Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o98–o99. doi: 10.1107/S160053681005049X

Ethyl 4-(1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl)benzoate

Yi Chen Chan a, Abdussalam Salhin a,, Melati Khairuddean a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,§
PMCID: PMC3050286  PMID: 21522807

Abstract

The title compound, C21H15NO4, was synthesized by reducing the Schiff base obtained from acenaphthenequinone and ethyl-4-aminobenzoate. The dihedral angle between the essentially planar 1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline ring system [maximum deviation = 0.061 (2) Å] and the benzene ring is 75.08 (10)°. In the crystal, mol­ecules are connected via weak inter­molecular C—H⋯O hydrogen bonds, forming a two-dimensional network. The ethyl group is disordered over two sets of sites with a refined occupancy ratio of 0.502 (12):0.498 (12).

Related literature

For details and applications of acenaphthenquinone-based Schiff bases, see: Maldanis et al. (2002); Son et al. (2006); Mhaidat et al. (2009); Rodriguez-Argüelles et al. (1997); McDavid et al. (1951); Salhin et al. (2007, 2008, 2009); Tameem et al. (2006, 2007, 2008); Shalash et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-00o98-scheme1.jpg

Experimental

Crystal data

  • C21H15NO4

  • M r = 345.34

  • Monoclinic, Inline graphic

  • a = 5.2025 (7) Å

  • b = 18.066 (3) Å

  • c = 17.560 (2) Å

  • β = 98.365 (2)°

  • V = 1632.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.49 × 0.21 × 0.08 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.953, T max = 0.992

  • 15726 measured reflections

  • 2393 independent reflections

  • 2157 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.171

  • S = 1.07

  • 2393 reflections

  • 256 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681005049X/lh5180sup1.cif

e-67-00o98-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005049X/lh5180Isup2.hkl

e-67-00o98-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O3i 0.93 2.60 3.249 (4) 127
C14—H14A⋯O1ii 0.93 2.41 3.312 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

YCC, AS and MK acknowledge financial support by the Universiti Sains Malaysia (USM) under the Science Fund Grant No. 1001/PKIMIA/823003. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Acenaphthenequinone-based Schiff bases have been widely synthesized due to their significant applications in chemistry (Maldanis et al., 2002; Son et al., 2006), physics (Mhaidat et al., 2009) and pharmacology (Rodriguez-Argüelles et al., 1997; McDavid et al., 1951). As a continuation of the interest of our research group on the synthesis of Schiff base derivatives (Salhin et al., 2007, 2008, 2009; Tameem et al., 2006, 2007, 2008; Shalash et al., 2010), the title compound was prepared through the reduction of the Schiff base which was obtained from the condensation reaction of acenaphthenequinone and ethyl-4-aminobenzoate.

The molecular structure of the title compound is shown in Fig. 1. The 1,3-dioxo-1H-benzo[de]isoquinoline (O1–O2/N1/C1–C12) ring is approximately planar with maximum deviation of 0.061 (2) Å for atom N1. The ethyl group is disordered over two sites with a refined occupancy ratio of 0.502 (12):0.498 (12). The dihedral angle between the 1,3-dioxo-1H-benzo[de]isoquinoline (O1–O2/N1/C1–C12) ring and the benzene (C13–C18) ring is 75.08 (10)°.

In the crystal structure (Fig. 2), adjacent molecules are connected via intermolecular C7—H7A···O3i and C14—H14A···O1ii (Table 1) hydrogen bonds to form a two-dimensional network.

Experimental

A mixture of acenaphthenequinone (0.182 g, 1 mmol), ethyl-4-aminobenzoate (0.165 g, 1 mmol) and methanol (30 mL) was allowed to reflux for overnight. The synthesized Schiff base was then reduced using NaBH4 in ethanol with stirring at room temperature. Crystal of (I) suitable for X-ray crystallography was obtained by recrystallization from ethanol.

Refinement

All H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). The ethyl group disordered over two sites with a refined occupancy ratio of 0.502 (12):0.498 (12). Since there is no significant anomalous dispersion, 2242 Friedel pairs were merged before the final refinement. The larger than normal displacement parameter of O4 was noticed but it did not improve the precision of the structure to include this atom as a split atom in a disorder model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dotted lines represents the disorder component.

Fig. 2.

Fig. 2.

The crystal packing of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

C21H15NO4 F(000) = 720
Mr = 345.34 Dx = 1.405 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 5950 reflections
a = 5.2025 (7) Å θ = 2.5–30.0°
b = 18.066 (3) Å µ = 0.10 mm1
c = 17.560 (2) Å T = 100 K
β = 98.365 (2)° Needle, colourless
V = 1632.8 (4) Å3 0.49 × 0.21 × 0.08 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 2393 independent reflections
Radiation source: fine-focus sealed tube 2157 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→7
Tmin = 0.953, Tmax = 0.992 k = −25→25
15726 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0659P)2 + 3.4903P] where P = (Fo2 + 2Fc2)/3
2393 reflections (Δ/σ)max < 0.001
256 parameters Δρmax = 0.56 e Å3
4 restraints Δρmin = −0.38 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.6572 (6) 0.08698 (16) 0.20848 (18) 0.0348 (6)
O2 1.3670 (6) −0.02019 (16) 0.3453 (2) 0.0378 (7)
O3 0.9558 (11) 0.3058 (3) 0.5083 (2) 0.0746 (15)
O4 1.2949 (12) 0.3339 (3) 0.4533 (4) 0.105 (2)
C1 0.7860 (7) 0.0310 (2) 0.2216 (2) 0.0259 (7)
C2 0.7297 (7) −0.0388 (2) 0.1797 (2) 0.0271 (7)
C3 0.5174 (8) −0.0424 (2) 0.1229 (2) 0.0336 (8)
H3A 0.4150 −0.0007 0.1106 0.040*
C4 0.4555 (9) −0.1099 (3) 0.0835 (3) 0.0386 (9)
H4A 0.3117 −0.1125 0.0453 0.046*
C5 0.6070 (8) −0.1716 (2) 0.1013 (2) 0.0334 (8)
H5A 0.5639 −0.2158 0.0753 0.040*
C6 0.8256 (7) −0.1689 (2) 0.1583 (2) 0.0293 (8)
C7 0.9882 (8) −0.2308 (2) 0.1776 (2) 0.0332 (8)
H7A 0.9477 −0.2756 0.1527 0.040*
C8 1.2041 (9) −0.2262 (2) 0.2323 (3) 0.0338 (8)
H8A 1.3093 −0.2674 0.2440 0.041*
C9 1.2662 (8) −0.1586 (2) 0.2707 (2) 0.0293 (7)
H9A 1.4141 −0.1554 0.3073 0.035*
C10 1.1111 (7) −0.09719 (19) 0.2547 (2) 0.0254 (7)
C11 0.8898 (7) −0.1011 (2) 0.1980 (2) 0.0245 (7)
C12 1.1773 (7) −0.0277 (2) 0.2972 (2) 0.0267 (7)
N1 1.0028 (6) 0.03130 (17) 0.27965 (19) 0.0254 (6)
C13 1.0402 (7) 0.0969 (2) 0.3273 (2) 0.0262 (7)
C14 1.2342 (7) 0.1468 (2) 0.3184 (2) 0.0290 (7)
H14A 1.3454 0.1382 0.2824 0.035*
C15 1.2614 (8) 0.2100 (2) 0.3639 (3) 0.0345 (9)
H15A 1.3917 0.2440 0.3587 0.041*
C16 1.0928 (9) 0.2223 (2) 0.4175 (2) 0.0358 (9)
C17 0.9001 (8) 0.1711 (3) 0.4258 (2) 0.0363 (9)
H17A 0.7891 0.1793 0.4619 0.044*
C18 0.8716 (8) 0.1078 (2) 0.3807 (2) 0.0322 (8)
H18A 0.7424 0.0735 0.3861 0.039*
C19 1.1063 (12) 0.2905 (3) 0.4660 (3) 0.0525 (14)
C20 1.244 (3) 0.4000 (7) 0.5078 (9) 0.065 (4) 0.493 (17)
H20A 1.0810 0.4252 0.4906 0.078* 0.493 (17)
H20B 1.2509 0.3847 0.5610 0.078* 0.493 (17)
C21 1.483 (3) 0.4465 (6) 0.4943 (9) 0.066 (4) 0.493 (17)
H21A 1.4944 0.4896 0.5267 0.098* 0.493 (17)
H21B 1.4645 0.4615 0.4414 0.098* 0.493 (17)
H21C 1.6374 0.4173 0.5066 0.098* 0.493 (17)
C20A 1.343 (4) 0.4184 (10) 0.4745 (8) 0.074 (5) 0.507 (17)
H20C 1.4622 0.4431 0.4452 0.088* 0.507 (17)
H20D 1.1854 0.4470 0.4749 0.088* 0.507 (17)
C21A 1.470 (3) 0.3911 (11) 0.5553 (10) 0.103 (7) 0.507 (17)
H21D 1.4901 0.4322 0.5904 0.155* 0.507 (17)
H21E 1.6372 0.3701 0.5517 0.155* 0.507 (17)
H21F 1.3610 0.3543 0.5737 0.155* 0.507 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0360 (15) 0.0291 (14) 0.0376 (15) 0.0107 (12) −0.0006 (12) −0.0021 (11)
O2 0.0347 (15) 0.0267 (14) 0.0483 (17) 0.0047 (11) −0.0064 (13) −0.0026 (12)
O3 0.126 (4) 0.056 (2) 0.043 (2) 0.035 (3) 0.014 (2) −0.0126 (18)
O4 0.102 (4) 0.056 (3) 0.152 (6) −0.014 (3) 0.003 (4) −0.071 (3)
C1 0.0237 (15) 0.0251 (17) 0.0286 (17) 0.0035 (12) 0.0027 (13) −0.0016 (13)
C2 0.0257 (16) 0.0246 (17) 0.0311 (18) −0.0002 (13) 0.0050 (14) −0.0010 (13)
C3 0.0293 (19) 0.034 (2) 0.036 (2) 0.0037 (15) −0.0017 (16) −0.0033 (16)
C4 0.034 (2) 0.042 (2) 0.037 (2) 0.0004 (17) −0.0010 (17) −0.0098 (18)
C5 0.0343 (19) 0.0318 (19) 0.0340 (19) −0.0042 (16) 0.0048 (16) −0.0082 (15)
C6 0.0308 (18) 0.0262 (18) 0.0315 (18) −0.0034 (14) 0.0069 (15) −0.0025 (14)
C7 0.042 (2) 0.0202 (16) 0.039 (2) −0.0004 (15) 0.0101 (17) −0.0030 (14)
C8 0.041 (2) 0.0174 (16) 0.043 (2) 0.0069 (15) 0.0071 (17) −0.0006 (15)
C9 0.0309 (18) 0.0197 (15) 0.0367 (19) 0.0027 (13) 0.0023 (15) 0.0004 (14)
C10 0.0268 (17) 0.0191 (15) 0.0306 (17) 0.0019 (12) 0.0053 (14) 0.0026 (13)
C11 0.0241 (16) 0.0217 (15) 0.0283 (16) −0.0006 (12) 0.0054 (13) −0.0006 (12)
C12 0.0269 (16) 0.0202 (15) 0.0324 (17) 0.0021 (13) 0.0024 (13) 0.0033 (13)
N1 0.0261 (14) 0.0195 (13) 0.0302 (15) 0.0014 (11) 0.0028 (12) −0.0017 (11)
C13 0.0255 (16) 0.0226 (16) 0.0295 (17) 0.0059 (13) 0.0008 (13) −0.0019 (13)
C14 0.0282 (17) 0.0219 (16) 0.0370 (19) 0.0033 (13) 0.0052 (14) −0.0028 (14)
C15 0.0288 (18) 0.0224 (17) 0.051 (2) 0.0011 (14) 0.0009 (17) −0.0081 (16)
C16 0.041 (2) 0.0303 (19) 0.0328 (19) 0.0131 (16) −0.0068 (16) −0.0080 (15)
C17 0.039 (2) 0.041 (2) 0.0277 (18) 0.0122 (17) 0.0023 (16) −0.0033 (16)
C18 0.0335 (19) 0.033 (2) 0.0305 (18) 0.0038 (15) 0.0059 (15) 0.0003 (15)
C19 0.075 (4) 0.032 (2) 0.044 (2) 0.021 (2) −0.013 (2) −0.0114 (19)
C20 0.092 (11) 0.041 (6) 0.058 (8) −0.012 (6) 0.003 (7) −0.022 (6)
C21 0.079 (9) 0.033 (5) 0.085 (10) −0.031 (6) 0.014 (8) −0.014 (5)
C20A 0.082 (12) 0.074 (11) 0.068 (9) 0.014 (9) 0.023 (8) −0.015 (8)
C21A 0.068 (11) 0.102 (14) 0.15 (2) 0.012 (9) 0.047 (12) 0.023 (13)

Geometric parameters (Å, °)

O1—C1 1.217 (5) C12—N1 1.405 (4)
O2—C12 1.210 (5) N1—C13 1.448 (5)
O3—C19 1.188 (7) C13—C14 1.379 (5)
O4—C19 1.300 (9) C13—C18 1.387 (5)
O4—C20 1.576 (14) C14—C15 1.389 (5)
O4—C20A 1.581 (19) C14—H14A 0.9300
C1—N1 1.406 (5) C15—C16 1.394 (6)
C1—C2 1.468 (5) C15—H15A 0.9300
C2—C3 1.377 (5) C16—C17 1.387 (7)
C2—C11 1.410 (5) C16—C19 1.494 (6)
C3—C4 1.417 (6) C17—C18 1.386 (6)
C3—H3A 0.9300 C17—H17A 0.9300
C4—C5 1.375 (6) C18—H18A 0.9300
C4—H4A 0.9300 C20—C21 1.546 (10)
C5—C6 1.402 (6) C20—H20A 0.9700
C5—H5A 0.9300 C20—H20B 0.9700
C6—C7 1.415 (6) C21—H21A 0.9600
C6—C11 1.424 (5) C21—H21B 0.9600
C7—C8 1.370 (6) C21—H21C 0.9600
C7—H7A 0.9300 C20A—C21A 1.555 (10)
C8—C9 1.409 (5) C20A—H20C 0.9700
C8—H8A 0.9300 C20A—H20D 0.9700
C9—C10 1.376 (5) C21A—H21D 0.9600
C9—H9A 0.9300 C21A—H21E 0.9600
C10—C11 1.410 (5) C21A—H21F 0.9600
C10—C12 1.476 (5)
C19—O4—C20 98.9 (7) C1—N1—C13 116.7 (3)
C19—O4—C20A 129.7 (8) C14—C13—C18 122.0 (4)
C20—O4—C20A 33.0 (6) C14—C13—N1 120.5 (3)
O1—C1—N1 119.7 (3) C18—C13—N1 117.5 (3)
O1—C1—C2 123.7 (3) C13—C14—C15 119.1 (4)
N1—C1—C2 116.6 (3) C13—C14—H14A 120.5
C3—C2—C11 120.8 (3) C15—C14—H14A 120.5
C3—C2—C1 118.9 (3) C14—C15—C16 119.9 (4)
C11—C2—C1 120.2 (3) C14—C15—H15A 120.1
C2—C3—C4 119.7 (4) C16—C15—H15A 120.1
C2—C3—H3A 120.1 C17—C16—C15 120.0 (4)
C4—C3—H3A 120.1 C17—C16—C19 117.7 (4)
C5—C4—C3 120.3 (4) C15—C16—C19 122.3 (5)
C5—C4—H4A 119.8 C18—C17—C16 120.6 (4)
C3—C4—H4A 119.8 C18—C17—H17A 119.7
C4—C5—C6 120.8 (4) C16—C17—H17A 119.7
C4—C5—H5A 119.6 C17—C18—C13 118.5 (4)
C6—C5—H5A 119.6 C17—C18—H18A 120.8
C5—C6—C7 122.5 (4) C13—C18—H18A 120.8
C5—C6—C11 119.3 (3) O3—C19—O4 123.3 (5)
C7—C6—C11 118.2 (3) O3—C19—C16 124.6 (6)
C8—C7—C6 121.4 (4) O4—C19—C16 112.0 (5)
C8—C7—H7A 119.3 C21—C20—O4 96.2 (9)
C6—C7—H7A 119.3 C21—C20—H20A 112.5
C7—C8—C9 119.7 (4) O4—C20—H20A 112.5
C7—C8—H8A 120.1 C21—C20—H20B 112.5
C9—C8—H8A 120.1 O4—C20—H20B 112.5
C10—C9—C8 121.0 (4) H20A—C20—H20B 110.0
C10—C9—H9A 119.5 C21A—C20A—O4 86.6 (13)
C8—C9—H9A 119.5 C21A—C20A—H20C 114.2
C9—C10—C11 119.8 (3) O4—C20A—H20C 114.2
C9—C10—C12 119.7 (3) C21A—C20A—H20D 114.2
C11—C10—C12 120.4 (3) O4—C20A—H20D 114.2
C2—C11—C10 121.0 (3) H20C—C20A—H20D 111.4
C2—C11—C6 119.1 (3) C20A—C21A—H21D 109.5
C10—C11—C6 119.9 (3) C20A—C21A—H21E 109.5
O2—C12—N1 120.3 (3) H21D—C21A—H21E 109.5
O2—C12—C10 123.7 (3) C20A—C21A—H21F 109.5
N1—C12—C10 116.0 (3) H21D—C21A—H21F 109.5
C12—N1—C1 125.5 (3) H21E—C21A—H21F 109.5
C12—N1—C13 117.8 (3)
O1—C1—C2—C3 −1.1 (6) C10—C12—N1—C1 −5.3 (5)
N1—C1—C2—C3 179.1 (4) O2—C12—N1—C13 −7.6 (5)
O1—C1—C2—C11 179.5 (4) C10—C12—N1—C13 171.5 (3)
N1—C1—C2—C11 −0.3 (5) O1—C1—N1—C12 −175.6 (4)
C11—C2—C3—C4 1.3 (6) C2—C1—N1—C12 4.3 (5)
C1—C2—C3—C4 −178.1 (4) O1—C1—N1—C13 7.6 (5)
C2—C3—C4—C5 −0.3 (7) C2—C1—N1—C13 −172.6 (3)
C3—C4—C5—C6 −0.4 (7) C12—N1—C13—C14 76.6 (4)
C4—C5—C6—C7 −179.1 (4) C1—N1—C13—C14 −106.3 (4)
C4—C5—C6—C11 0.1 (6) C12—N1—C13—C18 −104.4 (4)
C5—C6—C7—C8 178.5 (4) C1—N1—C13—C18 72.7 (4)
C11—C6—C7—C8 −0.8 (6) C18—C13—C14—C15 −0.3 (6)
C6—C7—C8—C9 0.4 (6) N1—C13—C14—C15 178.6 (3)
C7—C8—C9—C10 0.8 (6) C13—C14—C15—C16 −0.2 (6)
C8—C9—C10—C11 −1.4 (6) C14—C15—C16—C17 0.7 (6)
C8—C9—C10—C12 178.5 (4) C14—C15—C16—C19 −177.7 (4)
C3—C2—C11—C10 178.4 (4) C15—C16—C17—C18 −0.6 (6)
C1—C2—C11—C10 −2.2 (5) C19—C16—C17—C18 177.9 (4)
C3—C2—C11—C6 −1.6 (5) C16—C17—C18—C13 0.1 (6)
C1—C2—C11—C6 177.8 (3) C14—C13—C18—C17 0.3 (6)
C9—C10—C11—C2 −179.0 (4) N1—C13—C18—C17 −178.6 (3)
C12—C10—C11—C2 1.1 (5) C20—O4—C19—O3 0.3 (10)
C9—C10—C11—C6 1.0 (5) C20A—O4—C19—O3 −13.0 (13)
C12—C10—C11—C6 −179.0 (3) C20—O4—C19—C16 176.7 (7)
C5—C6—C11—C2 0.8 (5) C20A—O4—C19—C16 163.4 (9)
C7—C6—C11—C2 −179.9 (4) C17—C16—C19—O3 −4.0 (7)
C5—C6—C11—C10 −179.1 (4) C15—C16—C19—O3 174.4 (5)
C7—C6—C11—C10 0.2 (5) C17—C16—C19—O4 179.7 (5)
C9—C10—C12—O2 1.7 (6) C15—C16—C19—O4 −1.9 (7)
C11—C10—C12—O2 −178.4 (4) C19—O4—C20—C21 176.4 (10)
C9—C10—C12—N1 −177.4 (3) C20A—O4—C20—C21 −22.5 (12)
C11—C10—C12—N1 2.5 (5) C19—O4—C20A—C21A 84.2 (13)
O2—C12—N1—C1 175.5 (4) C20—O4—C20A—C21A 59.5 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···O3i 0.93 2.60 3.249 (4) 127
C14—H14A···O1ii 0.93 2.41 3.312 (3) 165

Symmetry codes: (i) x, −y, z−1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5180).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Maldanis, R. J., Wood, J. S., Chandrasekaran, A., Rausch, M. D. & Chien, J. C. W. (2002). J. Organomet. Chem. 645, 158–167.
  4. McDavid, J. E. & Daniels, T. C. (1951). J. Am. Pharm. Assoc. 40: 325, 8594. [DOI] [PubMed]
  5. Mhaidat, I., Mergos, J. A., Hamilakis, S., Kollia, C., Loizos, Z., Tsolomitis, A. & Dervos, C. T. (2009). Mater. Lett. 63, 2587–2590.
  6. Rodriguez-Argüelles, M. C., Ferrari, M. B., Fava, G. G., Pelizzi, C., Pelosi, G., Albertini, R., Botani, A., DallÁnglio, P. P., Lunghi, P. & Pinelli, S. (1997). J. Inorg. Biochem. 66, 7–17. [DOI] [PubMed]
  7. Salhin, A., Abdul Razak, N. & Rahman, I. A. (2008). Acta Cryst E64, o2353. [DOI] [PMC free article] [PubMed]
  8. Salhin, A., Abdul Razak, N. & Rahman, I. A. (2009). Acta Cryst. E65, o1221–o1222. [DOI] [PMC free article] [PubMed]
  9. Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.
  10. Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Son, G. W., Bijal, K. B., Park, D. W., Ha, C. S. & Kim, I. I. (2006). Catal. Today, 111, 412–416.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Tameem, A. A., Saad, B., Salhin, A., Jebas, S. R. & Fun, H. K. (2008). Acta Cryst E64, o679–o680. [DOI] [PMC free article] [PubMed]
  15. Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst E62, o5686–o5688.
  16. Tameem, A. A., Salhin, A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2502.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681005049X/lh5180sup1.cif

e-67-00o98-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005049X/lh5180Isup2.hkl

e-67-00o98-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES