Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 8;67(Pt 1):m50–m51. doi: 10.1107/S1600536810050762

Poly[di-μ-aqua-μ4-(pyrazine-2,5-dicarboxyl­ato)-dilithium(I)]

Wojciech Starosta a, Janusz Leciejewicz a,*
PMCID: PMC3050281  PMID: 21522570

Abstract

In the title coordination polymer, [Li2(C6H2N2O2)(H2O)2]n the pyrazine-2,5-dicarboxyl­ate dianionic ligand bridges two symmetry-independent Li+ ions using both its N,O-chelating sites. The carboxyl­ate O atom of one of them also bridges to another Li+ ion, while the second O atom of this group is bonded to another Li+ ion. Two symmetry-independent water O atoms participate also in the bridging system, which gives rise to a polymeric three-dimensional framework. Both Li+ ions show distorted trigonal–bipyramidal LiNO4 coordination geometries, with the N atom in an axial site in both cases. The packing is consolidated by O—H⋯O hydrogen bonds, which occur between water mol­ecules as donors and carboxyl­ate O atoms as acceptors.

Related literature

For the crystal structures of transition metal complexes with the title ligand, see: Beobide et al. (2003); Xu et al. (2003); Beobide et al. (2006). For the structures of Cd and Zn complexes, see: Liu et al. (2009); Yang & Wu (2009); Yang et al. (2009). For the structures of polymeric lanthanide complexes, see: Zheng & Jin (2005); Yang et al. (2009). For the structure of a Th(IV) complex, see: Frisch & Cahill (2008). For the structure of an Sr(II) complex, see: Ptasiewicz-Bąk & Leciejewicz (1998a ). The structures of Li(I) complexes with pyrazine-2,3-dicarboxyl­ate and water ligands (Tombul et al., 2008), 3-amino­pyrazine-2-carboxyl­ate and water ligands (Starosta & Leciejewicz, 2010a ) and pyrazine-2,3,5,6-tetra­carboxyl­ate and water ligands (Starosta & Leciejewicz, 2010b ) have been published. For the structure of pyrazine-2,5-dicarb­oxy­lic acid dihydrate, see: Ptasiewicz-Bąk & Leciejewicz (1998b ); Vishweshwar et al. (2002).graphic file with name e-67-00m50-scheme1.jpg

Experimental

Crystal data

  • [Li2(C6H2N2O2)(H2O)2]

  • M r = 216.01

  • Monoclinic, Inline graphic

  • a = 7.2107 (14) Å

  • b = 7.3646 (15) Å

  • c = 15.327 (3) Å

  • β = 99.71 (3)°

  • V = 802.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.33 × 0.17 × 0.15 mm

Data collection

  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.976, T max = 0.985

  • 2520 measured reflections

  • 2348 independent reflections

  • 1694 reflections with I > 2σ(I)

  • R int = 0.069

  • 3 standard reflections every 200 reflections intensity decay: 0.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.161

  • S = 0.99

  • 2348 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050762/hb5759sup1.cif

e-67-00m50-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050762/hb5759Isup2.hkl

e-67-00m50-Isup2.hkl (115.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Li1—O1 1.958 (3)
Li1—O5 2.020 (3)
Li1—O6 2.077 (3)
Li1—O3i 2.131 (3)
Li1—N1 2.360 (3)
Li2—O6ii 1.981 (3)
Li2—O3 2.045 (3)
Li2—O5iii 2.056 (3)
Li2—O4iv 2.332 (4)
Li2—N2 2.129 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H62⋯O2v 0.88 (3) 1.86 (3) 2.7210 (16) 165 (3)
O6—H61⋯O2vi 0.84 (4) 2.00 (4) 2.8351 (19) 170 (4)
O5—H52⋯O4vii 0.91 (3) 1.82 (3) 2.7292 (17) 175 (3)
O5—H51⋯O1viii 0.83 (3) 1.87 (3) 2.6842 (16) 169 (3)

Symmetry codes: (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

supplementary crystallographic information

Comment

Metal complexes with pyrazine dicarboxylate ligands are of interest as precursors for new polymeric materials with a wide spectrum of potential applications. Owing to a pair of N,O-chelating sites localized at opposite terminals of the hetero-ring, pyrazine-2,5-dicarboxylate ligand shows a marked tendency to form coordination polymers. Structures with a variety of polymeric patterns have been reported in compounds with 3d transition metal ions (Xu et al., 2003; Beobide et al. 2003; Beobide et al., 2006); with a number of lanthanide ions (Zheng & Jin, 2005; with Cd(II) ion (Liu et al., 2009; Yang & Wu, 2009); with Th(IV) ion (Frisch & Cahill, 2008) and with Sr(II) ion (Ptasiewicz-Bąk & Leciejewicz, 1998b). The asymmetric unit cell of the title complex, (I), contains a ligand dianion, two symmetry independent Li1 and Li2 ions and two symmetry independent O5 and O6 water molecules (Fig.1). The ligand molecule bridges the Li1 and Li2 ions using both its N,O-chelating sites; the carboxylate O2 atom remains coordination inactive. The O3 atom, which acts as bidentate, bridges the Li2 ion to the adjacent Li1ii ion and with the coordinated water O6 atom gives rise to a molecular chain in which metal ions are bridged by the ligand on one side and two O atoms on the other. Water O5 atoms link the chains into molecular layers. (Fig. 2). The latter, bridged by carboxylate O4 atoms which link the ligands with Li2iv ions in adjacent layers give rise to a three-dimensional framework. The coordination environment of the Li1 ion is composed of N1, O5, O3iii atoms: they form together with the metal ion an equatorial plane (r.m.s. of 0.0021 (1) Å) of a distorted trigonal bipyramid; the O1 and O6 atoms are at its opposite apices. The Li2 ion together with coordinated O3, O4v and O5i atoms forms an equatorial plane (r.m.s. of 0.0307 (1) Å) of a distorted trigonal bipyramid, N2 and O6ii atoms are at its apices. The observed Li—O bond distances fall in the range from 1.958 (3) to 2.131 (3)Å observed also in Li complexes with pyrazine carboxylate and water ligands (Tombul et al., 2008; Starosta & Leciejewicz, 2010a, 2010b). The O4—Li2iv bond distance is 2.332 (4) Å; the Li1—N1 and Li2—N2 bond lengths are 2.360 (3)Å and 2.129 (3) Å, respectively. The pyrazine ring is planar with r.m.s. of 0.0094 (1) Å, the carboxylate C7/O1/O2 and C8/O3/O4 groups make with it dihedral angles of 0.55 (20)° and 18.68 (17)°, respectively. Bond lengths and bond angles within the pyrazine ligand match those observed in the structure of the parent acid (Ptasiewicz-Bąk & Leciejewicz, 1998a; Vishweshwar et al., 2002). Hydrogen bond network is composed of coordinated water molecules which are as donors and carboxylate O atoms which act as acceptors.

Experimental

1 mmol of pyrazine-2,5-dicarboxylic acid dihydrate (Aldrich) dissolved in 30 ml of hot water and 2 mmols of lithium hydroxide (Aldrich) dissolved in 30 ml of hot water were mixed and boiled for 3 h under reflux with stirring. After cooling to room temperature, the solution was filtered and left to crystallize. After evaporation to dryness colourless blocks of (I) were found on the bottom of the reaction pot. They were washed with ethanol and dried in the air.

Refinement

Water hydrogen atoms were located in a difference map and refined isotropically. H atoms attached to pyrazine-ring C atoms were positioned at calculated positions and treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A structural unit of (I) with 50% probability displacement ellipsoids. Symmetry code: (i) -x + 2,-y,-z + 2. (ii) x + 1/2, -y + 1/2, z - 1/2. (iii) x - 1/2, -y + 1/2, z + 1/2. (iv) -x + 3/2, y + 1/2, -z + 3/2. (v) -x + 3/2, y - 1/2, -z + 3/2.

Fig. 2.

Fig. 2.

A fragment of a molecular layer.

Crystal data

[Li2(C6H2N2O2)(H2O)2] F(000) = 440
Mr = 216.01 Dx = 1.788 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 7.2107 (14) Å θ = 6–15°
b = 7.3646 (15) Å µ = 0.16 mm1
c = 15.327 (3) Å T = 293 K
β = 99.71 (3)° Plates, colourless
V = 802.2 (3) Å3 0.33 × 0.17 × 0.15 mm
Z = 4

Data collection

Kuma KM-4 four-circle diffractometer 1694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.069
graphite θmax = 30.1°, θmin = 2.7°
profile data from ω/2θ scans h = 0→10
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = 0→10
Tmin = 0.976, Tmax = 0.985 l = −21→21
2520 measured reflections 3 standard reflections every 200 reflections
2348 independent reflections intensity decay: 0.6%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1327P)2 + 0.0049P] where P = (Fo2 + 2Fc2)/3
2348 reflections (Δ/σ)max = 0.001
161 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O5 0.92850 (16) 0.21032 (15) 1.23861 (7) 0.0235 (3)
N2 0.85719 (16) 0.06063 (16) 0.86051 (8) 0.0178 (3)
O3 0.99726 (17) 0.31016 (14) 0.76139 (7) 0.0248 (3)
O6 0.54300 (17) 0.41912 (16) 1.12325 (8) 0.0248 (3)
N1 0.76024 (18) 0.16459 (17) 1.02138 (8) 0.0194 (3)
O1 0.65141 (17) −0.08194 (16) 1.12869 (7) 0.0258 (3)
C7 0.69244 (18) −0.14435 (18) 1.05880 (8) 0.0171 (3)
C3 0.85787 (18) 0.23438 (19) 0.88494 (9) 0.0167 (3)
C8 0.9150 (2) 0.37044 (19) 0.82054 (9) 0.0194 (3)
O2 0.68766 (17) −0.30725 (14) 1.03608 (7) 0.0252 (3)
O4 0.8671 (2) 0.53125 (16) 0.83062 (9) 0.0342 (3)
C5 0.80318 (19) −0.06117 (19) 0.91591 (9) 0.0177 (3)
H5 0.7990 −0.1835 0.9006 0.021*
C6 0.75335 (17) −0.00880 (18) 0.99566 (8) 0.0155 (3)
C2 0.8103 (2) 0.28635 (19) 0.96561 (9) 0.0202 (3)
H2 0.8136 0.4087 0.9808 0.024*
Li2 0.9486 (5) 0.0403 (4) 0.7358 (2) 0.0360 (7)
Li1 0.6732 (4) 0.1742 (4) 1.1630 (2) 0.0298 (6)
H51 0.908 (4) 0.263 (4) 1.284 (2) 0.063 (9)*
H62 0.609 (4) 0.503 (4) 1.1012 (17) 0.049 (7)*
H52 0.994 (4) 0.294 (4) 1.2126 (18) 0.051 (7)*
H61 0.472 (5) 0.375 (5) 1.079 (3) 0.093 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0301 (6) 0.0199 (5) 0.0225 (5) −0.0017 (4) 0.0104 (4) −0.0037 (4)
N2 0.0191 (5) 0.0162 (5) 0.0190 (5) 0.0008 (4) 0.0059 (4) 0.0006 (4)
O3 0.0301 (6) 0.0227 (5) 0.0246 (5) 0.0010 (4) 0.0137 (4) 0.0013 (4)
O6 0.0298 (6) 0.0216 (5) 0.0246 (5) −0.0021 (4) 0.0096 (4) 0.0010 (4)
N1 0.0229 (6) 0.0172 (6) 0.0191 (5) 0.0018 (4) 0.0064 (4) −0.0001 (4)
O1 0.0365 (6) 0.0212 (5) 0.0230 (5) 0.0003 (4) 0.0148 (5) 0.0015 (4)
C7 0.0148 (6) 0.0174 (6) 0.0191 (6) −0.0001 (5) 0.0033 (5) 0.0010 (5)
C3 0.0156 (6) 0.0166 (6) 0.0182 (6) 0.0019 (4) 0.0037 (5) 0.0015 (4)
C8 0.0213 (7) 0.0169 (6) 0.0211 (6) 0.0007 (5) 0.0063 (5) 0.0025 (5)
O2 0.0335 (6) 0.0178 (5) 0.0259 (5) −0.0039 (4) 0.0094 (4) −0.0006 (4)
O4 0.0516 (8) 0.0171 (5) 0.0400 (7) 0.0061 (5) 0.0249 (6) 0.0042 (5)
C5 0.0197 (6) 0.0152 (6) 0.0192 (6) −0.0008 (5) 0.0057 (5) −0.0004 (4)
C6 0.0145 (6) 0.0145 (6) 0.0178 (6) 0.0008 (4) 0.0035 (5) 0.0014 (4)
C2 0.0264 (7) 0.0145 (6) 0.0211 (6) 0.0025 (5) 0.0082 (5) 0.0003 (5)
Li2 0.053 (2) 0.0239 (14) 0.0359 (16) −0.0019 (13) 0.0218 (15) −0.0027 (11)
Li1 0.0305 (14) 0.0250 (13) 0.0332 (14) 0.0005 (11) 0.0033 (11) −0.0046 (11)

Geometric parameters (Å, °)

O5—Li2i 2.056 (4) O6—H62 0.88 (3)
O3—Li1ii 2.131 (3) O6—H61 0.84 (4)
O6—Li2iii 1.981 (3) N1—C2 1.3303 (18)
O4—Li2iv 2.332 (4) N1—C6 1.3348 (18)
Li1—O1 1.958 (3) O1—C7 1.2463 (17)
Li1—O5 2.020 (3) C7—O2 1.2481 (17)
Li1—O6 2.077 (3) C7—C6 1.5064 (18)
Li1—O3iii 2.131 (3) C3—C2 1.3913 (18)
Li1—N1 2.360 (3) C3—C8 1.5117 (19)
Li2—O6ii 1.981 (3) C8—O4 1.2506 (19)
Li2—O3 2.045 (3) C5—C6 1.3857 (18)
Li2—O5i 2.056 (3) C5—H5 0.9300
Li2—O4v 2.332 (4) C2—H2 0.9300
Li2—N2 2.129 (3) Li2—Li1ii 2.983 (4)
O5—H51 0.83 (3) Li2—Li1i 3.303 (5)
O5—H52 0.91 (3) Li1—Li2iii 2.983 (4)
N2—C3 1.3330 (18) Li1—Li2i 3.303 (5)
N2—C5 1.3376 (17) Li1—H61 2.30 (4)
O3—C8 1.2458 (17)
Li1—O5—Li2i 108.24 (14) O3—Li2—N2 80.13 (12)
Li1—O5—H51 105 (2) O5i—Li2—N2 94.63 (14)
Li2i—O5—H51 113 (2) O6ii—Li2—O4v 94.45 (15)
Li1—O5—H52 109.1 (17) O3—Li2—O4v 103.58 (15)
Li2i—O5—H52 117.0 (18) O5i—Li2—O4v 114.53 (15)
H51—O5—H52 103 (3) N2—Li2—O4v 88.10 (13)
C3—N2—C5 116.94 (12) O6ii—Li2—Li1ii 43.94 (9)
C3—N2—Li2 109.43 (13) O3—Li2—Li1ii 45.59 (9)
C5—N2—Li2 133.63 (13) O5i—Li2—Li1ii 117.39 (15)
C8—O3—Li2 113.48 (13) N2—Li2—Li1ii 123.78 (15)
C8—O3—Li1ii 155.36 (13) O4v—Li2—Li1ii 114.10 (14)
Li2—O3—Li1ii 91.16 (13) O6ii—Li2—Li1i 95.92 (14)
Li2iii—O6—Li1 94.61 (13) O3—Li2—Li1i 105.87 (15)
Li2iii—O6—H62 121.1 (18) O5i—Li2—Li1i 35.51 (9)
Li1—O6—H62 118.3 (19) N2—Li2—Li1i 88.18 (13)
Li2iii—O6—H61 120 (3) O4v—Li2—Li1i 149.19 (14)
Li1—O6—H61 95 (3) Li1ii—Li2—Li1i 93.17 (11)
H62—O6—H61 105 (3) O1—Li1—O5 107.76 (15)
C2—N1—C6 117.11 (12) O1—Li1—O6 138.27 (17)
C2—N1—Li1 135.56 (12) O5—Li1—O6 112.16 (15)
C6—N1—Li1 107.34 (11) O1—Li1—O3iii 102.21 (15)
C7—O1—Li1 124.49 (14) O5—Li1—O3iii 100.41 (14)
O1—C7—O2 126.51 (13) O6—Li1—O3iii 82.36 (12)
O1—C7—C6 116.42 (12) O1—Li1—N1 75.27 (11)
O2—C7—C6 117.07 (12) O5—Li1—N1 100.00 (14)
N2—C3—C2 121.60 (12) O6—Li1—N1 86.19 (12)
N2—C3—C8 116.19 (11) O3iii—Li1—N1 159.18 (16)
C2—C3—C8 122.21 (12) O1—Li1—Li2iii 139.07 (16)
O3—C8—O4 127.07 (13) O5—Li1—Li2iii 101.09 (13)
O3—C8—C3 117.04 (13) O6—Li1—Li2iii 41.45 (9)
O4—C8—C3 115.82 (12) O3iii—Li1—Li2iii 43.25 (9)
C8—O4—Li2iv 104.05 (13) N1—Li1—Li2iii 127.64 (14)
N2—C5—C6 121.33 (13) O1—Li1—Li2i 71.81 (11)
N2—C5—H5 119.3 O5—Li1—Li2i 36.25 (8)
C6—C5—H5 119.3 O6—Li1—Li2i 148.18 (15)
N1—C6—C5 121.63 (12) O3iii—Li1—Li2i 103.68 (13)
N1—C6—C7 116.40 (11) N1—Li1—Li2i 95.21 (12)
C5—C6—C7 121.96 (12) Li2iii—Li1—Li2i 128.23 (11)
N1—C2—C3 121.33 (13) O1—Li1—H61 117.0 (10)
N1—C2—H2 119.3 O5—Li1—H61 131.5 (10)
C3—C2—H2 119.3 O6—Li1—H61 21.3 (10)
O6ii—Li2—O3 86.97 (13) O3iii—Li1—H61 88.0 (9)
O6ii—Li2—O5i 95.80 (14) N1—Li1—H61 75.4 (9)
O3—Li2—O5i 141.4 (2) Li2iii—Li1—H61 54.9 (10)
O6ii—Li2—N2 167.10 (18) Li2i—Li1—H61 164.0 (10)

Symmetry codes: (i) −x+2, −y, −z+2; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+3/2, y+1/2, −z+3/2; (v) −x+3/2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H62···O2vi 0.88 (3) 1.86 (3) 2.7210 (16) 165 (3)
O6—H61···O2vii 0.84 (4) 2.00 (4) 2.8351 (19) 170 (4)
O5—H52···O4viii 0.91 (3) 1.82 (3) 2.7292 (17) 175 (3)
O5—H51···O1ix 0.83 (3) 1.87 (3) 2.6842 (16) 169 (3)

Symmetry codes: (vi) x, y+1, z; (vii) −x+1, −y, −z+2; (viii) −x+2, −y+1, −z+2; (ix) −x+3/2, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5759).

References

  1. Beobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P. & Roman, P. (2006). Inorg. Chem. 45, 5367–5382. [DOI] [PubMed]
  2. Beobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P., Roman, P. & Lezama, L. (2003). Inorg. Chem. Commun. 6, 1224–1227.
  3. Frisch, M. & Cahill, C. L. (2008). Cryst. Growth Des. 8, 2921–2926.
  4. Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  5. Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  6. Liu, F.-Q., Li, R.-X., Deng, Y.-Y., Li, W.-H., Ding, N.-X. & Liu, G.-Y. (2009). J. Organomet. Chem. 694, 3653–3659.
  7. Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Ptasiewicz-Bąk, H. & Leciejewicz, J. (1998a). J. Coord. Chem. 44, 299–309.
  9. Ptasiewicz-Bąk, H. & Leciejewicz, J. (1998b). J. Coord. Chem. 44, 237–246.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Starosta, W. & Leciejewicz, J. (2010a). Acta Cryst. E66, m744–m745. [DOI] [PMC free article] [PubMed]
  12. Starosta, W. & Leciejewicz, J. (2010b). Acta Cryst. E66, m1561–m1562. [DOI] [PMC free article] [PubMed]
  13. Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492. [DOI] [PMC free article] [PubMed]
  14. Vishweshwar, P., Nangia, A. & Lynch, V. M. (2002). J. Org. Chem. 67, 556–565. [DOI] [PubMed]
  15. Xu, H. T., Zheng, N. W., Yang, R. Y., Li, Z. Q. & Jin, X. L. (2003). Inorg. Chim. Acta, 349, 265–268.
  16. Yang, P. & Wu, J.-Z. (2009). Acta Cryst. C65, m4–m6. [DOI] [PubMed]
  17. Yang, P., Wu, J.-Z. & Yu, V. (2009). Inorg. Chim. Acta, 362, 1907–1912.
  18. Zheng, X-J. & Lin, J-P. (2005). J. Chem. Crystallogr. 35, 865–869.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050762/hb5759sup1.cif

e-67-00m50-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050762/hb5759Isup2.hkl

e-67-00m50-Isup2.hkl (115.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES