Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 18;67(Pt 1):o177. doi: 10.1107/S1600536810052165

Dibenzyl sulfoxide

Yun-Xiu Zeng a, Zhi-Guang Xu a,*, Qing-Guang Zhan a, Hai-Yang Liu b
PMCID: PMC3050296  PMID: 21522682

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C14H14OS, which have asymmetric S—C bonds [1.791 (5) and 1.804 (5) Å in one mol­ecule and 1.798 (5) and 1.804 (5) Å in the other]. The long axes of the mol­ecules are directed along the crystallographic b axis.

Related literature

For related structures, see: Li et al. (2003); Iitaka et al. (1986). For the preparation, see: Shriner et al. (1930). For the use of sulfoxides in the separation of palladium from other platinum-group metals by solvent extraction, see: Xu et al. (2006).graphic file with name e-67-0o177-scheme1.jpg

Experimental

Crystal data

  • C14H14OS

  • M r = 230.32

  • Orthorhombic, Inline graphic

  • a = 17.882 (5) Å

  • b = 53.150 (14) Å

  • c = 10.233 (3) Å

  • V = 9726 (5) Å3

  • Z = 32

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.36 × 0.28 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • 14310 measured reflections

  • 5111 independent reflections

  • 2563 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.183

  • S = 0.97

  • 5111 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 1074 Friedel pairs

  • Flack parameter: 0.00 (12)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052165/jh2245sup1.cif

e-67-0o177-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052165/jh2245Isup2.hkl

e-67-0o177-Isup2.hkl (250.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (No. 8451063101000731), the Breeding Project of the Department of Education of Guangdong Province (LYM09053) and the NNSFC (No. 20971046).

supplementary crystallographic information

Comment

Sulfoxides have been widely used in the separation of palladium from other platinum-group metals by solvent extraction (Xu et al., 2006).A similar disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane and its Copper(II) and Cadmium(II) dimeric complexes were obtained (Li et al.,2003). Crystals of dibenzyl sulfoxide show two independent molecules in the unit. There are asymmetry S—C bonds in a same molecule. The long axe of the crystals is directed along the b axis.

Experimental

The title compound was prepared refering to the literature method (Shriner et al., 1930) with little modification. Sodium sulfide(99%, 0.312 g, 0.0040 mol) and benzylchloride (1.000 g, 0.0079 mol) were dissolved in anhydrous ethanol (50 ml) at 70°C, and then was stirred over 1 h. The solution was extracted with CH2Cl2 after addition 400 ml of water. Dibenzyl sulfide(0.736 g, 0.0034 mol) was obtained after evaporation of CH2Cl2. Yield: 86%. Hydrogen peroxide (30%, 0.0028 mol) was added dropwise to a solution of dibenzyl sulfide (0.600 g, 0.0028 mol) in acetic acid (60 ml) on ice bath with a vigorously stir for 1 h. 500 ml of water was added. The solution was extracted with CH2Cl2, and the product of dibenzyl sulfoxide(0.552 g, 0.0024 mol) was obtained after evaporation of CH2Cl2. Yield: 86%. It was characterized by recording its infrared and NMR spectra. White single crystals of the title compound were obtained by slow evaporation of its mixed solution including n-hexane and dichloromethane.)

Refinement

(All H atoms were placed in calculated positions and subsequently constrained to ride on their parent atoms, with C–H distances of 0.93 Å (C-aromatic) and 0.97 Å (C-methyl). The Uiso(H) values were set at 1.2 Ueq(C aromatic) and 1.5 Ueq(C methylene).)

Figures

Fig. 1.

Fig. 1.

Molecule structure of with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C14H14OS F(000) = 3904
Mr = 230.32 Dx = 1.258 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 2370 reflections
a = 17.882 (5) Å θ = 2.3–23.7°
b = 53.150 (14) Å µ = 0.24 mm1
c = 10.233 (3) Å T = 298 K
V = 9726 (5) Å3 Block, white
Z = 32 0.36 × 0.28 × 0.15 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2563 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
graphite θmax = 28.3°, θmin = 2.3°
phi and ω scans h = −23→22
14310 measured reflections k = −56→69
5111 independent reflections l = −11→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0957P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.061
5111 reflections Δρmax = 0.56 e Å3
289 parameters Δρmin = −0.19 e Å3
1 restraint Absolute structure: Flack (1983), 1074 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.40616 (7) 0.12486 (3) 0.42542 (10) 0.0541 (3)
C6 0.1374 (2) 0.07435 (9) 0.7186 (5) 0.0511 (13)
C9 0.1385 (3) 0.17549 (9) 0.7183 (5) 0.0547 (13)
C7 0.1315 (3) 0.10024 (9) 0.7775 (5) 0.0657 (13)
H7A 0.1713 0.1024 0.8410 0.079*
H7B 0.0842 0.1017 0.8233 0.079*
C8 0.1322 (3) 0.14959 (9) 0.7780 (5) 0.0637 (13)
H8A 0.0850 0.1483 0.8241 0.076*
H8B 0.1720 0.1474 0.8412 0.076*
C4 0.0819 (3) 0.03513 (11) 0.6580 (6) 0.0878 (18)
H4 0.0400 0.0248 0.6511 0.105*
C13 0.2163 (3) 0.20854 (11) 0.6307 (6) 0.0814 (16)
H13 0.2630 0.2144 0.6045 0.098*
C1 0.2051 (3) 0.06488 (10) 0.6809 (6) 0.0693 (13)
H1 0.2475 0.0749 0.6894 0.083*
C2 0.2122 (3) 0.04126 (10) 0.6312 (6) 0.0796 (16)
H2 0.2590 0.0355 0.6050 0.096*
C5 0.0754 (3) 0.05917 (11) 0.7057 (6) 0.0747 (15)
H5 0.0286 0.0653 0.7297 0.090*
C3 0.1526 (4) 0.02621 (10) 0.6196 (6) 0.0782 (17)
H3 0.1578 0.0100 0.5865 0.094*
C11 0.0846 (3) 0.21459 (11) 0.6523 (6) 0.0790 (17)
H11 0.0425 0.2247 0.6414 0.095*
C14 0.2086 (3) 0.18479 (9) 0.6809 (6) 0.0697 (14)
H14 0.2507 0.1747 0.6903 0.084*
C12 0.1542 (3) 0.22363 (10) 0.6195 (6) 0.0774 (17)
H12 0.1593 0.2401 0.5896 0.093*
C10 0.0773 (3) 0.19068 (10) 0.7010 (5) 0.0707 (15)
H10 0.0301 0.1847 0.7227 0.085*
C17 0.4166 (3) 0.02607 (10) 0.3893 (7) 0.0738 (16)
H17 0.4294 0.0096 0.3678 0.089*
C26 0.4207 (3) 0.22365 (10) 0.3836 (7) 0.0742 (16)
H26 0.4354 0.2399 0.3609 0.089*
C15 0.4119 (3) 0.05920 (10) 0.5446 (6) 0.0726 (15)
H15 0.4225 0.0653 0.6277 0.087*
C22 0.3498 (3) 0.14955 (10) 0.4925 (6) 0.0674 (14)
H22A 0.2987 0.1474 0.4630 0.081*
H22B 0.3501 0.1482 0.5870 0.081*
C24 0.3599 (3) 0.18525 (10) 0.3314 (6) 0.0695 (15)
H24 0.3334 0.1755 0.2718 0.083*
C28 0.4160 (3) 0.19012 (10) 0.5414 (6) 0.0737 (15)
H28 0.4283 0.1839 0.6236 0.088*
C19 0.3607 (3) 0.06475 (10) 0.3319 (6) 0.0697 (14)
H19 0.3366 0.0749 0.2710 0.084*
C20 0.3754 (3) 0.07420 (9) 0.4574 (5) 0.0525 (13)
C16 0.4335 (3) 0.03512 (10) 0.5121 (6) 0.0823 (17)
H16 0.4589 0.0251 0.5720 0.099*
C27 0.4374 (3) 0.21400 (10) 0.5059 (7) 0.0844 (18)
H27 0.4636 0.2239 0.5652 0.101*
C21 0.3494 (3) 0.10017 (9) 0.4944 (6) 0.0655 (14)
H21A 0.3498 0.1017 0.5888 0.079*
H21B 0.2982 0.1023 0.4652 0.079*
C23 0.3763 (3) 0.17547 (9) 0.4545 (5) 0.0537 (13)
C25 0.3822 (3) 0.20898 (11) 0.2968 (6) 0.0818 (16)
H25 0.3711 0.2151 0.2140 0.098*
C18 0.3813 (3) 0.04094 (12) 0.2979 (6) 0.0823 (16)
H18 0.3716 0.0348 0.2144 0.099*
O1 0.47890 (18) 0.12488 (7) 0.4984 (4) 0.0831 (11)
O2 0.0644 (2) 0.12505 (7) 0.5840 (4) 0.0850 (11)
S2 0.13762 (7) 0.12488 (3) 0.65757 (9) 0.0548 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0557 (6) 0.0490 (6) 0.0575 (8) 0.0010 (6) 0.0076 (5) 0.0000 (7)
C6 0.057 (3) 0.044 (3) 0.053 (3) −0.003 (2) −0.002 (2) 0.007 (2)
C9 0.064 (3) 0.048 (3) 0.052 (3) 0.005 (2) −0.010 (2) −0.010 (3)
C7 0.080 (3) 0.064 (3) 0.053 (3) −0.005 (3) −0.002 (3) 0.006 (3)
C8 0.083 (3) 0.061 (3) 0.047 (3) 0.000 (2) −0.004 (3) −0.006 (2)
C4 0.100 (4) 0.077 (4) 0.086 (4) −0.037 (3) −0.024 (4) 0.003 (4)
C13 0.082 (4) 0.076 (4) 0.087 (4) −0.009 (3) 0.000 (3) −0.002 (3)
C1 0.064 (3) 0.066 (3) 0.078 (4) −0.005 (2) −0.002 (3) 0.009 (3)
C2 0.088 (4) 0.066 (4) 0.085 (4) 0.009 (3) 0.007 (3) 0.007 (3)
C5 0.063 (3) 0.079 (4) 0.082 (4) −0.002 (3) −0.017 (3) 0.006 (3)
C3 0.121 (5) 0.048 (4) 0.066 (4) −0.007 (3) −0.004 (4) −0.003 (3)
C11 0.079 (4) 0.070 (4) 0.088 (4) 0.022 (3) −0.019 (4) −0.015 (3)
C14 0.061 (3) 0.068 (3) 0.080 (4) 0.009 (2) −0.007 (3) −0.009 (3)
C12 0.114 (5) 0.050 (4) 0.068 (4) 0.005 (3) −0.006 (3) −0.007 (3)
C10 0.057 (3) 0.077 (4) 0.079 (4) 0.004 (2) −0.008 (3) −0.011 (3)
C17 0.073 (3) 0.054 (4) 0.094 (5) 0.002 (3) 0.010 (3) 0.001 (3)
C26 0.074 (3) 0.051 (4) 0.098 (5) 0.002 (3) 0.009 (3) −0.005 (3)
C15 0.072 (3) 0.080 (4) 0.065 (3) −0.001 (3) −0.014 (3) 0.008 (3)
C22 0.061 (3) 0.066 (4) 0.074 (4) 0.005 (2) 0.014 (3) −0.008 (3)
C24 0.072 (3) 0.059 (3) 0.077 (4) 0.004 (2) −0.007 (3) −0.011 (3)
C28 0.074 (3) 0.069 (4) 0.078 (4) 0.011 (3) −0.014 (3) −0.014 (3)
C19 0.075 (3) 0.064 (3) 0.070 (4) −0.002 (3) −0.013 (3) 0.009 (3)
C20 0.051 (3) 0.048 (3) 0.058 (3) −0.005 (2) 0.004 (2) 0.006 (3)
C16 0.081 (4) 0.072 (4) 0.094 (5) 0.008 (3) −0.010 (4) 0.021 (3)
C27 0.074 (4) 0.069 (4) 0.110 (5) −0.001 (3) −0.016 (4) −0.033 (3)
C21 0.063 (3) 0.063 (3) 0.071 (4) −0.002 (2) 0.013 (3) 0.001 (3)
C23 0.052 (3) 0.046 (3) 0.063 (3) 0.007 (2) 0.006 (2) −0.007 (3)
C25 0.091 (4) 0.074 (4) 0.080 (4) 0.015 (3) 0.002 (3) 0.005 (3)
C18 0.096 (4) 0.077 (4) 0.073 (4) −0.008 (3) −0.003 (3) −0.006 (3)
O1 0.0486 (17) 0.083 (2) 0.117 (3) 0.0017 (15) −0.011 (2) −0.004 (3)
O2 0.088 (3) 0.099 (3) 0.067 (2) 0.001 (2) −0.034 (2) 0.003 (2)
S2 0.0703 (8) 0.0508 (6) 0.0434 (6) 0.0005 (6) 0.0020 (6) −0.0014 (7)

Geometric parameters (Å, °)

S1—O1 1.500 (3) C10—H10 0.9300
S1—C22 1.791 (5) C17—C18 1.378 (8)
S1—C21 1.804 (5) C17—C16 1.379 (8)
C6—C1 1.367 (6) C17—H17 0.9300
C6—C5 1.378 (6) C26—C25 1.368 (8)
C6—C7 1.506 (6) C26—C27 1.385 (8)
C9—C10 1.371 (6) C26—H26 0.9300
C9—C14 1.401 (6) C15—C20 1.363 (7)
C9—C8 1.510 (6) C15—C16 1.377 (7)
C7—S2 1.798 (5) C15—H15 0.9300
C7—H7A 0.9700 C22—C23 1.508 (7)
C7—H7B 0.9700 C22—H22A 0.9700
C8—S2 1.804 (5) C22—H22B 0.9700
C8—H8A 0.9700 C24—C25 1.369 (7)
C8—H8B 0.9700 C24—C23 1.395 (7)
C4—C5 1.373 (8) C24—H24 0.9300
C4—C3 1.405 (8) C28—C27 1.374 (8)
C4—H4 0.9300 C28—C23 1.379 (7)
C13—C14 1.370 (7) C28—H28 0.9300
C13—C12 1.375 (7) C19—C18 1.363 (7)
C13—H13 0.9300 C19—C20 1.404 (7)
C1—C2 1.360 (7) C19—H19 0.9300
C1—H1 0.9300 C20—C21 1.505 (6)
C2—C3 1.338 (7) C16—H16 0.9300
C2—H2 0.9300 C27—H27 0.9300
C5—H5 0.9300 C21—H21A 0.9700
C3—H3 0.9300 C21—H21B 0.9700
C11—C10 1.371 (8) C25—H25 0.9300
C11—C12 1.376 (8) C18—H18 0.9300
C11—H11 0.9300 O2—S2 1.511 (3)
C14—H14 0.9300 S2—C7 1.798 (5)
C12—H12 0.9300 S2—C8 1.804 (5)
O1—S1—C22 107.2 (2) C18—C17—C16 121.3 (6)
O1—S1—C21 107.1 (2) C18—C17—H17 119.4
C22—S1—C21 93.8 (2) C16—C17—H17 119.4
C1—C6—C5 118.1 (5) C25—C26—C27 119.0 (5)
C1—C6—C7 120.8 (5) C25—C26—H26 120.5
C5—C6—C7 121.1 (5) C27—C26—H26 120.5
C10—C9—C14 118.1 (5) C20—C15—C16 121.3 (6)
C10—C9—C8 122.0 (5) C20—C15—H15 119.3
C14—C9—C8 119.9 (4) C16—C15—H15 119.3
C6—C7—S2 112.8 (4) C23—C22—S1 113.2 (3)
C6—C7—H7A 109.0 C23—C22—H22A 108.9
S2—C7—H7A 109.0 S1—C22—H22A 108.9
C6—C7—H7B 109.0 C23—C22—H22B 108.9
S2—C7—H7B 109.0 S1—C22—H22B 108.9
H7A—C7—H7B 107.8 H22A—C22—H22B 107.7
C9—C8—S2 112.6 (4) C25—C24—C23 121.0 (6)
C9—C8—H8A 109.1 C25—C24—H24 119.5
S2—C8—H8A 109.1 C23—C24—H24 119.5
C9—C8—H8B 109.1 C27—C28—C23 119.6 (6)
S2—C8—H8B 109.1 C27—C28—H28 120.2
H8A—C8—H8B 107.8 C23—C28—H28 120.2
C5—C4—C3 119.4 (5) C18—C19—C20 121.0 (5)
C5—C4—H4 120.3 C18—C19—H19 119.5
C3—C4—H4 120.3 C20—C19—H19 119.5
C14—C13—C12 119.2 (5) C15—C20—C19 118.6 (5)
C14—C13—H13 120.4 C15—C20—C21 121.3 (5)
C12—C13—H13 120.4 C19—C20—C21 120.0 (5)
C2—C1—C6 121.9 (5) C15—C16—C17 118.9 (5)
C2—C1—H1 119.1 C15—C16—H16 120.6
C6—C1—H1 119.1 C17—C16—H16 120.6
C3—C2—C1 120.7 (5) C28—C27—C26 121.4 (5)
C3—C2—H2 119.7 C28—C27—H27 119.3
C1—C2—H2 119.7 C26—C27—H27 119.3
C4—C5—C6 120.7 (5) C20—C21—S1 113.2 (3)
C4—C5—H5 119.7 C20—C21—H21A 108.9
C6—C5—H5 119.7 S1—C21—H21A 108.9
C2—C3—C4 119.3 (5) C20—C21—H21B 108.9
C2—C3—H3 120.3 S1—C21—H21B 108.9
C4—C3—H3 120.3 H21A—C21—H21B 107.7
C10—C11—C12 119.8 (5) C28—C23—C24 118.7 (5)
C10—C11—H11 120.1 C28—C23—C22 120.8 (5)
C12—C11—H11 120.1 C24—C23—C22 120.5 (5)
C13—C14—C9 121.1 (5) C26—C25—C24 120.2 (6)
C13—C14—H14 119.4 C26—C25—H25 119.9
C9—C14—H14 119.4 C24—C25—H25 119.9
C13—C12—C11 120.5 (6) C19—C18—C17 118.9 (6)
C13—C12—H12 119.8 C19—C18—H18 120.6
C11—C12—H12 119.8 C17—C18—H18 120.6
C11—C10—C9 121.1 (5) O2—S2—C7 107.0 (2)
C11—C10—H10 119.4 O2—S2—C8 106.8 (2)
C9—C10—H10 119.4 C7—S2—C8 93.5 (2)
C1—C6—C7—S2 77.1 (6) C18—C19—C20—C15 1.0 (8)
C5—C6—C7—S2 −105.4 (5) C18—C19—C20—C21 −177.4 (5)
C10—C9—C8—S2 103.3 (5) C20—C15—C16—C17 −0.9 (8)
C14—C9—C8—S2 −77.8 (6) C18—C17—C16—C15 2.3 (9)
C5—C6—C1—C2 0.4 (8) C23—C28—C27—C26 −0.8 (8)
C7—C6—C1—C2 177.9 (5) C25—C26—C27—C28 −0.1 (9)
C6—C1—C2—C3 −1.2 (9) C15—C20—C21—S1 105.3 (5)
C3—C4—C5—C6 −1.2 (9) C19—C20—C21—S1 −76.3 (6)
C1—C6—C5—C4 0.8 (8) O1—S1—C21—C20 −72.8 (5)
C7—C6—C5—C4 −176.7 (5) C22—S1—C21—C20 177.8 (4)
C1—C2—C3—C4 0.7 (9) C27—C28—C23—C24 1.0 (8)
C5—C4—C3—C2 0.5 (9) C27—C28—C23—C22 −177.9 (4)
C12—C13—C14—C9 1.4 (9) C25—C24—C23—C28 −0.4 (8)
C10—C9—C14—C13 1.2 (8) C25—C24—C23—C22 178.5 (5)
C8—C9—C14—C13 −177.7 (5) S1—C22—C23—C28 −102.4 (5)
C14—C13—C12—C11 −3.2 (9) S1—C22—C23—C24 78.7 (6)
C10—C11—C12—C13 2.4 (9) C27—C26—C25—C24 0.7 (9)
C12—C11—C10—C9 0.2 (8) C23—C24—C25—C26 −0.5 (8)
C14—C9—C10—C11 −1.9 (8) C20—C19—C18—C17 0.3 (8)
C8—C9—C10—C11 176.9 (5) C16—C17—C18—C19 −2.0 (9)
O1—S1—C22—C23 72.7 (5) C6—C7—S2—O2 73.7 (4)
C21—S1—C22—C23 −178.1 (5) C6—C7—S2—C8 −177.5 (4)
C16—C15—C20—C19 −0.7 (8) C9—C8—S2—O2 −73.3 (4)
C16—C15—C20—C21 177.7 (5) C9—C8—S2—C7 177.8 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2245).

References

  1. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Iitaka, Y., Itai, A., Tomioka, N., Kodama, Y., Ichikawa, K., Nishihata, K., Nishio, M., Izumi, M. & Doi, K. (1986). Bull. Chem. Soc. Jpn, 59, 2801–2806.
  5. Li, J. R., Du, M., Bu, X. H. & Zhang, R. H. (2003). J. Solid State Chem. 173, 20–26.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shriner, R. L., Struck, H. C. & Jorison, W. J. (1930). J. Am. Chem. Soc. 52, 2060–2069.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Xu, Z. G., Gu, G. B., Liu, H. Y., Jiang, H. F. & Chang, C. K. (2006). Chin. J. Struct. Chem 25, 1524–1530.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052165/jh2245sup1.cif

e-67-0o177-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052165/jh2245Isup2.hkl

e-67-0o177-Isup2.hkl (250.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES