Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 15;67(Pt 1):o127. doi: 10.1107/S1600536810050014

Ethyl 1-(2,6-difluoro­benz­yl)-1H-1,2,3-triazole-4-carboxyl­ate

Jing Jia a, Dingqiang Lu a,*
PMCID: PMC3050293  PMID: 21522638

Abstract

In the title compound, C12H11F2N3O2, the dihedral angle between the triazole and phenyl rings is 73.74 (9)°. In the crystal, mol­ecules are linked into chains along [010] via weak C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

The title compound is an inter­mediate in the synthesis of rufinamide, a new anti-epilepsy drug (Herranz, 2008). For synthetic procedures, see: Abu-Orabi et al. (1989); Wang & Xie (2004). For a related structure, see: Xiao et al. (2008).graphic file with name e-67-0o127-scheme1.jpg

Experimental

Crystal data

  • C12H11F2N3O2

  • M r = 267.24

  • Monoclinic, Inline graphic

  • a = 9.4540 (19) Å

  • b = 10.963 (2) Å

  • c = 12.167 (2) Å

  • β = 93.21 (3)°

  • V = 1259.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.965, T max = 0.977

  • 3270 measured reflections

  • 2316 independent reflections

  • 1629 reflections with I > 2σ(I)

  • R int = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.163

  • S = 1.03

  • 2316 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050014/pv2364sup1.cif

e-67-0o127-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050014/pv2364Isup2.hkl

e-67-0o127-Isup2.hkl (113.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.97 2.47 3.415 (3) 166
C8—H8⋯N3i 0.93 2.61 3.536 (3) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Epilepsia has been a common disease for a long time and has been on an increase year after year. Rufinamide is a new drug to cure epilepsia; it is a triazole derivative (Herranz et al., 2008). We report herein the crystal structure of the title compound which is a key intermediate in the synthesis of rufinamide. In the title compound (Fig. 1), the planes of the triazole and phenyl rings are not coplanar [dihedral angle 73.74 (9)°]. The discrete molecules are linked through weak C—H···O and C—H···N hydrogen bonds, forming one-dimensional chains along [010] direction (Fig. 2 and Tab. 1). In the structure of the title compound, the bond lengths and angles agree with the corresponding values reported for a related compound (Xiao et al., 2008).

Experimental

The title compound, was prepared by following procedures reported earlier (Wang et al., 2004; Abu-Orabi et al., 1989). To a solution of 2-(azidomethyl)-1,3-difluorobenzene (1.69 g, 10 mmol) in etanol (50 mL), ethyl propiolate (0.98 g, 10 mmol) was added and the mixture was heated under reflux for 10 h. After removing the solvent under reduced pressure the residue was dissolved and the title compound recrystallized from petroleum ether-methanol mixture (15:2), to provide crystals suitable for X-ray diffraction (yield 2.31 g, 86.3%).

Refinement

H atoms were palced in geometrically calculated position and were refined using a riding model, with C—H = 0.93, 0.96 and 0.97 Å, for aryl, methyl and methylene type H-atoms, respectively, and Uiso(H) = 1.5 and 1.2 Ueq(C) for methyl and nonmethyl H-atoms, respectively.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level.

Fig. 2.

Fig. 2.

A one-dimensional chain of the title compound.

Crystal data

C12H11F2N3O2 F(000) = 552
Mr = 267.24 Dx = 1.410 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 9.4540 (19) Å θ = 9–13°
b = 10.963 (2) Å µ = 0.12 mm1
c = 12.167 (2) Å T = 293 K
β = 93.21 (3)° Block, colorless
V = 1259.1 (4) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1629 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
graphite θmax = 25.4°, θmin = 2.2°
ω/2θ scans h = 0→11
Absorption correction: ψ scan (North et al., 1968) k = −3→13
Tmin = 0.965, Tmax = 0.977 l = −14→14
3270 measured reflections 3 standard reflections every 200 reflections
2316 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0873P)2 + 0.337P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2316 reflections Δρmax = 0.32 e Å3
174 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.029 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.94152 (18) 0.27880 (14) 0.02828 (16) 0.0890 (6)
F2 0.78127 (17) 0.61613 (15) 0.22000 (14) 0.0829 (6)
O1 0.4165 (2) 0.20776 (17) 0.46337 (16) 0.0744 (6)
O2 0.3594 (2) 0.39959 (17) 0.41799 (17) 0.0776 (6)
N1 0.62925 (19) 0.35347 (16) 0.16945 (17) 0.0537 (5)
N2 0.6558 (3) 0.2343 (2) 0.1898 (2) 0.0751 (7)
N3 0.5829 (2) 0.20178 (19) 0.2728 (2) 0.0709 (7)
C1 0.9678 (3) 0.3771 (2) 0.0933 (2) 0.0618 (7)
C2 1.1060 (3) 0.4031 (3) 0.1262 (3) 0.0733 (8)
H2 1.1796 0.3538 0.1049 0.088*
C3 1.1325 (3) 0.5034 (3) 0.1910 (3) 0.0751 (8)
H3 1.2252 0.5220 0.2146 0.090*
C4 1.0243 (3) 0.5767 (3) 0.2217 (2) 0.0687 (7)
H4 1.0426 0.6459 0.2644 0.082*
C5 0.8887 (3) 0.5456 (2) 0.1878 (2) 0.0583 (6)
C6 0.8534 (2) 0.4459 (2) 0.12140 (19) 0.0522 (6)
C7 0.7032 (3) 0.4176 (2) 0.0843 (2) 0.0593 (7)
H7B 0.6538 0.4930 0.0658 0.071*
H7A 0.7023 0.3676 0.0185 0.071*
C8 0.5379 (2) 0.3966 (2) 0.2397 (2) 0.0524 (6)
H8 0.5015 0.4753 0.2428 0.063*
C9 0.5093 (2) 0.3001 (2) 0.3059 (2) 0.0538 (6)
C10 0.4248 (3) 0.2941 (2) 0.4032 (2) 0.0577 (6)
C11 0.2781 (4) 0.4100 (3) 0.5169 (3) 0.1053 (13)
H11A 0.2056 0.3473 0.5162 0.126*
H11B 0.3404 0.3988 0.5822 0.126*
C12 0.2137 (4) 0.5286 (3) 0.5186 (3) 0.0955 (11)
H12A 0.1482 0.5373 0.4559 0.143*
H12C 0.2857 0.5901 0.5163 0.143*
H12B 0.1641 0.5376 0.5849 0.143*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0929 (12) 0.0560 (10) 0.1202 (14) −0.0053 (8) 0.0250 (10) −0.0258 (9)
F2 0.0797 (11) 0.0754 (11) 0.0936 (12) 0.0159 (9) 0.0056 (9) −0.0255 (9)
O1 0.0857 (13) 0.0520 (11) 0.0853 (13) −0.0042 (9) 0.0038 (10) 0.0175 (10)
O2 0.0897 (14) 0.0537 (11) 0.0929 (14) 0.0125 (10) 0.0351 (11) 0.0150 (10)
N1 0.0500 (11) 0.0360 (10) 0.0751 (13) −0.0006 (8) 0.0039 (9) −0.0005 (9)
N2 0.0744 (15) 0.0421 (12) 0.1107 (18) 0.0101 (11) 0.0221 (14) 0.0037 (12)
N3 0.0678 (14) 0.0404 (12) 0.1064 (18) 0.0058 (10) 0.0220 (13) 0.0086 (12)
C1 0.0709 (17) 0.0402 (12) 0.0759 (16) −0.0045 (12) 0.0198 (13) −0.0027 (11)
C2 0.0581 (16) 0.0583 (17) 0.105 (2) 0.0027 (13) 0.0198 (15) 0.0076 (15)
C3 0.0602 (16) 0.0719 (19) 0.093 (2) −0.0104 (15) 0.0015 (15) 0.0048 (16)
C4 0.0718 (17) 0.0629 (16) 0.0706 (17) −0.0111 (14) −0.0030 (13) −0.0067 (13)
C5 0.0621 (15) 0.0524 (14) 0.0607 (14) 0.0023 (12) 0.0061 (12) −0.0008 (11)
C6 0.0562 (13) 0.0444 (12) 0.0563 (13) −0.0040 (11) 0.0066 (10) 0.0055 (10)
C7 0.0614 (15) 0.0506 (14) 0.0658 (15) −0.0042 (11) 0.0018 (12) −0.0001 (12)
C8 0.0439 (12) 0.0359 (12) 0.0769 (16) 0.0018 (9) −0.0008 (11) −0.0022 (11)
C9 0.0460 (12) 0.0375 (12) 0.0775 (16) −0.0028 (10) −0.0004 (11) 0.0011 (11)
C10 0.0534 (13) 0.0434 (13) 0.0759 (16) −0.0046 (11) −0.0003 (12) 0.0039 (12)
C11 0.141 (3) 0.077 (2) 0.103 (3) 0.020 (2) 0.058 (2) 0.0216 (19)
C12 0.105 (2) 0.095 (3) 0.088 (2) 0.018 (2) 0.0283 (18) 0.0080 (19)

Geometric parameters (Å, °)

F1—C1 1.352 (3) C4—C5 1.368 (4)
F2—C5 1.352 (3) C4—H4 0.9300
O1—C10 1.202 (3) C5—C6 1.390 (3)
O2—C10 1.329 (3) C6—C7 1.498 (3)
O2—C11 1.468 (4) C7—H7B 0.9700
N1—C8 1.335 (3) C7—H7A 0.9700
N1—N2 1.351 (3) C8—C9 1.366 (3)
N1—C7 1.462 (3) C8—H8 0.9300
N2—N3 1.304 (3) C9—C10 1.466 (4)
N3—C9 1.356 (3) C11—C12 1.437 (4)
C1—C2 1.374 (4) C11—H11A 0.9700
C1—C6 1.377 (3) C11—H11B 0.9700
C2—C3 1.368 (4) C12—H12A 0.9600
C2—H2 0.9300 C12—H12C 0.9600
C3—C4 1.369 (4) C12—H12B 0.9600
C3—H3 0.9300
C10—O2—C11 116.6 (2) C6—C7—H7B 109.3
C8—N1—N2 110.2 (2) N1—C7—H7A 109.3
C8—N1—C7 129.4 (2) C6—C7—H7A 109.3
N2—N1—C7 120.2 (2) H7B—C7—H7A 108.0
N3—N2—N1 107.8 (2) N1—C8—C9 105.03 (19)
N2—N3—C9 108.3 (2) N1—C8—H8 127.5
F1—C1—C2 118.4 (2) C9—C8—H8 127.5
F1—C1—C6 117.4 (2) N3—C9—C8 108.6 (2)
C2—C1—C6 124.2 (2) N3—C9—C10 121.0 (2)
C3—C2—C1 118.3 (3) C8—C9—C10 130.2 (2)
C3—C2—H2 120.8 O1—C10—O2 123.7 (2)
C1—C2—H2 120.8 O1—C10—C9 125.8 (2)
C2—C3—C4 120.9 (3) O2—C10—C9 110.4 (2)
C2—C3—H3 119.5 C12—C11—O2 108.9 (3)
C4—C3—H3 119.5 C12—C11—H11A 109.9
C5—C4—C3 118.2 (3) O2—C11—H11A 109.9
C5—C4—H4 120.9 C12—C11—H11B 109.9
C3—C4—H4 120.9 O2—C11—H11B 109.9
F2—C5—C4 118.5 (2) H11A—C11—H11B 108.3
F2—C5—C6 117.3 (2) C11—C12—H12A 109.5
C4—C5—C6 124.2 (2) C11—C12—H12C 109.5
C1—C6—C5 114.1 (2) H12A—C12—H12C 109.5
C1—C6—C7 123.8 (2) C11—C12—H12B 109.5
C5—C6—C7 122.0 (2) H12A—C12—H12B 109.5
N1—C7—C6 111.7 (2) H12C—C12—H12B 109.5
N1—C7—H7B 109.3
C8—N1—N2—N3 −0.5 (3) C8—N1—C7—C6 100.9 (3)
C7—N1—N2—N3 176.4 (2) N2—N1—C7—C6 −75.2 (3)
N1—N2—N3—C9 0.0 (3) C1—C6—C7—N1 99.0 (3)
F1—C1—C2—C3 179.3 (3) C5—C6—C7—N1 −81.2 (3)
C6—C1—C2—C3 0.1 (4) N2—N1—C8—C9 0.7 (3)
C1—C2—C3—C4 −0.6 (4) C7—N1—C8—C9 −175.8 (2)
C2—C3—C4—C5 1.4 (4) N2—N3—C9—C8 0.4 (3)
C3—C4—C5—F2 178.5 (3) N2—N3—C9—C10 −175.6 (2)
C3—C4—C5—C6 −1.9 (4) N1—C8—C9—N3 −0.7 (3)
F1—C1—C6—C5 −179.7 (2) N1—C8—C9—C10 174.9 (2)
C2—C1—C6—C5 −0.5 (4) C11—O2—C10—O1 2.7 (4)
F1—C1—C6—C7 0.1 (4) C11—O2—C10—C9 −176.0 (3)
C2—C1—C6—C7 179.4 (2) N3—C9—C10—O1 3.0 (4)
F2—C5—C6—C1 −179.0 (2) C8—C9—C10—O1 −172.1 (3)
C4—C5—C6—C1 1.4 (4) N3—C9—C10—O2 −178.3 (2)
F2—C5—C6—C7 1.2 (3) C8—C9—C10—O2 6.6 (4)
C4—C5—C6—C7 −178.4 (2) C10—O2—C11—C12 −179.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···F1 0.97 2.46 2.833 (3) 103.
C7—H7B···O1i 0.97 2.47 3.415 (3) 166.
C8—H8···N3i 0.93 2.61 3.536 (3) 172.

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2364).

References

  1. Abu-Orabi, S. T., Atfah, M. A., Jibril, I., Mari’i, F. M. & Ali, A. A.-S. (1989). J. Heterocycl. Chem. 26, 1461–1468.
  2. Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Herranz, J. L. (2008). Rev. Neurol. 47, 369–373. [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wang, J. M. & Xie, Z. F. (2004). J. Med. Sci. Yanbian Univ. 27, 264-266.
  9. Xiao, J., Wang, W. X. & Zhao, H. (2008). Acta Cryst. E64, o2085. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050014/pv2364sup1.cif

e-67-0o127-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050014/pv2364Isup2.hkl

e-67-0o127-Isup2.hkl (113.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES