Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):m70. doi: 10.1107/S1600536810051263

Bis[1-(3-cyano­benz­yl)pyridinium] bis­(1,2-dicyano­ethene-1,2-dithiol­ato)nickelate(II)

Hua Xian a, Hai-Bao Duan a,*
PMCID: PMC3050285  PMID: 21522588

Abstract

In the ionic title complex, (C13H11N2)2[Ni(C4N2S2)2], the NiII ion is located on an inversion centre so the asymmetric unit contains one-half [Ni(mnt)2]2− dianion (mnt2− is maleonitrile­dithiolate) and one 1-(3-cyano­benz­yl)pyridinium cation ([CNBzPy]+). The NiII ion in the [Ni(mnt)2]2− anion is coordinated by four S atoms of two mnt2− ligands, and exhibits square-planar coordination geometry. In the [CNBzPy]+ cation, the benzene and pyridine rings are twisted with respect to the C/C/N plane incorporating the methyl­ene C atom that links them. The crystal structure is stabilized by Coulombic inter­actions.

Related literature

For background to the development of new functional mol­ecule-based materials, see: Robertson & Cronin (2002). For the applications of mol­ecular solids based on M[dithiol­ene]2 complexes in mol­ecular-based materials showing magnetic, superconducting and optical properties, see: Ni et al. (2004, 2005); Nishijo et al. (2000). For bond lengths and angles in related structures, see: Ren et al. (2004).graphic file with name e-67-00m70-scheme1.jpg

Experimental

Crystal data

  • (C13H11N2)2[Ni(C4N2S2)2]

  • M r = 729.57

  • Monoclinic, Inline graphic

  • a = 11.633 (3) Å

  • b = 8.709 (2) Å

  • c = 16.692 (4) Å

  • β = 91.278 (5)°

  • V = 1690.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.702, T max = 0.741

  • 13953 measured reflections

  • 3068 independent reflections

  • 2154 reflections with I > 2σ(I)

  • R int = 0.092

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.130

  • S = 1.18

  • 3068 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051263/bx2332sup1.cif

e-67-00m70-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051263/bx2332Isup2.hkl

e-67-00m70-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—S1 2.1710 (13)
Ni1—S2 2.1713 (14)
S1—Ni1—S2 87.64 (5)
S1i—Ni1—S2 92.36 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Higher Learning Institutions of Abhui Provice, China, for financial support (grant No. KJ2009B275Z).

supplementary crystallographic information

Comment

Molecular solids based on transition metal dithiolene complexes have attracted intense interest in recent years, not only owing to the fundamental research of magnetic interactions and magneto-structural correlations but also to the development of new functional molecule-based materials (Robertson & Cronin, 2002), Much work has been performed in molecular solids based on M[dithiolene]2 complexes owing to their application as building blocks in molecular-based materials showing magnetic, superconducting, and optical properties (Nishijo et al., 2000; Ni et al., 2005). Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1.The asymmetric unit is formed by with one half anion and one cation.The Ni II ion is coordinated by four sulfur atoms of two mnt2- ligands, and exhibits square-planar coordination geometry. The crystal structure is stabilized by coulombic interactions. The bond lengths and angles are in good agreement with related compounds [Ni(mnt)2]2- Table 1, (Ni et al., 2004; Ren et al., 2004).

Experimental

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-(3-cyanobenzyl)pyridinium iodide (488 mg, 2.5 mmol) in methanol (10 mL) was added to the mixture, and the red precipitate that was immediately formed was filtered off, and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give red block crystals. Anal. Calcd. for C34H22N8NiS4: C, 55.98; H, 3.04; N, 15.36%. Found: C, 56.00; H, 3.08; N, 15.33%.

Refinement

The H atoms were placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93, or 0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Crystal data

(C13H11N2)2[Ni(C4N2S2)2] Z = 2
Mr = 729.57 F(000) = 748
Monoclinic, P21/c Dx = 1.433 Mg m3
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71070 Å
a = 11.633 (3) Å θ = 3.0–25.4°
b = 8.709 (2) Å µ = 0.86 mm1
c = 16.692 (4) Å T = 293 K
β = 91.278 (5)° Block, red
V = 1690.7 (7) Å3 0.4 × 0.3 × 0.2 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3068 independent reflections
Radiation source: fine-focus sealed tube 2154 reflections with I > 2σ(I)
graphite Rint = 0.092
phi and ω scans θmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −13→13
Tmin = 0.702, Tmax = 0.741 k = −9→10
13953 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0263P)2 + 1.4994P] where P = (Fo2 + 2Fc2)/3
3068 reflections (Δ/σ)max < 0.001
214 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.0000 0.0000 1.0000 0.0420 (3)
S1 0.08308 (11) 0.02743 (15) 0.88570 (8) 0.0527 (4)
S2 −0.06667 (12) 0.23125 (15) 0.98459 (8) 0.0543 (4)
N1 0.2335 (5) −0.2035 (6) 0.7340 (3) 0.0840 (16)
N2 −0.2202 (5) 0.5312 (6) 1.0989 (3) 0.0818 (16)
N3 0.5244 (5) 1.6046 (6) 0.9022 (4) 0.0906 (17)
N4 0.7437 (3) 0.8647 (4) 0.9068 (2) 0.0440 (10)
C1 0.1400 (4) −0.1530 (6) 0.8694 (3) 0.0460 (12)
C2 0.1931 (5) −0.1824 (6) 0.7942 (3) 0.0557 (14)
C3 −0.1341 (4) 0.2636 (6) 1.0743 (3) 0.0477 (13)
C4 −0.1819 (4) 0.4130 (6) 1.0888 (3) 0.0522 (13)
C5 0.5193 (5) 1.4752 (6) 0.8943 (3) 0.0636 (15)
C6 0.5134 (4) 1.3103 (5) 0.8838 (3) 0.0476 (12)
C7 0.4315 (4) 1.2492 (6) 0.8324 (3) 0.0560 (14)
H11A 0.3794 1.3125 0.8053 0.067*
C8 0.4284 (4) 1.0918 (6) 0.8219 (3) 0.0567 (14)
H10A 0.3741 1.0489 0.7868 0.068*
C9 0.5040 (4) 0.9987 (6) 0.8625 (3) 0.0502 (12)
H9A 0.4994 0.8928 0.8559 0.060*
C10 0.5869 (4) 1.0600 (5) 0.9132 (3) 0.0425 (12)
C11 0.5915 (4) 1.2165 (5) 0.9241 (3) 0.0481 (13)
H13A 0.6468 1.2592 0.9584 0.058*
C12 0.6706 (4) 0.9595 (6) 0.9596 (3) 0.0561 (14)
H7A 0.7197 1.0239 0.9932 0.067*
H7B 0.6279 0.8921 0.9945 0.067*
C13 0.7754 (4) 0.7251 (6) 0.9321 (3) 0.0587 (14)
H4A 0.7510 0.6900 0.9815 0.070*
C14 0.8426 (5) 0.6340 (7) 0.8868 (4) 0.0729 (17)
H3A 0.8637 0.5367 0.9047 0.087*
C15 0.8784 (5) 0.6860 (8) 0.8156 (4) 0.0707 (17)
H2A 0.9225 0.6233 0.7833 0.085*
C16 0.8498 (5) 0.8310 (8) 0.7906 (3) 0.0674 (16)
H1A 0.8761 0.8686 0.7422 0.081*
C17 0.7823 (4) 0.9196 (6) 0.8379 (3) 0.0568 (14)
H6A 0.7632 1.0188 0.8220 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0495 (5) 0.0381 (5) 0.0383 (5) 0.0040 (4) 0.0040 (4) −0.0014 (4)
S1 0.0691 (9) 0.0437 (8) 0.0457 (8) 0.0070 (7) 0.0132 (6) 0.0017 (6)
S2 0.0716 (9) 0.0436 (8) 0.0482 (8) 0.0121 (7) 0.0119 (7) 0.0030 (6)
N1 0.109 (4) 0.071 (4) 0.074 (4) −0.005 (3) 0.038 (3) −0.009 (3)
N2 0.107 (4) 0.057 (3) 0.082 (4) 0.028 (3) 0.022 (3) −0.001 (3)
N3 0.113 (4) 0.041 (3) 0.117 (5) 0.000 (3) −0.003 (4) −0.004 (3)
N4 0.049 (2) 0.038 (2) 0.045 (3) 0.005 (2) −0.004 (2) 0.003 (2)
C1 0.045 (3) 0.046 (3) 0.047 (3) 0.005 (2) 0.006 (2) −0.012 (3)
C2 0.064 (3) 0.046 (3) 0.057 (4) −0.003 (3) 0.013 (3) −0.007 (3)
C3 0.050 (3) 0.042 (3) 0.052 (3) 0.006 (3) 0.003 (2) −0.005 (3)
C4 0.057 (3) 0.051 (3) 0.048 (3) 0.008 (3) 0.004 (3) −0.001 (3)
C5 0.070 (4) 0.046 (4) 0.074 (4) 0.005 (3) −0.004 (3) −0.001 (3)
C6 0.056 (3) 0.031 (3) 0.055 (3) 0.001 (2) 0.004 (3) 0.003 (2)
C7 0.054 (3) 0.054 (3) 0.060 (4) 0.014 (3) −0.008 (3) 0.002 (3)
C8 0.054 (3) 0.055 (4) 0.060 (4) 0.003 (3) −0.011 (3) −0.009 (3)
C9 0.056 (3) 0.035 (3) 0.060 (3) 0.003 (3) 0.002 (3) −0.005 (3)
C10 0.044 (3) 0.037 (3) 0.046 (3) 0.006 (2) 0.006 (2) −0.002 (2)
C11 0.049 (3) 0.043 (3) 0.051 (3) −0.003 (3) 0.000 (2) −0.007 (2)
C12 0.069 (3) 0.052 (3) 0.048 (3) 0.018 (3) 0.008 (3) 0.000 (3)
C13 0.068 (4) 0.046 (3) 0.063 (4) 0.010 (3) 0.004 (3) 0.010 (3)
C14 0.092 (4) 0.049 (4) 0.078 (5) 0.021 (3) −0.003 (4) −0.010 (3)
C15 0.065 (4) 0.080 (5) 0.067 (4) 0.016 (3) −0.006 (3) −0.033 (4)
C16 0.061 (3) 0.093 (5) 0.049 (4) 0.008 (4) 0.005 (3) 0.003 (3)
C17 0.058 (3) 0.055 (3) 0.057 (4) −0.002 (3) −0.001 (3) 0.014 (3)

Geometric parameters (Å, °)

Ni1—S1 2.1710 (13) C7—H11A 0.9300
Ni1—S1i 2.1710 (13) C8—C9 1.365 (6)
Ni1—S2 2.1713 (14) C8—H10A 0.9300
Ni1—S2i 2.1713 (13) C9—C10 1.377 (6)
S1—C1 1.729 (5) C9—H9A 0.9300
S2—C3 1.729 (5) C10—C11 1.376 (6)
N1—C2 1.134 (6) C10—C12 1.510 (6)
N2—C4 1.135 (6) C11—H13A 0.9300
N3—C5 1.136 (6) C12—H7A 0.9700
N4—C17 1.332 (6) C12—H7B 0.9700
N4—C13 1.336 (6) C13—C14 1.356 (7)
N4—C12 1.489 (6) C13—H4A 0.9300
C1—C3i 1.348 (6) C14—C15 1.347 (8)
C1—C2 1.435 (7) C14—H3A 0.9300
C3—C1i 1.348 (6) C15—C16 1.368 (8)
C3—C4 1.438 (7) C15—H2A 0.9300
C5—C6 1.449 (7) C16—C17 1.365 (7)
C6—C7 1.374 (7) C16—H1A 0.9300
C6—C11 1.385 (6) C17—H6A 0.9300
C7—C8 1.382 (7)
S1—Ni1—S1i 180.0 C8—C9—H9A 119.7
S1—Ni1—S2 87.64 (5) C10—C9—H9A 119.7
S1i—Ni1—S2 92.36 (5) C11—C10—C9 119.3 (5)
S1—Ni1—S2i 92.36 (5) C11—C10—C12 119.0 (5)
S1i—Ni1—S2i 87.64 (5) C9—C10—C12 121.7 (4)
S2—Ni1—S2i 180.0 C10—C11—C6 119.8 (5)
C1—S1—Ni1 102.59 (18) C10—C11—H13A 120.1
C3—S2—Ni1 102.48 (17) C6—C11—H13A 120.1
C17—N4—C13 120.3 (4) N4—C12—C10 112.8 (4)
C17—N4—C12 121.3 (4) N4—C12—H7A 109.0
C13—N4—C12 118.3 (4) C10—C12—H7A 109.0
C3i—C1—C2 120.8 (4) N4—C12—H7B 109.0
C3i—C1—S1 120.9 (4) C10—C12—H7B 109.0
C2—C1—S1 118.3 (4) H7A—C12—H7B 107.8
N1—C2—C1 178.5 (6) N4—C13—C14 120.9 (5)
C1i—C3—C4 120.2 (4) N4—C13—H4A 119.5
C1i—C3—S2 121.2 (4) C14—C13—H4A 119.5
C4—C3—S2 118.5 (4) C15—C14—C13 119.3 (6)
N2—C4—C3 178.9 (6) C15—C14—H3A 120.4
N3—C5—C6 179.6 (8) C13—C14—H3A 120.4
C7—C6—C11 120.9 (5) C14—C15—C16 120.1 (6)
C7—C6—C5 119.4 (5) C14—C15—H2A 120.0
C11—C6—C5 119.8 (5) C16—C15—H2A 120.0
C6—C7—C8 118.6 (5) C17—C16—C15 119.0 (6)
C6—C7—H11A 120.7 C17—C16—H1A 120.5
C8—C7—H11A 120.7 C15—C16—H1A 120.5
C9—C8—C7 120.7 (5) N4—C17—C16 120.4 (5)
C9—C8—H10A 119.6 N4—C17—H6A 119.8
C7—C8—H10A 119.6 C16—C17—H6A 119.8
C8—C9—C10 120.6 (5)

Symmetry codes: (i) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2332).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ni, C. L., Dang, D. B. & Song, Y. (2004). Chem. Phys. Lett. 396, 353–358.
  3. Ni, Z. P., Ren, X. M. & Ma, J. (2005). J. Am. Chem. Soc. 127, 14330–14338. [DOI] [PubMed]
  4. Nishijo, J., Ogura, E., Yamaura, J. & Miyazaki, A. (2000). Solid State Commun. 116, 661–664.
  5. Ren, X. M., Okudera, H. & Kremer, R. K. (2004). Inorg. Chem. 43, 2569–2576. [DOI] [PubMed]
  6. Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051263/bx2332sup1.cif

e-67-00m70-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051263/bx2332Isup2.hkl

e-67-00m70-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES