5) 144
O12—H12A⋯O3vii 0.85 1.94 2.772 (4) 166
O11—H11B⋯O8vi 0.85 1.83 2.681 (4) 176
O11—H11A⋯O4ii 0.85 1.89 2.727 (4) 172
O10—H10B⋯O6viii 0.85 1.91 2.728 (4) 162
O10—H10A⋯O3ix 0.85 1.86 2.714 (4) 178
O9—H9B⋯O15 0.85 1.84 2.663 (5) 162
O9—H9A⋯O8vi 0.84 1.81 2.652 (4) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

We thank Tianjin Polytechnic University for financial support.

supplementary crystallographic information

Comment

Here we report the structure of the title compound, (I), [SrNi(mal)2(H2O)5].2H2O (mal = malonate dianion). Although isotypic complex [SrCo(mal)2(H2O)5].2H2O (Gil de Muro et al., 1999) had been reported, the difficulty in locating the water hydrogen atoms prevents from description of hydrogen bonding for the structure. Herein, we report the structure of the title heterobimetallic malonate complex, (I), with dianionic [Ni(C3H2O4)2(H2O)2]2- structure,

The asymmetric unit in the structure of (I) comprises one Sr atom, one [Ni(C3H2O4)2(H2O)2]2- dianion, three coordinated water and two solvent water molecules, and is shown in Fig. 1 in a symmetry-expanded view which displays the full coordination of the Ni and Sr atom. Selected geometric parameters are given in Table 1. The Ni atom has a slightly enlongated axial distortion octahedral coordination. The Ni1 atom deviates by 0.0251 (4)Å from the least-squares plane defined by four O atoms subtended by the two ligands at its metal atom. The O—Ni—O angles are close to 90°, the mean Ni1—O bond distance are 2.026 (2) Å. These are somewhat shorter than those (2.051 (3) Å) in [CaNi(mal)2(H2O)2].2H2O (Gil de Muro et al., 2000), while the Ni—Owater bonds except for Ni1—O9(2.038 (3) Å) are in good agreement with those (2.066 (4) Å) observed for above-mentioned compounds. The variability of the coordination modes of malonate ligands, monodentate, bidentate chelating, chelated six-membered and bridging bonding modes, are all present. As can be seen in Table 1, the O—C—O angles for carboxylate groups of two malonates range from 120.9 (3) to 123.9 (4)°, all of the C—O bond distances are in the range 1.246 (4)–1.265 (4)Å except the shortest O7—C6 being 1.233 (4)Å and the longest O1—C1 being 1.272 (4) Å. These indicate that all of carboxylate groups of malonates are somewhat delocalized.

The coordination polyhedron around the Sr atom is a nine-coordinate distorted tricapped trigonal prism defined by five O atoms from three carboxylate groups and four O atoms from coordinated water molecules. Two of the three carboxylate groups coordinate with the Sr atom in a chelate fashion, whereas the other one is in a bridging mode and serve as bridges between two Sr atoms. Atoms O1, O2, O13 and O13iii (see Fig. 1 for symmetry codes) are coplanar within deviations of less than 0.128 (2)Å and form one uncapped rectangular face. Atoms O2, O13, O5ii and O11 are coplanar, with no deviations of more than 0.150 (2) Å, and form the second rectangular face, with O6ii and O2i as the capping atoms. Atoms O1, O11, O5ii and O13iii are in the same plane with displacements of less than 0.142 (3) Å, forming the third rectangular face capped by atom O12. The angle between the planes defined by the triangles O1/O2/O11 and O5ii/O13/O13iii is 2.67 (14)°. The average Sr1—O distance are 2.649 (2) Å, slightly shorter than those in [SrCo(mal)2(H2O)5].2H2O (Gil de Muro et al., 1999). The strontium polyhedra are linked to a dimer via bridge atoms O2 and O2i as a common edge. The dianionic [Ni(mal)2(H2O)2]2- act as building blocks to coordinating to three Sr atoms (Fig. 1) via atoms O5, O6, O1 and O2. As the result, each group of four atoms Ni, and six Sr build up a decanuclear 20-membered ring at bc plane direction. These are further joined into a two-dimensional layer (Fig. 2). The Sr dimers are further linked between them along the a direction via other common edge, O13—O13iii, due to the presence of an inversion center at the middle point of these edges, forming a zigzag SrO7 chain. And as chains of edge-sharing Sr polyhedra propagate in the direction of the a axis and strontium polyhedra chains are linked between them by corner-sharing NiO6 distorted octahedra, thus, three-dimensional metal-organic framework is completed.

Solvent water molecules are embed in such decanuclear 20-membered rings composed of four [Ni(mal)2(H2O)2]2- connecting the Sr dimers. Hydrogen-bonding interactions between them are responsible for the conformation of a R4 water cluster with overhanging water molecules (Infantes & Motherwell, 2002). The detailed structure of the water cluster is shown in Figure 2. First, the solvent water molecules are linked into a D5 water chain of O12, O9, O15, O14 and O10ii. Atom H15A as a bifurcated hydrogen one, the four solvent water molecules are further connected via H15A and symmetry-expanded hydrogen bonds and produce this R4 water cluster. As can be seen from Table 2 and Figure 2, within the water cluster, water molecules O14 displays tetrahedral geometry with double hydrogen-bond donors and acceptors. The O···O distances are in range of 2.663 (5)–3.094 (5) Å with an average of 2.89 (1) Å.

The dianionic [Ni(mal)2(H2O)2]2- act as both hydrogen-bonded donors and acceptors and engage in distinct hydrogen-bonding interactions (Fig. 3 and Table 2). Except for their conformation of R22(12) ring between two adjacent dianions, at least there are the following hydrogen-bonded graph sets (Bernstein, et al., 1995): (1) the non-coordinated O8 atom is involved in forming strong hydrogen bond O11—H11B···O8vii and responsible for the conformation of two 8-membered hydrogen bonded ring R33(8) and R32(8); (2) hydrogen bond O12—H12B···O9 engage in the formation of a S(6) ring and a three-center hydrogen bond R12(4) via atom O7. (3) H atoms of water molecule O9 act as proton donors, coordinate to O15 and O8vii as acceptors, and further via water molecule O14, build up an 8-membered ring R43(8) motif; (4) hydrogen bond O10—H10B···O6ix participate in the conformation of an 8-membered hydrogen bonded ring R22(8) and a S(8) hydrogen bonded ring motif via two Sr atoms and one Ni atom. In addition, around the Sr dimers there is a S(6) ring hydrogen-bonded graph set via O13—H13B···O11i hydrogen bonds. These play an important role in manipulation of the three-dimensional metal-organic framework with pore.

Experimental

The title complex was prepared under continuous stirring with successive addition of CH2(COONa)2.H2O (0.33 g, 2 mmol), NiCl2.6H2O (0.24 g, 1 mmol), and Sr(NO3)2 (0.21 g, 1 mmol) to distilled water (10 ml) at room temperature. After filtration, slow evaporation over a period of two days at room temperature provided pale green prisms of (I).

Refinement

The H atoms of the water molecule were found in difference Fourier maps. However, during refinement, they were fixed at O–H distances of 0.85 Å and their Uiso values were set at 1.2 Ueq(O). The H atoms of CH2 groups were treated as riding, with C–H = 0.97 Å, and Uiso (H) = 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the structure of (I), showing the coordination environment for Sr and Ni atoms; displacement ellipsoids were drawn at the 30% probability level [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, -y + 1/2, z + 1/2; (iii) -x + 2, -y + 1, -z + 1; (iv) x, -y + 1/2, z - 1/2].

Fig. 2.

Fig. 2.

The packing diagram of (I), viewed down the a axis, showing its 20-membered structure and water cluster in the direaction of bc plane.

Fig. 3.

Fig. 3.

The packing diagram of (I), showing hydrogen-bonding interactions between the [Ni(mal)2(H2O)2]2- dianions and water molecules, viewed down the c axis.

Crystal data

[NiSr(C3H2O4)2(H2O)5]·2H2O F(000) = 960
Mr = 476.53 Dx = 2.142 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 11235 reflections
a = 6.7745 (14) Å θ = 1.3–28.2°
b = 14.220 (3) Å µ = 4.97 mm1
c = 15.629 (3) Å T = 294 K
β = 101.10 (3)° Prism, green
V = 1477.4 (5) Å3 0.12 × 0.06 × 0.04 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer 2609 independent reflections
Radiation source: rotating anode 2235 reflections with I > 2σ(I)
confocal Rint = 0.045
Detector resolution: 28.57 pixels mm-1 θmax = 25.0°, θmin = 2.0°
ω scans h = −7→8
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −13→16
Tmin = 0.548, Tmax = 0.712 l = −18→18
9983 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2] where P = (Fo2 + 2Fc2)/3
2609 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sr1 0.76917 (4) 0.41527 (3) 0.54827 (2) 0.03336 (14)
Ni1 0.77798 (6) 0.26471 (3) 0.29429 (3) 0.03640 (16)
O1 0.6901 (3) 0.35987 (19) 0.37645 (16) 0.0383 (6)
O2 0.4937 (4) 0.46958 (19) 0.41211 (16) 0.0376 (6)
O3 0.2090 (5) 0.3344 (3) 0.1625 (3) 0.0892 (15)
O4 0.4994 (4) 0.2690 (2) 0.21955 (17) 0.0426 (6)
O5 0.8646 (4) 0.16635 (19) 0.21529 (16) 0.0376 (6)
O6 1.0210 (4) 0.03826 (19) 0.18917 (16) 0.0393 (6)
O7 1.0539 (4) 0.2606 (2) 0.37197 (18) 0.0466 (7)
O8 1.3529 (4) 0.2065 (2) 0.4271 (2) 0.0600 (9)
C1 0.5431 (5) 0.4164 (3) 0.3563 (2) 0.0353 (8)
C2 0.4297 (6) 0.4246 (3) 0.2641 (3) 0.0430 (9)
H2A 0.5089 0.4630 0.2320 0.052*
H2B 0.3057 0.4584 0.2650 0.052*
C3 0.3765 (5) 0.3345 (3) 0.2136 (3) 0.0468 (10)
C4 1.0035 (5) 0.1073 (3) 0.2363 (2) 0.0372 (8)
C5 1.1565 (7) 0.1145 (4) 0.3191 (3) 0.0618 (13)
H5A 1.2856 0.1000 0.3042 0.074*
H5B 1.1275 0.0639 0.3565 0.074*
C6 1.1875 (5) 0.2012 (3) 0.3748 (2) 0.0399 (9)
O9 0.6818 (5) 0.1619 (2) 0.3674 (2) 0.0703 (11)
H9A 0.5832 0.1782 0.3899 0.084*
H9B 0.7235 0.1063 0.3805 0.084*
O10 0.8706 (3) 0.37394 (19) 0.22446 (16) 0.0380 (6)
H10A 0.9763 0.3629 0.2042 0.046*
H10B 0.8794 0.4243 0.2542 0.046*
O11 0.4547 (3) 0.32253 (19) 0.56368 (16) 0.0384 (6)
H11A 0.4583 0.2973 0.6130 0.046*
H11B 0.4168 0.2852 0.5212 0.046*
O12 0.8968 (4) 0.24515 (19) 0.54373 (17) 0.0418 (6)
H12A 1.0020 0.2298 0.5801 0.050*
H12B 0.8940 0.2226 0.4933 0.050*
O13 0.8855 (4) 0.58384 (18) 0.51241 (16) 0.0380 (6)
H13A 0.9186 0.6223 0.5544 0.046*
H13B 0.7751 0.5986 0.4787 0.046*
O14 0.5916 (6) 0.0732 (3) 0.5637 (2) 0.0772 (11)
H14A 0.6736 0.1063 0.6009 0.093*
H14B 0.5234 0.1080 0.5238 0.093*
O15 0.8248 (5) 0.0017 (3) 0.4433 (2) 0.0769 (11)
H15A 0.7252 −0.0157 0.4633 0.092*
H15B 0.8963 −0.0419 0.4283 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.0315 (2) 0.0324 (2) 0.0327 (2) 0.00063 (12) −0.00229 (14) −0.00001 (13)
Ni1 0.0387 (3) 0.0331 (3) 0.0342 (3) 0.0033 (2) −0.0009 (2) −0.0006 (2)
O1 0.0380 (13) 0.0386 (16) 0.0344 (13) 0.0057 (11) −0.0024 (11) −0.0025 (11)
O2 0.0367 (13) 0.0369 (16) 0.0363 (13) 0.0007 (11) −0.0004 (11) −0.0015 (12)
O3 0.0387 (16) 0.121 (4) 0.097 (3) 0.0142 (19) −0.0150 (17) −0.071 (3)
O4 0.0397 (14) 0.0407 (16) 0.0439 (15) −0.0028 (12) −0.0005 (12) −0.0084 (12)
O5 0.0378 (13) 0.0351 (16) 0.0369 (13) 0.0038 (11) −0.0004 (10) −0.0023 (11)
O6 0.0427 (14) 0.0339 (15) 0.0374 (14) 0.0031 (11) −0.0015 (11) −0.0030 (12)
O7 0.0522 (16) 0.0419 (17) 0.0385 (14) 0.0117 (13) −0.0093 (12) −0.0049 (12)
O8 0.0359 (14) 0.070 (2) 0.0674 (19) 0.0041 (14) −0.0073 (14) −0.0353 (18)
C1 0.0328 (17) 0.033 (2) 0.037 (2) −0.0026 (15) 0.0001 (15) 0.0012 (16)
C2 0.040 (2) 0.046 (3) 0.039 (2) 0.0068 (17) −0.0019 (16) −0.0027 (18)
C3 0.0317 (18) 0.058 (3) 0.047 (2) 0.0000 (18) −0.0009 (16) −0.018 (2)
C4 0.0377 (19) 0.034 (2) 0.039 (2) −0.0009 (16) 0.0039 (16) −0.0020 (17)
C5 0.051 (2) 0.050 (3) 0.069 (3) 0.017 (2) −0.026 (2) −0.023 (2)
C6 0.0361 (19) 0.040 (2) 0.041 (2) −0.0013 (16) 0.0014 (16) −0.0027 (17)
O9 0.073 (2) 0.048 (2) 0.102 (3) 0.0248 (17) 0.048 (2) 0.0311 (19)
O10 0.0368 (12) 0.0344 (15) 0.0393 (14) 0.0015 (11) −0.0011 (11) −0.0032 (12)
O11 0.0390 (13) 0.0378 (16) 0.0341 (13) −0.0024 (11) −0.0039 (10) 0.0006 (11)
O12 0.0435 (14) 0.0413 (17) 0.0358 (13) 0.0036 (12) −0.0040 (11) 0.0002 (11)
O13 0.0344 (12) 0.0370 (16) 0.0387 (14) 0.0030 (10) −0.0025 (11) −0.0025 (11)
O14 0.076 (2) 0.081 (3) 0.065 (2) −0.016 (2) −0.0118 (18) 0.0063 (19)
O15 0.080 (2) 0.058 (2) 0.097 (3) 0.025 (2) 0.030 (2) 0.027 (2)

Geometric parameters (Å, °)

Sr1—O11 2.556 (2) C1—C2 1.502 (5)
Sr1—O12 2.574 (3) C2—C3 1.512 (6)
Sr1—O2i 2.581 (3) C2—H2A 0.9700
Sr1—O6ii 2.598 (3) C2—H2B 0.9700
Sr1—O13 2.618 (3) C4—C5 1.498 (6)
Sr1—O2 2.660 (3) C5—C6 1.500 (6)
Sr1—O13iii 2.688 (2) C5—H5A 0.9700
Sr1—O1 2.751 (3) C5—H5B 0.9700
Sr1—O5ii 2.816 (3) O9—H9A 0.8447
Ni1—O4 2.020 (3) O9—H9B 0.8514
Ni1—O7 2.024 (3) O10—H10A 0.8512
Ni1—O5 2.026 (2) O10—H10B 0.8504
Ni1—O1 2.032 (3) O11—H11A 0.8461
Ni1—O9 2.038 (3) O11—H11B 0.8497
Ni1—O10 2.064 (3) O12—H12A 0.8499
O1—C1 1.272 (4) O12—H12B 0.8484
O2—C1 1.247 (4) O13—H13A 0.8504
O3—C3 1.255 (5) O13—H13B 0.8538
O4—C3 1.240 (5) O14—H14A 0.8626
O5—C4 1.257 (5) O14—H14B 0.8589
O6—C4 1.247 (5) O15—H15A 0.8350
O7—C6 1.233 (5) O15—H15B 0.8470
O8—C6 1.256 (5)
O11—Sr1—O12 78.94 (8) O4—Ni1—O7 178.51 (10)
O11—Sr1—O2i 71.25 (9) O4—Ni1—O5 90.94 (10)
O12—Sr1—O2i 148.61 (8) O7—Ni1—O5 90.19 (11)
O11—Sr1—O6ii 118.33 (8) O4—Ni1—O1 89.44 (10)
O12—Sr1—O6ii 95.34 (8) O7—Ni1—O1 89.39 (10)
O2i—Sr1—O6ii 90.35 (8) O5—Ni1—O1 178.06 (10)
O11—Sr1—O13 141.58 (8) O4—Ni1—O9 88.97 (13)
O12—Sr1—O13 137.57 (8) O7—Ni1—O9 90.06 (14)
O2i—Sr1—O13 73.77 (8) O5—Ni1—O9 90.45 (12)
O6ii—Sr1—O13 76.88 (8) O1—Ni1—O9 87.66 (12)
O11—Sr1—O2 75.89 (8) O4—Ni1—O10 90.96 (11)
O12—Sr1—O2 115.99 (8) O7—Ni1—O10 89.96 (11)
O2i—Sr1—O2 66.27 (9) O5—Ni1—O10 92.53 (10)
O6ii—Sr1—O2 148.12 (9) O1—Ni1—O10 89.36 (11)
O13—Sr1—O2 75.91 (8) O9—Ni1—O10 177.02 (12)
O11—Sr1—O13iii 146.45 (8) C1—O1—Ni1 125.2 (2)
O12—Sr1—O13iii 71.04 (8) C1—O1—Sr1 93.2 (2)
O2i—Sr1—O13iii 140.29 (8) Ni1—O1—Sr1 141.44 (12)
O6ii—Sr1—O13iii 79.85 (8) C1—O2—Sr1i 147.4 (2)
O13—Sr1—O13iii 66.54 (9) C1—O2—Sr1 98.2 (2)
O2—Sr1—O13iii 103.91 (8) Sr1i—O2—Sr1 113.73 (9)
O11—Sr1—O1 86.27 (8) C3—O4—Ni1 127.2 (3)
O12—Sr1—O1 72.98 (8) C4—O5—Ni1 126.3 (2)
O2i—Sr1—O1 113.72 (8) C4—O5—Sr1iv 89.6 (2)
O6ii—Sr1—O1 150.82 (7) Ni1—O5—Sr1iv 143.89 (12)
O13—Sr1—O1 93.63 (8) C4—O6—Sr1iv 100.3 (2)
O2—Sr1—O1 47.73 (8) C6—O7—Ni1 128.9 (3)
O13iii—Sr1—O1 71.10 (8) O2—C1—O1 120.9 (3)
O11—Sr1—O5ii 75.33 (8) O2—C1—C2 117.9 (3)
O12—Sr1—O5ii 67.66 (8) O1—C1—C2 121.2 (3)
O2i—Sr1—O5ii 94.87 (8) O2—C1—Sr1 58.32 (19)
O6ii—Sr1—O5ii 47.39 (8) O1—C1—Sr1 62.55 (19)
O13—Sr1—O5ii 123.45 (8) C2—C1—Sr1 175.7 (3)
O2—Sr1—O5ii 149.50 (7) C1—C2—C3 117.5 (4)
O13iii—Sr1—O5ii 105.60 (8) C1—C2—H2A 107.9
O1—Sr1—O5ii 138.92 (8) C3—C2—H2A 107.9
O11—Sr1—C4ii 98.18 (9) C1—C2—H2B 107.9
O12—Sr1—C4ii 79.28 (9) C3—C2—H2B 107.9
O2i—Sr1—C4ii 95.17 (9) H2A—C2—H2B 107.2
O6ii—Sr1—C4ii 23.50 (9) O4—C3—O3 123.9 (4)
O13—Sr1—C4ii 100.31 (9) O4—C3—C2 120.5 (3)
O2—Sr1—C4ii 161.43 (9) O3—C3—C2 115.4 (4)
O13iii—Sr1—C4ii 90.77 (9) O6—C4—O5 121.6 (4)
O1—Sr1—C4ii 150.52 (9) O6—C4—C5 115.8 (3)
O5ii—Sr1—C4ii 24.11 (9) O5—C4—C5 122.6 (3)
O11—Sr1—C1 80.11 (9) O6—C4—Sr1iv 56.20 (19)
O12—Sr1—C1 94.85 (9) O5—C4—Sr1iv 66.3 (2)
O2i—Sr1—C1 89.63 (9) C5—C4—Sr1iv 167.6 (3)
O6ii—Sr1—C1 160.39 (9) C4—C5—C6 123.6 (4)
O13—Sr1—C1 84.30 (9) C4—C5—H5A 106.4
O2—Sr1—C1 23.50 (9) C6—C5—H5A 106.4
O13iii—Sr1—C1 87.70 (9) C4—C5—H5B 106.4
O1—Sr1—C1 24.22 (8) C6—C5—H5B 106.4
O5ii—Sr1—C1 152.04 (9) H5A—C5—H5B 106.5
C4ii—Sr1—C1 174.11 (10) O7—C6—O8 122.6 (4)
O11—Sr1—Sr1i 70.32 (6) O7—C6—C5 121.5 (3)
O12—Sr1—Sr1i 140.14 (6) O8—C6—C5 115.8 (4)
O2i—Sr1—Sr1i 33.70 (6) Ni1—O9—H9A 113.6
O6ii—Sr1—Sr1i 121.22 (6) Ni1—O9—H9B 132.4
O13—Sr1—Sr1i 71.83 (6) H9A—O9—H9B 114.0
O2—Sr1—Sr1i 32.57 (5) Ni1—O10—H10A 114.9
O13iii—Sr1—Sr1i 126.73 (6) Ni1—O10—H10B 110.0
O1—Sr1—Sr1i 80.14 (6) H10A—O10—H10B 112.5
O5ii—Sr1—Sr1i 124.90 (5) Sr1—O11—H11A 115.2
C4ii—Sr1—Sr1i 128.87 (7) Sr1—O11—H11B 112.4
C1—Sr1—Sr1i 55.97 (7) H11A—O11—H11B 113.4
O11—Sr1—H13B 125.9 Sr1—O12—H12A 117.7
O12—Sr1—H13B 145.7 Sr1—O12—H12B 115.7
O2i—Sr1—H13B 64.5 H12A—O12—H12B 112.9
O6ii—Sr1—H13B 92.1 Sr1—O13—Sr1iii 113.46 (9)
O13—Sr1—H13B 17.5 Sr1—O13—H13A 118.0
O2—Sr1—H13B 59.0 Sr1iii—O13—H13A 98.7
O13iii—Sr1—H13B 77.4 Sr1—O13—H13B 95.3
O1—Sr1—H13B 84.4 Sr1iii—O13—H13B 120.0
O5ii—Sr1—H13B 135.9 H13A—O13—H13B 112.8
C4ii—Sr1—H13B 114.9 H14A—O14—H14B 111.1
C1—Sr1—H13B 70.3 H15A—O15—H15B 115.6
Sr1i—Sr1—H13B 55.5
O4—Ni1—O1—C1 −22.3 (3) O1—Ni1—O7—C6 162.7 (3)
O7—Ni1—O1—C1 158.6 (3) O9—Ni1—O7—C6 75.0 (3)
O9—Ni1—O1—C1 −111.3 (3) O10—Ni1—O7—C6 −107.9 (3)
O10—Ni1—O1—C1 68.7 (3) Sr1i—O2—C1—O1 −168.7 (3)
O4—Ni1—O1—Sr1 151.6 (2) Sr1—O2—C1—O1 −0.5 (4)
O7—Ni1—O1—Sr1 −27.5 (2) Sr1i—O2—C1—C2 14.1 (6)
O9—Ni1—O1—Sr1 62.6 (2) Sr1—O2—C1—C2 −177.7 (3)
O10—Ni1—O1—Sr1 −117.47 (19) Sr1i—O2—C1—Sr1 −168.2 (5)
O11—Sr1—O1—C1 74.0 (2) Ni1—O1—C1—O2 176.6 (2)
O12—Sr1—O1—C1 153.6 (2) Sr1—O1—C1—O2 0.4 (4)
O2i—Sr1—O1—C1 6.4 (2) Ni1—O1—C1—C2 −6.3 (5)
O6ii—Sr1—O1—C1 −136.8 (2) Sr1—O1—C1—C2 177.6 (3)
O13—Sr1—O1—C1 −67.4 (2) Ni1—O1—C1—Sr1 176.2 (3)
O2—Sr1—O1—C1 −0.23 (19) O11—Sr1—C1—O2 77.3 (2)
O13iii—Sr1—O1—C1 −131.1 (2) O12—Sr1—C1—O2 155.2 (2)
O5ii—Sr1—O1—C1 136.6 (2) O2i—Sr1—C1—O2 6.3 (2)
C4ii—Sr1—O1—C1 174.1 (2) O6ii—Sr1—C1—O2 −83.7 (3)
Sr1i—Sr1—O1—C1 3.4 (2) O13—Sr1—C1—O2 −67.4 (2)
O11—Sr1—O1—Ni1 −100.9 (2) O13iii—Sr1—C1—O2 −134.1 (2)
O12—Sr1—O1—Ni1 −21.35 (18) O1—Sr1—C1—O2 −179.6 (4)
O2i—Sr1—O1—Ni1 −168.55 (17) O5ii—Sr1—C1—O2 106.0 (3)
O6ii—Sr1—O1—Ni1 48.3 (3) Sr1i—Sr1—C1—O2 4.47 (18)
O13—Sr1—O1—Ni1 117.59 (19) O11—Sr1—C1—O1 −103.1 (2)
O2—Sr1—O1—Ni1 −175.2 (2) O12—Sr1—C1—O1 −25.2 (2)
O13iii—Sr1—O1—Ni1 53.91 (18) O2i—Sr1—C1—O1 −174.1 (2)
O5ii—Sr1—O1—Ni1 −38.4 (2) O6ii—Sr1—C1—O1 95.9 (3)
C4ii—Sr1—O1—Ni1 −0.9 (3) O13—Sr1—C1—O1 112.1 (2)
C1—Sr1—O1—Ni1 −175.0 (4) O2—Sr1—C1—O1 179.6 (4)
Sr1i—Sr1—O1—Ni1 −171.6 (2) O13iii—Sr1—C1—O1 45.5 (2)
O11—Sr1—O2—C1 −97.7 (2) O5ii—Sr1—C1—O1 −74.4 (3)
O12—Sr1—O2—C1 −27.7 (2) Sr1i—Sr1—C1—O1 −176.0 (2)
O2i—Sr1—O2—C1 −173.1 (3) O2—C1—C2—C3 −139.2 (4)
O6ii—Sr1—O2—C1 140.8 (2) O1—C1—C2—C3 43.6 (5)
O13—Sr1—O2—C1 108.7 (2) Ni1—O4—C3—O3 176.4 (4)
O13iii—Sr1—O2—C1 47.7 (2) Ni1—O4—C3—C2 1.4 (6)
O1—Sr1—O2—C1 0.2 (2) C1—C2—C3—O4 −41.0 (5)
O5ii—Sr1—O2—C1 −117.4 (2) C1—C2—C3—O3 143.6 (4)
C4ii—Sr1—O2—C1 −171.0 (3) Sr1iv—O6—C4—O5 11.5 (4)
Sr1i—Sr1—O2—C1 −173.1 (3) Sr1iv—O6—C4—C5 −169.0 (3)
O11—Sr1—O2—Sr1i 75.43 (11) Ni1—O5—C4—O6 165.8 (3)
O12—Sr1—O2—Sr1i 145.39 (9) Sr1iv—O5—C4—O6 −10.5 (4)
O2i—Sr1—O2—Sr1i 0.0 Ni1—O5—C4—C5 −13.6 (5)
O6ii—Sr1—O2—Sr1i −46.06 (17) Sr1iv—O5—C4—C5 170.2 (4)
O13—Sr1—O2—Sr1i −78.20 (11) Ni1—O5—C4—Sr1iv 176.2 (3)
O13iii—Sr1—O2—Sr1i −139.18 (9) O6—C4—C5—C6 166.9 (4)
O1—Sr1—O2—Sr1i 173.35 (16) O5—C4—C5—C6 −13.7 (7)
O5ii—Sr1—O2—Sr1i 55.7 (2) Sr1iv—C4—C5—C6 119.5 (12)
C4ii—Sr1—O2—Sr1i 2.1 (3) Ni1—O7—C6—O8 −179.3 (3)
C1—Sr1—O2—Sr1i 173.1 (3) Ni1—O7—C6—C5 −3.2 (6)
O5—Ni1—O4—C3 −156.7 (3) C4—C5—C6—O7 22.8 (7)
O1—Ni1—O4—C3 25.2 (3) C4—C5—C6—O8 −160.8 (4)
O9—Ni1—O4—C3 112.8 (3) O11—Sr1—O13—Sr1iii −156.16 (10)
O10—Ni1—O4—C3 −64.2 (3) O12—Sr1—O13—Sr1iii 0.99 (17)
O4—Ni1—O5—C4 −155.1 (3) O2i—Sr1—O13—Sr1iii 178.76 (12)
O7—Ni1—O5—C4 23.9 (3) O6ii—Sr1—O13—Sr1iii 84.49 (10)
O9—Ni1—O5—C4 −66.1 (3) O2—Sr1—O13—Sr1iii −112.28 (11)
O10—Ni1—O5—C4 113.9 (3) O13iii—Sr1—O13—Sr1iii 0.0
O4—Ni1—O5—Sr1iv 18.5 (2) O1—Sr1—O13—Sr1iii −67.58 (10)
O7—Ni1—O5—Sr1iv −162.5 (2) O5ii—Sr1—O13—Sr1iii 93.71 (11)
O9—Ni1—O5—Sr1iv 107.5 (2) C4ii—Sr1—O13—Sr1iii 86.33 (11)
O10—Ni1—O5—Sr1iv −72.5 (2) C1—Sr1—O13—Sr1iii −89.97 (11)
O5—Ni1—O7—C6 −15.4 (3) Sr1i—Sr1—O13—Sr1iii −145.97 (10)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) −x+2, −y+1, −z+1; (iv) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O15—H15A···O14v 0.84 2.26 2.997 (5) 148
O15—H15A···O14 0.84 2.33 2.867 (5) 123
O15—H15B···O3vi 0.85 2.29 2.881 (7) 127
O14—H14B···O8vii 0.86 2.21 3.072 (5) 176
O14—H14A···O10ii 0.86 2.14 2.936 (4) 152
O13—H13B···O11i 0.85 1.93 2.728 (4) 155
O13—H13A···O7iii 0.85 2.01 2.836 (4) 163
O12—H12B···O7 0.85 2.42 3.080 (4) 135
O12—H12B···O9 0.85 2.36 3.094 (5) 144
O12—H12A···O3viii 0.85 1.94 2.772 (4) 166
O11—H11B···O8vii 0.85 1.83 2.681 (4) 176
O11—H11A···O4ii 0.85 1.89 2.727 (4) 172
O10—H10B···O6ix 0.85 1.91 2.728 (4) 162
O10—H10A···O3x 0.85 1.86 2.714 (4) 178
O9—H9B···O15 0.85 1.84 2.663 (5) 162
O9—H9A···O8vii 0.84 1.81 2.652 (4) 173

Symmetry codes: (v) −x+1, −y, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) x−1, y, z; (ii) x, −y+1/2, z+1/2; (i) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (viii) x+1, −y+1/2, z+1/2; (ix) −x+2, y+1/2, −z+1/2; (x) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5748).

References

  1. Bernstein, J., Davvis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935–943.
  3. Gil de Muro, I., Insausti, M., Lezama, L., Urtiaga, M. K., Arriortua, M. I. & Rojo, T. (2000). J. Chem. Soc. Dalton Trans. pp. 3360–3364.
  4. Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.
  5. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049779/hb5748sup1.cif

e-67-00m19-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049779/hb5748Isup2.hkl

e-67-00m19-Isup2.hkl (128.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES