Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 18;67(Pt 1):o169–o170. doi: 10.1107/S1600536810052086

(E)-1-[4-(Hex­yloxy)phen­yl]-3-(4-hy­droxy­phen­yl)prop-2-en-1-one

Zainab Ngaini a, Siti Muhaini Haris Fadzillah a, Hasnain Hussain b, Ibrahim Abdul Razak c,*,, Hoong-Kun Fun c,§
PMCID: PMC3050273  PMID: 21522676

Abstract

In the title compound, C21H24O3, inter­molecular O—H⋯O and C—H⋯O inter­actions form bifurcated acceptor bonds, generating R 2 1(6) ring motifs. These ring motifs link the mol­ecules into extended chains along [010]. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Zhao et al. (2005); Lee et al. (2006). For related structures, see: Razak et al. (2009, 2009a ,b ); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o169-scheme1.jpg

Experimental

Crystal data

  • C21H24O3

  • M r = 324.40

  • Monoclinic, Inline graphic

  • a = 10.2807 (2) Å

  • b = 16.6322 (2) Å

  • c = 11.4736 (2) Å

  • β = 113.439 (1)°

  • V = 1799.99 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.53 × 0.46 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.960, T max = 0.993

  • 35735 measured reflections

  • 5839 independent reflections

  • 4743 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.135

  • S = 1.03

  • 5839 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052086/fj2369sup1.cif

e-67-0o169-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052086/fj2369Isup2.hkl

e-67-0o169-Isup2.hkl (285.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.86 2.694 (1) 175
C4—H4A⋯O1i 0.95 2.54 3.213 (1) 128
C16—H16ACg2ii 0.99 2.77 3.666 (1) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No.1001/PFIZIK/811151. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007 (01). SMHF thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for her postgraduate studies.

supplementary crystallographic information

Comment

The biological properties of chalcones derivatives have been extensively reported (Bhat et al., 2005; Xue et al., 2004; Lee et al., 2006; Zhao et al., 2005). Synthetic and naturally occurring chalcones have been widely studied and developed as one of the pharmaceutically important molecules. We have synthesized the title chalcone derivative, (I) which showed antimicrobial activity when tested against E. coli ATCC 8739 In this paper, we report the crystal structure of the title compound.

The bond lengths observed in the title compound (Fig.1) are comparable with previously reported values (Allen et al., 1987). The conformation of the enone moiety (O1/C7—C9) is s-cis as shown by the value of -6.3 (2)° for O1—C9—C8—C7 torsion angle. The enone (O1/C7—C9) moiety adopts s-cis conformation with O2—C7—C8—C9 torsion angle being -6.3 (2)°. The dihedral angle between the mean plane through the enone moiety and the benzene rings is 5.1 (1)° for C1—C6 ring and 5.6 (1)° for C10—C15 ring. The two benzene rings make a dihedral angle of 7.8 (1)° between them.

The widening of C1—C6—C7 and C6—C7—C8 angles to 123.0 (1)° and 126.9 (1)° respectively, are the consequences of the close interatomic contact between H1A and H8A which is 2.20 Å. Similarly, the strain induced by short H8A···H11A contact, which is 2.09Å resulted in the opening of C9—C10—C11 angle to 123.8 (1)°. The distortion of angles, which is relative to what is predicted in terms of hybidization principles can also be observed in the related structures previously reported by Razak, Fun, Ngaini, Rahman et al. (2009), Razak, Fun, Ngaini, Fadzillah et al. (2009a,b), Ngaini, Fadzillah et al. (2009) and Ngaini, Rahman et al. (2009).

The conformation assumed by the zigzag alkoxyl tail is trans. Even though the torsion angle of C12—C13—O3—C16 is -1.3 (2)°, which shows that it is roughly coplanar with the attached benzene ring, the alkoxyl tail is actually twisted about the C18—C19 bond. Within the aliphatic chain, the C17—C18—C19—C20 torsion angle shows the value of -167.0 (1)°

In the crystal structure, intermolecular O2—H2···O1(-x,y - 1/2,-z + 3/2) and C4—H4A···O1(-x,y - 1/2,-z + 3/2) interactions form bifurcated acceptor bonds generating R12(6) ring motifs (Bernstein et al., 1995). These intermolecular interactions link the molecules into extended chains along the [0 1 0] direction. The crystal structure is further stabilized by C—H···π interactions (Table 1).

Experimental

A mixture of 4-hydroxybenzaldehyde (1.22 g, 10 mmol), 4-hexyloxyacetophenone (2.20 g, 10 mmol) and KOH (2.02 g, 36 mmol) in 30 ml of methanol was heated at reflux for 24 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in hexane-ethanol mixture, followed by few days of slow evaporation, suitable crystals were collected for X-ray analysis.

Refinement

All the C– and O-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97Å and O—H = 0.84 Å. The Uiso values were constrained to be -1.5Uequ (methyl H and O atoms) and -1.2Uequ (other H atoms). The rotating model group was applied for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

A molecular chain of the title compound along the b axis.

Crystal data

C21H24O3 F(000) = 696
Mr = 324.40 Dx = 1.197 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9960 reflections
a = 10.2807 (2) Å θ = 2.3–31.1°
b = 16.6322 (2) Å µ = 0.08 mm1
c = 11.4736 (2) Å T = 100 K
β = 113.439 (1)° Plate, yellow
V = 1799.99 (5) Å3 0.53 × 0.46 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5839 independent reflections
Radiation source: sealed tube 4743 reflections with I > 2σ(I)
graphite Rint = 0.034
π and ω scans θmax = 31.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→14
Tmin = 0.960, Tmax = 0.993 k = −24→24
35735 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.4086P] where P = (Fo2 + 2Fc2)/3
5839 reflections (Δ/σ)max = 0.001
219 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.15448 (9) 0.50631 (5) 0.96314 (7) 0.02611 (17)
O2 −0.08883 (8) 0.02224 (4) 0.78756 (7) 0.02446 (16)
H2 −0.1115 0.0146 0.7095 0.037*
O3 0.37607 (9) 0.61122 (5) 1.53438 (7) 0.02772 (18)
C1 0.03955 (11) 0.20205 (6) 0.97710 (9) 0.0226 (2)
H1A 0.0805 0.2163 1.0645 0.027*
C2 0.00156 (11) 0.12297 (6) 0.94356 (9) 0.0231 (2)
H2A 0.0155 0.0836 1.0074 0.028*
C3 −0.05759 (10) 0.10104 (6) 0.81509 (9) 0.02014 (19)
C4 −0.08238 (10) 0.15987 (6) 0.72177 (9) 0.02078 (19)
H4A −0.1251 0.1457 0.6344 0.025*
C5 −0.04439 (11) 0.23904 (6) 0.75716 (9) 0.02089 (19)
H5A −0.0618 0.2787 0.6931 0.025*
C6 0.01911 (10) 0.26189 (6) 0.88518 (9) 0.01983 (18)
C7 0.06282 (10) 0.34531 (6) 0.91739 (9) 0.02114 (19)
H7A 0.0432 0.3814 0.8483 0.025*
C8 0.12779 (10) 0.37647 (6) 1.03444 (9) 0.02112 (19)
H8A 0.1482 0.3426 1.1062 0.025*
C9 0.16801 (10) 0.46172 (6) 1.05398 (9) 0.01995 (18)
C10 0.22628 (10) 0.49587 (6) 1.18407 (9) 0.01980 (19)
C11 0.24298 (10) 0.45194 (6) 1.29304 (9) 0.02125 (19)
H11A 0.2192 0.3964 1.2853 0.025*
C12 0.29373 (11) 0.48771 (6) 1.41261 (10) 0.0228 (2)
H12A 0.3043 0.4570 1.4856 0.027*
C13 0.32897 (11) 0.56930 (6) 1.42408 (10) 0.0227 (2)
C14 0.31631 (11) 0.61369 (6) 1.31623 (10) 0.0256 (2)
H14A 0.3432 0.6687 1.3244 0.031*
C15 0.26496 (11) 0.57768 (6) 1.19849 (10) 0.0239 (2)
H15A 0.2555 0.6085 1.1258 0.029*
C16 0.38894 (11) 0.57030 (7) 1.64912 (10) 0.0251 (2)
H16A 0.4594 0.5263 1.6688 0.030*
H16B 0.2966 0.5472 1.6399 0.030*
C17 0.43689 (12) 0.63306 (7) 1.75310 (10) 0.0281 (2)
H17A 0.3622 0.6745 1.7340 0.034*
H17B 0.5234 0.6597 1.7539 0.034*
C18 0.46809 (12) 0.59804 (7) 1.88375 (10) 0.0269 (2)
H18A 0.5392 0.5546 1.9007 0.032*
H18B 0.3803 0.5737 1.8838 0.032*
C19 0.52330 (13) 0.65975 (7) 1.99042 (11) 0.0298 (2)
H19A 0.4449 0.6959 1.9856 0.036*
H19B 0.5975 0.6928 1.9792 0.036*
C20 0.58473 (13) 0.61976 (7) 2.12078 (11) 0.0321 (2)
H20A 0.5103 0.5862 2.1308 0.038*
H20B 0.6628 0.5836 2.1247 0.038*
C21 0.64050 (18) 0.67832 (10) 2.23034 (13) 0.0502 (4)
H21A 0.6852 0.6485 2.3102 0.075*
H21B 0.5619 0.7105 2.2330 0.075*
H21C 0.7105 0.7139 2.2189 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0332 (4) 0.0223 (3) 0.0210 (4) 0.0006 (3) 0.0089 (3) 0.0028 (3)
O2 0.0315 (4) 0.0194 (3) 0.0214 (4) −0.0027 (3) 0.0093 (3) −0.0019 (3)
O3 0.0343 (4) 0.0242 (4) 0.0233 (4) −0.0042 (3) 0.0100 (3) −0.0070 (3)
C1 0.0279 (5) 0.0224 (4) 0.0164 (4) −0.0004 (4) 0.0076 (4) −0.0011 (3)
C2 0.0293 (5) 0.0217 (4) 0.0179 (4) 0.0000 (4) 0.0091 (4) 0.0016 (3)
C3 0.0213 (4) 0.0196 (4) 0.0199 (4) −0.0004 (3) 0.0086 (4) −0.0015 (3)
C4 0.0230 (4) 0.0220 (4) 0.0167 (4) 0.0003 (4) 0.0073 (4) −0.0018 (3)
C5 0.0243 (4) 0.0214 (4) 0.0164 (4) 0.0012 (4) 0.0075 (4) 0.0011 (3)
C6 0.0220 (4) 0.0200 (4) 0.0177 (4) 0.0002 (3) 0.0081 (3) −0.0011 (3)
C7 0.0225 (4) 0.0205 (4) 0.0202 (4) 0.0008 (3) 0.0083 (4) 0.0004 (3)
C8 0.0233 (4) 0.0191 (4) 0.0201 (4) 0.0002 (3) 0.0076 (4) 0.0002 (3)
C9 0.0185 (4) 0.0201 (4) 0.0201 (4) 0.0016 (3) 0.0064 (3) −0.0002 (3)
C10 0.0179 (4) 0.0193 (4) 0.0205 (4) 0.0007 (3) 0.0058 (3) −0.0008 (3)
C11 0.0214 (4) 0.0202 (4) 0.0213 (5) −0.0028 (3) 0.0077 (4) −0.0016 (3)
C12 0.0229 (4) 0.0239 (5) 0.0207 (5) −0.0029 (4) 0.0078 (4) −0.0017 (4)
C13 0.0209 (4) 0.0231 (5) 0.0226 (5) −0.0015 (4) 0.0071 (4) −0.0049 (4)
C14 0.0283 (5) 0.0183 (4) 0.0274 (5) −0.0006 (4) 0.0082 (4) −0.0025 (4)
C15 0.0265 (5) 0.0197 (4) 0.0234 (5) 0.0011 (4) 0.0076 (4) 0.0015 (4)
C16 0.0247 (5) 0.0269 (5) 0.0234 (5) −0.0025 (4) 0.0093 (4) −0.0054 (4)
C17 0.0294 (5) 0.0276 (5) 0.0256 (5) −0.0027 (4) 0.0091 (4) −0.0088 (4)
C18 0.0260 (5) 0.0267 (5) 0.0257 (5) −0.0008 (4) 0.0077 (4) −0.0071 (4)
C19 0.0310 (5) 0.0274 (5) 0.0271 (5) 0.0000 (4) 0.0074 (4) −0.0078 (4)
C20 0.0324 (6) 0.0314 (6) 0.0295 (6) 0.0017 (5) 0.0093 (5) −0.0061 (4)
C21 0.0633 (10) 0.0464 (8) 0.0306 (7) −0.0042 (7) 0.0078 (6) −0.0100 (6)

Geometric parameters (Å, °)

O1—C9 1.2410 (12) C12—C13 1.3971 (14)
O2—C3 1.3563 (12) C12—H12A 0.9500
O2—H2 0.8400 C13—C14 1.4018 (15)
O3—C13 1.3545 (12) C14—C15 1.3766 (15)
O3—C16 1.4406 (13) C14—H14A 0.9500
C1—C2 1.3824 (14) C15—H15A 0.9500
C1—C6 1.4039 (14) C16—C17 1.5127 (14)
C1—H1A 0.9500 C16—H16A 0.9900
C2—C3 1.4009 (14) C16—H16B 0.9900
C2—H2A 0.9500 C17—C18 1.5187 (16)
C3—C4 1.3971 (13) C17—H17A 0.9900
C4—C5 1.3874 (14) C17—H17B 0.9900
C4—H4A 0.9500 C18—C19 1.5235 (15)
C5—C6 1.4019 (13) C18—H18A 0.9900
C5—H5A 0.9500 C18—H18B 0.9900
C6—C7 1.4598 (14) C19—C20 1.5253 (17)
C7—C8 1.3435 (14) C19—H19A 0.9900
C7—H7A 0.9500 C19—H19B 0.9900
C8—C9 1.4690 (13) C20—C21 1.5113 (18)
C8—H8A 0.9500 C20—H20A 0.9900
C9—C10 1.4826 (14) C20—H20B 0.9900
C10—C11 1.3985 (14) C21—H21A 0.9800
C10—C15 1.4088 (14) C21—H21B 0.9800
C11—C12 1.3925 (14) C21—H21C 0.9800
C11—H11A 0.9500
C3—O2—H2 109.5 C15—C14—H14A 119.9
C13—O3—C16 118.65 (8) C13—C14—H14A 119.9
C2—C1—C6 121.61 (9) C14—C15—C10 121.04 (10)
C2—C1—H1A 119.2 C14—C15—H15A 119.5
C6—C1—H1A 119.2 C10—C15—H15A 119.5
C1—C2—C3 119.80 (9) O3—C16—C17 106.11 (9)
C1—C2—H2A 120.1 O3—C16—H16A 110.5
C3—C2—H2A 120.1 C17—C16—H16A 110.5
O2—C3—C4 122.97 (9) O3—C16—H16B 110.5
O2—C3—C2 117.40 (9) C17—C16—H16B 110.5
C4—C3—C2 119.64 (9) H16A—C16—H16B 108.7
C5—C4—C3 119.74 (9) C16—C17—C18 112.85 (9)
C5—C4—H4A 120.1 C16—C17—H17A 109.0
C3—C4—H4A 120.1 C18—C17—H17A 109.0
C4—C5—C6 121.57 (9) C16—C17—H17B 109.0
C4—C5—H5A 119.2 C18—C17—H17B 109.0
C6—C5—H5A 119.2 H17A—C17—H17B 107.8
C5—C6—C1 117.59 (9) C17—C18—C19 113.55 (9)
C5—C6—C7 119.41 (9) C17—C18—H18A 108.9
C1—C6—C7 122.99 (9) C19—C18—H18A 108.9
C8—C7—C6 126.90 (9) C17—C18—H18B 108.9
C8—C7—H7A 116.6 C19—C18—H18B 108.9
C6—C7—H7A 116.6 H18A—C18—H18B 107.7
C7—C8—C9 121.52 (9) C18—C19—C20 111.76 (10)
C7—C8—H8A 119.2 C18—C19—H19A 109.3
C9—C8—H8A 119.2 C20—C19—H19A 109.3
O1—C9—C8 121.19 (9) C18—C19—H19B 109.3
O1—C9—C10 118.82 (9) C20—C19—H19B 109.3
C8—C9—C10 119.99 (9) H19A—C19—H19B 107.9
C11—C10—C15 118.10 (9) C21—C20—C19 114.00 (11)
C11—C10—C9 123.83 (9) C21—C20—H20A 108.8
C15—C10—C9 118.06 (9) C19—C20—H20A 108.8
C12—C11—C10 121.48 (9) C21—C20—H20B 108.8
C12—C11—H11A 119.3 C19—C20—H20B 108.8
C10—C11—H11A 119.3 H20A—C20—H20B 107.6
C11—C12—C13 119.29 (10) C20—C21—H21A 109.5
C11—C12—H12A 120.4 C20—C21—H21B 109.5
C13—C12—H12A 120.4 H21A—C21—H21B 109.5
O3—C13—C12 124.81 (10) C20—C21—H21C 109.5
O3—C13—C14 115.26 (9) H21A—C21—H21C 109.5
C12—C13—C14 119.93 (9) H21B—C21—H21C 109.5
C15—C14—C13 120.12 (10)
C6—C1—C2—C3 0.63 (16) C8—C9—C10—C15 179.28 (9)
C1—C2—C3—O2 177.98 (9) C15—C10—C11—C12 1.21 (15)
C1—C2—C3—C4 −2.28 (15) C9—C10—C11—C12 −177.74 (9)
O2—C3—C4—C5 −178.39 (9) C10—C11—C12—C13 −0.09 (15)
C2—C3—C4—C5 1.89 (15) C16—O3—C13—C12 −1.30 (15)
C3—C4—C5—C6 0.16 (15) C16—O3—C13—C14 178.63 (9)
C4—C5—C6—C1 −1.76 (15) C11—C12—C13—O3 178.38 (9)
C4—C5—C6—C7 177.29 (9) C11—C12—C13—C14 −1.55 (15)
C2—C1—C6—C5 1.36 (15) O3—C13—C14—C15 −177.87 (9)
C2—C1—C6—C7 −177.65 (10) C12—C13—C14—C15 2.07 (16)
C5—C6—C7—C8 −178.26 (10) C13—C14—C15—C10 −0.93 (16)
C1—C6—C7—C8 0.73 (16) C11—C10—C15—C14 −0.70 (15)
C6—C7—C8—C9 179.19 (9) C9—C10—C15—C14 178.32 (9)
C7—C8—C9—O1 −6.32 (15) C13—O3—C16—C17 −177.53 (9)
C7—C8—C9—C10 173.83 (9) O3—C16—C17—C18 −175.01 (9)
O1—C9—C10—C11 178.37 (9) C16—C17—C18—C19 177.23 (9)
C8—C9—C10—C11 −1.77 (14) C17—C18—C19—C20 −166.95 (10)
O1—C9—C10—C15 −0.58 (14) C18—C19—C20—C21 −179.71 (11)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of C10–C15 ring.
D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.84 1.86 2.694 (1) 175
C4—H4A···O1i 0.95 2.54 3.213 (1) 128
C16—H16A···Cg2ii 0.99 2.77 3.666 (1) 151

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2369).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. [DOI] [PubMed]
  4. Bruker (2005). APEX2 , SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Lee, Y. S., Lim, S. S., Shin, K. H., Kim, Y. S., Ohuchi, K. & Jung, S. H. (2006). Biol. Pharm. Bull. 29, 1028–1031. [DOI] [PubMed]
  7. Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880. [DOI] [PMC free article] [PubMed]
  8. Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889–o890. [DOI] [PMC free article] [PubMed]
  9. Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881–o882. [DOI] [PMC free article] [PubMed]
  10. Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133–o1134. [DOI] [PMC free article] [PubMed]
  11. Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092–o1093. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753. [DOI] [PubMed]
  15. Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052086/fj2369sup1.cif

e-67-0o169-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052086/fj2369Isup2.hkl

e-67-0o169-Isup2.hkl (285.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES