Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):o9. doi: 10.1107/S1600536810049809

Spiro­[indene-1,1′-benzo[e]indolin]-2′-one

Jin-Xiang Chen a,*, Yu-Qin Wang a, Shu-Wen Liu a, Wei-Er Lin a, Zhi-Peng Chen a
PMCID: PMC3050306  PMID: 21522798

Abstract

In the title compound, C20H13NO, the indene ring is disordered over two sites with an occupancy ratio of 0.557 (2):0.443 (2). Both disordered components of indene are nearly perpendicular to the naphthalene ring system, making dihedral angles of 90.9 (2) and 85.0 (5)°. The five-membered ring of the 1H-pyrrol-2(3H)-one adopts an envelope conformation with the spiro C atom at the flap position. Inter­molecular classical N—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the biological activity of spiro lacta­ms, see: Tsuda et al. (2004); Chen et al. (2005). For the synthesis of the title compound, see: Ready et al. (2004); Schoemaker & Speckamp (1978).graphic file with name e-67-000o9-scheme1.jpg

Experimental

Crystal data

  • C20H13NO

  • M r = 283.31

  • Monoclinic, Inline graphic

  • a = 13.0150 (18) Å

  • b = 7.9180 (11) Å

  • c = 15.537 (2) Å

  • β = 112.030 (2)°

  • V = 1484.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.41 × 0.33 mm

Data collection

  • Rigaku Mercury diffractometer

  • 6913 measured reflections

  • 2526 independent reflections

  • 1984 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.199

  • S = 1.06

  • 2526 reflections

  • 203 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049809/xu5073sup1.cif

e-67-000o9-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049809/xu5073Isup2.hkl

e-67-000o9-Isup2.hkl (124.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.99 2.815 (3) 162
C18—H18A⋯O1ii 0.93 2.35 3.064 (5) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Medical Scientific Research Foundation of Guangdong Province (No. B107) and the Guangzhou Municipal Scientific and Technological Project, China (No. 2007 J1-C0251).

supplementary crystallographic information

Comment

In the past decades, spiro lactams have been attracted considerable interest because they are commonly found as subunits of many natural products. Some of them have significant biological activities, including multiple drug resistance reversing, antifungal and antitumor activities (Tsuda et al.,2004). Synthetic methods directed to these classes of spiro lactam compounds have been developed (Ready et al., 2004). Among them, spiro cyclizations of N-acyliminium ions with an internalalkene nucleophile were first described by Speckamp (Schoemaker et al., 1978). Reductive coupling of acrylates with isocyanates to furnish spiro lactam skeleton was used by Wood [Ready et al., 2004]. The title compound I was synthesized in one step through a new ring-rearrangement reaction. It was undertaken as a continuation of our efforts towards synthesis of dibenzoxanthenes which exhibit a wide variety of biological activities [Chen et al., 2005].

The asymmetric unit of I contains one independent spiro-[indene-1,3'-(2',3'-dihydro-2'-oxa-benzo[e]indole)] molecule. In the complex I, the naphthyl ring and indene ring are almost perpendicular to each other, making a diheral angle of 90.9 (2)°. All bond lengths and bond angles are in the normal ranges and comparable to those observed in the similar substituted spiro-[indene-1,3'-(2',3'-dihydro-2'-oxa-benzo[e]indole)], except the disordered part of indene ring. The C(11)=O(1) bond length of 1.215 (4) Å of oxa-indole moiety conforms to the value for a double bond.

In the crystal of I, there are two types hydrogen bonding interactions: one type is classical hydrogen bonding between O(1) atom and N(1) atom from oxa-benzo[e]indole moiety, the other one is unclassical hydrogen bonding between O(1) atom and C(18) atom from the phenyl group. The molecule I was linked together by a double strong classical intermolecular hydrogen bonds of N(1)—H1A···O(1), thereby forming a dimer structure, while the dimers were futher linked by the unclassical hydrogen bonds of C(18)—HA···O(1), thereby forming a two dimessional network structure.

Experimental

Into a stirred solution of CuCl2.2H2O (17 mg, 0.1 mmol) in methanol (5 ml) was added a solution of ethanolamine (6 mg, 0.1 mmol) in methanol (2 ml). After 10 min. a solution of 2-amino-2'-hydroxy-1,1'-binaphthyl (0.1 mmol) in methanol (2 ml) was added and the reaction mixture was stirred at 323 K. When the reaction was completed, the solvent was removed under reduced pressure. The residue was extracted with AcOEt (10 ml), washed with 5% ammonia (10 ml) and water (10 ml), then dried with Na2SO4, and the solvent was removed under reduced pressure. Thick layer chromatography of the residue (hexane:ethyl acetate, 10:1) followed by recrystallization from acetone gave the title complex as red crystals. Yield: ca 82%.

Refinement

The indene ring was found to be disordered over two sites, occupancies were refined to 0.557 (2):0.443 (2). The distance restraints have been used to make these two disordered indene ring with same bond lengths and same displacement parameters. H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93 Å, and refined using riding-model approximation with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The dimer structure formed via N—H···O hydrogen bonding interactions in 1, shown as dashed lines. Symmetry transformations used to generate equivalent atoms: A: -x + 1, -y + 1, -z + 1. Hydrogen atoms are drawn as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The two dimensional network structure along bc plane formed via N—H···O and C—H···O hydrogen bonding interactions in I, shown as dashed lines, Symmetry transformations used to generate equivalent atoms: A: -x + 1, -y + 1, -z + 1, B: -x + 1, y + 1/2, -z + 1/2, C: -x + 1, y - 1/2, -z + 1/2.

Crystal data

C20H13NO F(000) = 592
Mr = 283.31 Dx = 1.268 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5963 reflections
a = 13.0150 (18) Å θ = 2.8–25.3°
b = 7.9180 (11) Å µ = 0.08 mm1
c = 15.537 (2) Å T = 293 K
β = 112.030 (2)° Block, red
V = 1484.2 (4) Å3 0.50 × 0.41 × 0.33 mm
Z = 4

Data collection

Rigaku Mercury diffractometer 1984 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.025
graphite θmax = 24.7°, θmin = 1.7°
Detector resolution: 10.0 pixels mm-1 h = −15→15
ω scans k = −9→9
6913 measured reflections l = −12→18
2526 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0672P)2 + 1.1136P] where P = (Fo2 + 2Fc2)/3
2526 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.23 e Å3
30 restraints Δρmin = −0.27 e Å3

Special details

Experimental. 1H NMR (CDCl3, 500 MHz) 8.63 (s, 1H), 7.83 (d, 1H, J = 8.5 Hz), 7.77 (d, 1H, J = 8.0 Hz), 7.56 (d, 1H, J = 7.5 Hz), 7.36 (t, 1H, J = 7.5 and 8.0 Hz), 7.32 (d, 1H, J = 5.5 Hz), 7.29 (d, 1H, J = 9.0 Hz), 7.23 (t, 1H, J =), 7.15 (t, 1H, J =), 7.11 (t, 1H, J =), 6.98 (d, 1H, J = 7.5 Hz), 6.77 (d, 1H, J = 8.5 Hz), 6.45 (d, 1H, J = 5.5 Hz); IR (KBr, cm-1) 3390, 3170, 3075, 2926, 1711, 1627, 1580, 1521, 1456, 1353, 1297, 1223, 814, 765, 744; Anal. C20H13ON, Calcd: C, 84.78, H, 4.62, N, 4.94, Found: C, 84.57, H, 4.65, N, 4.56.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.4788 (3) 0.6054 (4) 0.39578 (16) 0.1336 (14)
N1 0.3680 (2) 0.4050 (3) 0.41956 (16) 0.0717 (8)
H1A 0.4027 0.3912 0.4783 0.086*
C1 0.2722 (2) 0.3164 (4) 0.36566 (19) 0.0597 (7)
C2 0.2175 (3) 0.1940 (5) 0.3960 (2) 0.0783 (10)
H2A 0.2423 0.1625 0.4581 0.094*
C3 0.1266 (3) 0.1220 (5) 0.3317 (3) 0.0884 (11)
H3A 0.0890 0.0390 0.3505 0.106*
C4 0.0870 (2) 0.1683 (4) 0.2374 (2) 0.0668 (8)
C5 −0.0063 (3) 0.0902 (5) 0.1699 (3) 0.0896 (11)
H5A −0.0441 0.0067 0.1883 0.108*
C6 −0.0415 (3) 0.1341 (5) 0.0798 (3) 0.0924 (12)
H6A −0.1030 0.0809 0.0367 0.111*
C7 0.0134 (3) 0.2581 (5) 0.0508 (2) 0.0858 (11)
H7A −0.0117 0.2878 −0.0116 0.103*
C8 0.1034 (3) 0.3363 (5) 0.1127 (2) 0.0793 (10)
H8A 0.1395 0.4193 0.0923 0.095*
C9 0.1431 (2) 0.2935 (4) 0.20776 (19) 0.0588 (7)
C10 0.2377 (3) 0.3660 (4) 0.2759 (2) 0.0650 (8)
C11 0.3982 (3) 0.5138 (6) 0.3676 (2) 0.1029 (15)
C12 0.2951 (3) 0.5332 (5) 0.2738 (3) 0.0514 (10) 0.557 (2)
C13 0.2283 (5) 0.6974 (6) 0.2556 (4) 0.0639 (12) 0.557 (2)
H13 0.1859 0.7316 0.2892 0.077* 0.557 (2)
C14 0.2377 (5) 0.7833 (9) 0.1879 (5) 0.0750 (17) 0.557 (2)
H14 0.2040 0.8868 0.1666 0.090* 0.557 (2)
C15 0.3094 (3) 0.6930 (4) 0.1504 (3) 0.0611 (11) 0.557 (2)
C16 0.3462 (4) 0.7337 (5) 0.0797 (3) 0.0827 (14) 0.557 (2)
H16A 0.3242 0.8345 0.0473 0.099* 0.557 (2)
C17 0.4157 (4) 0.6237 (6) 0.0575 (3) 0.0898 (15) 0.557 (2)
H17A 0.4403 0.6509 0.0103 0.108* 0.557 (2)
C18 0.4485 (4) 0.4729 (5) 0.1060 (3) 0.0853 (15) 0.557 (2)
H18A 0.4951 0.3993 0.0911 0.102* 0.557 (2)
C19 0.4118 (4) 0.4322 (4) 0.1766 (3) 0.068 (2) 0.557 (2)
H19A 0.4337 0.3314 0.2090 0.082* 0.557 (2)
C20 0.3422 (3) 0.5422 (5) 0.1988 (2) 0.0552 (13) 0.557 (2)
C12' 0.3404 (4) 0.4514 (6) 0.2642 (3) 0.0514 (10) 0.443 (2)
C13' 0.4061 (6) 0.3612 (10) 0.2125 (5) 0.0639 (12) 0.443 (2)
H13' 0.4312 0.2503 0.2234 0.077* 0.443 (2)
C14' 0.4215 (9) 0.4607 (11) 0.1519 (9) 0.0750 (17) 0.443 (2)
H14' 0.4629 0.4323 0.1166 0.090* 0.443 (2)
C15' 0.3656 (4) 0.6226 (5) 0.1461 (3) 0.0611 (11) 0.443 (2)
C16' 0.3591 (5) 0.7675 (7) 0.0938 (4) 0.0827 (14) 0.443 (2)
H16B 0.3914 0.7695 0.0496 0.099* 0.443 (2)
C17' 0.3042 (5) 0.9094 (6) 0.1075 (4) 0.0898 (15) 0.443 (2)
H17B 0.2999 1.0064 0.0726 0.108* 0.443 (2)
C18' 0.2559 (5) 0.9064 (5) 0.1735 (4) 0.0853 (15) 0.443 (2)
H18B 0.2192 1.0014 0.1827 0.102* 0.443 (2)
C19' 0.2624 (5) 0.7615 (6) 0.2258 (4) 0.068 (2) 0.443 (2)
H19B 0.2300 0.7595 0.2699 0.082* 0.443 (2)
C20' 0.3172 (4) 0.6196 (5) 0.2121 (3) 0.0552 (13) 0.443 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.148 (3) 0.160 (3) 0.0576 (14) −0.098 (2) −0.0021 (15) 0.0137 (16)
N1 0.0810 (17) 0.0797 (18) 0.0457 (13) −0.0173 (14) 0.0138 (12) 0.0037 (12)
C1 0.0646 (17) 0.0605 (17) 0.0530 (16) −0.0034 (14) 0.0209 (13) 0.0001 (13)
C2 0.086 (2) 0.089 (2) 0.0617 (18) −0.014 (2) 0.0297 (17) 0.0139 (17)
C3 0.087 (2) 0.098 (3) 0.084 (2) −0.028 (2) 0.035 (2) 0.011 (2)
C4 0.0625 (18) 0.0687 (19) 0.0719 (19) −0.0075 (15) 0.0283 (15) −0.0021 (16)
C5 0.070 (2) 0.099 (3) 0.095 (3) −0.027 (2) 0.025 (2) −0.006 (2)
C6 0.069 (2) 0.103 (3) 0.090 (3) −0.020 (2) 0.0126 (19) −0.017 (2)
C7 0.082 (2) 0.096 (3) 0.063 (2) −0.011 (2) 0.0097 (17) −0.0075 (19)
C8 0.083 (2) 0.084 (2) 0.0570 (18) −0.0210 (19) 0.0111 (16) 0.0028 (17)
C9 0.0600 (16) 0.0561 (16) 0.0582 (16) −0.0027 (14) 0.0196 (13) −0.0016 (13)
C10 0.0726 (19) 0.0625 (18) 0.0535 (16) −0.0158 (15) 0.0164 (14) 0.0031 (14)
C11 0.120 (3) 0.116 (3) 0.0517 (18) −0.067 (3) 0.0086 (19) 0.0065 (19)
C12 0.057 (3) 0.046 (2) 0.0506 (19) 0.0010 (17) 0.0190 (18) 0.0007 (19)
C13 0.061 (3) 0.055 (3) 0.078 (3) 0.000 (2) 0.028 (2) −0.006 (2)
C14 0.064 (3) 0.071 (4) 0.084 (4) 0.003 (3) 0.022 (3) −0.006 (3)
C15 0.055 (3) 0.068 (3) 0.058 (2) −0.004 (2) 0.019 (2) 0.007 (2)
C16 0.086 (3) 0.084 (3) 0.081 (3) −0.005 (2) 0.034 (2) 0.024 (3)
C17 0.096 (4) 0.095 (4) 0.086 (3) −0.007 (3) 0.042 (3) 0.012 (3)
C18 0.086 (4) 0.077 (3) 0.102 (4) 0.002 (3) 0.046 (3) 0.001 (3)
C19 0.058 (3) 0.065 (4) 0.085 (5) −0.001 (3) 0.031 (3) −0.013 (3)
C20 0.056 (3) 0.052 (3) 0.050 (2) −0.010 (3) 0.0118 (18) −0.002 (2)
C12' 0.057 (3) 0.046 (2) 0.0506 (19) 0.0010 (17) 0.0190 (18) 0.0007 (19)
C13' 0.061 (3) 0.055 (3) 0.078 (3) 0.000 (2) 0.028 (2) −0.006 (2)
C14' 0.064 (3) 0.071 (4) 0.084 (4) 0.003 (3) 0.022 (3) −0.006 (3)
C15' 0.055 (3) 0.068 (3) 0.058 (2) −0.004 (2) 0.019 (2) 0.007 (2)
C16' 0.086 (3) 0.084 (3) 0.081 (3) −0.005 (2) 0.034 (2) 0.024 (3)
C17' 0.096 (4) 0.095 (4) 0.086 (3) −0.007 (3) 0.042 (3) 0.012 (3)
C18' 0.086 (4) 0.077 (3) 0.102 (4) 0.002 (3) 0.046 (3) 0.001 (3)
C19' 0.058 (3) 0.065 (4) 0.085 (5) −0.001 (3) 0.031 (3) −0.013 (3)
C20' 0.056 (3) 0.052 (3) 0.050 (2) −0.010 (3) 0.0118 (18) −0.002 (2)

Geometric parameters (Å, °)

O1—C11 1.215 (4) C14—C15 1.459 (6)
N1—C11 1.336 (4) C14—H14 0.9300
N1—C1 1.401 (4) C15—C16 1.3900
N1—H1A 0.8600 C15—C20 1.3900
C1—C10 1.353 (4) C16—C17 1.3900
C1—C2 1.385 (4) C16—H16A 0.9300
C2—C3 1.355 (5) C17—C18 1.3900
C2—H2A 0.9300 C17—H17A 0.9300
C3—C4 1.407 (5) C18—C19 1.3900
C3—H3A 0.9300 C18—H18A 0.9300
C4—C9 1.407 (4) C19—C20 1.3900
C4—C5 1.414 (4) C19—H19A 0.9300
C5—C6 1.346 (5) C12'—C20' 1.528 (5)
C5—H5A 0.9300 C12'—C13' 1.549 (6)
C6—C7 1.384 (5) C13'—C14' 1.299 (11)
C6—H6A 0.9300 C13'—H13' 0.9300
C7—C8 1.355 (4) C14'—C15' 1.460 (8)
C7—H7A 0.9300 C14'—H14' 0.9300
C8—C9 1.411 (4) C15'—C16' 1.3900
C8—H8A 0.9300 C15'—C20' 1.3900
C9—C10 1.410 (4) C16'—C17' 1.3900
C10—C12 1.527 (4) C16'—H16B 0.9300
C10—C12' 1.569 (5) C17'—C18' 1.3900
C11—C12 1.576 (5) C17'—H17B 0.9300
C11—C12' 1.577 (5) C18'—C19' 1.3900
C12—C20 1.507 (5) C18'—H18B 0.9300
C12—C13 1.530 (5) C19'—C20' 1.3900
C13—C14 1.296 (9) C19'—H19B 0.9300
C13—H13 0.9300
C11—N1—C1 111.0 (2) C13—C14—C15 109.6 (6)
C11—N1—H1A 124.5 C13—C14—H14 125.2
C1—N1—H1A 124.5 C15—C14—H14 125.2
C10—C1—C2 122.6 (3) C16—C15—C20 120.0
C10—C1—N1 110.4 (3) C16—C15—C14 131.5 (4)
C2—C1—N1 127.0 (3) C20—C15—C14 108.5 (4)
C3—C2—C1 117.5 (3) C15—C16—C17 120.0
C3—C2—H2A 121.2 C15—C16—H16A 120.0
C1—C2—H2A 121.2 C17—C16—H16A 120.0
C2—C3—C4 122.4 (3) C18—C17—C16 120.0
C2—C3—H3A 118.8 C18—C17—H17A 120.0
C4—C3—H3A 118.8 C16—C17—H17A 120.0
C9—C4—C3 119.5 (3) C17—C18—C19 120.0
C9—C4—C5 118.2 (3) C17—C18—H18A 120.0
C3—C4—C5 122.3 (3) C19—C18—H18A 120.0
C6—C5—C4 121.3 (4) C20—C19—C18 120.0
C6—C5—H5A 119.3 C20—C19—H19A 120.0
C4—C5—H5A 119.3 C18—C19—H19A 120.0
C5—C6—C7 120.4 (3) C19—C20—C15 120.0
C5—C6—H6A 119.8 C19—C20—C12 130.8 (3)
C7—C6—H6A 119.8 C15—C20—C12 109.1 (3)
C8—C7—C6 120.5 (3) C20'—C12'—C13' 99.5 (4)
C8—C7—H7A 119.7 C20'—C12'—C10 115.4 (4)
C6—C7—H7A 119.7 C13'—C12'—C10 121.4 (4)
C7—C8—C9 120.8 (3) C20'—C12'—C11 101.0 (4)
C7—C8—H8A 119.6 C13'—C12'—C11 121.9 (5)
C9—C8—H8A 119.6 C10—C12'—C11 96.8 (3)
C10—C9—C4 117.1 (3) C14'—C13'—C12' 111.1 (7)
C10—C9—C8 124.2 (3) C14'—C13'—H13' 124.4
C4—C9—C8 118.7 (3) C12'—C13'—H13' 124.4
C1—C10—C9 121.0 (3) C13'—C14'—C15' 111.6 (8)
C1—C10—C12 107.3 (3) C13'—C14'—H14' 124.2
C9—C10—C12 129.3 (3) C15'—C14'—H14' 124.2
C1—C10—C12' 106.0 (3) C16'—C15'—C20' 120.0
C9—C10—C12' 129.1 (3) C16'—C15'—C14' 132.9 (6)
C12—C10—C12' 34.7 (2) C20'—C15'—C14' 107.0 (6)
O1—C11—N1 125.3 (3) C17'—C16'—C15' 120.0
O1—C11—C12 126.6 (3) C17'—C16'—H16B 120.0
N1—C11—C12 106.3 (3) C15'—C16'—H16B 120.0
O1—C11—C12' 124.8 (3) C16'—C17'—C18' 120.0
N1—C11—C12' 106.2 (3) C16'—C17'—H17B 120.0
C12—C11—C12' 34.1 (2) C18'—C17'—H17B 120.0
C20—C12—C10 113.7 (3) C19'—C18'—C17' 120.0
C20—C12—C13 100.6 (4) C19'—C18'—H18B 120.0
C10—C12—C13 119.5 (4) C17'—C18'—H18B 120.0
C20—C12—C11 105.5 (3) C18'—C19'—C20' 120.0
C10—C12—C11 98.6 (3) C18'—C19'—H19B 120.0
C13—C12—C11 118.8 (4) C20'—C19'—H19B 120.0
C14—C13—C12 112.0 (5) C19'—C20'—C15' 120.0
C14—C13—H13 124.0 C19'—C20'—C12' 129.3 (4)
C12—C13—H13 124.0 C15'—C20'—C12' 110.6 (4)
C11—N1—C1—C10 0.2 (4) C14—C15—C16—C17 179.7 (5)
C11—N1—C1—C2 180.0 (4) C15—C16—C17—C18 0.0
C10—C1—C2—C3 0.6 (5) C16—C17—C18—C19 0.0
N1—C1—C2—C3 −179.1 (3) C17—C18—C19—C20 0.0
C1—C2—C3—C4 −0.5 (6) C18—C19—C20—C15 0.0
C2—C3—C4—C9 0.1 (6) C18—C19—C20—C12 −176.9 (4)
C2—C3—C4—C5 178.4 (4) C16—C15—C20—C19 0.0
C9—C4—C5—C6 −0.4 (6) C14—C15—C20—C19 −179.8 (4)
C3—C4—C5—C6 −178.7 (4) C16—C15—C20—C12 177.5 (4)
C4—C5—C6—C7 0.0 (6) C14—C15—C20—C12 −2.2 (4)
C5—C6—C7—C8 0.2 (6) C10—C12—C20—C19 −51.5 (5)
C6—C7—C8—C9 0.0 (6) C13—C12—C20—C19 179.5 (3)
C3—C4—C9—C10 0.1 (5) C11—C12—C20—C19 55.4 (4)
C5—C4—C9—C10 −178.2 (3) C10—C12—C20—C15 131.3 (3)
C3—C4—C9—C8 178.9 (3) C13—C12—C20—C15 2.3 (4)
C5—C4—C9—C8 0.6 (5) C11—C12—C20—C15 −121.8 (3)
C7—C8—C9—C10 178.3 (3) C1—C10—C12'—C20' −134.1 (4)
C7—C8—C9—C4 −0.4 (5) C9—C10—C12'—C20' 68.5 (5)
C2—C1—C10—C9 −0.4 (5) C12—C10—C12'—C20' −36.6 (4)
N1—C1—C10—C9 179.4 (3) C1—C10—C12'—C13' 105.7 (5)
C2—C1—C10—C12 163.6 (3) C9—C10—C12'—C13' −51.8 (7)
N1—C1—C10—C12 −16.6 (4) C12—C10—C12'—C13' −156.9 (7)
C2—C1—C10—C12' −160.1 (3) C1—C10—C12'—C11 −28.4 (4)
N1—C1—C10—C12' 19.7 (4) C9—C10—C12'—C11 174.1 (4)
C4—C9—C10—C1 0.0 (5) C12—C10—C12'—C11 69.0 (4)
C8—C9—C10—C1 −178.7 (3) O1—C11—C12'—C20' −54.7 (6)
C4—C9—C10—C12 −160.1 (3) N1—C11—C12'—C20' 146.2 (4)
C8—C9—C10—C12 21.1 (6) C12—C11—C12'—C20' 50.8 (4)
C4—C9—C10—C12' 154.6 (4) O1—C11—C12'—C13' 54.0 (8)
C8—C9—C10—C12' −24.2 (6) N1—C11—C12'—C13' −105.1 (5)
C1—N1—C11—O1 −178.9 (5) C12—C11—C12'—C13' 159.5 (7)
C1—N1—C11—C12 15.7 (4) O1—C11—C12'—C10 −172.2 (5)
C1—N1—C11—C12' −19.9 (5) N1—C11—C12'—C10 28.6 (4)
C1—C10—C12—C20 134.8 (3) C12—C11—C12'—C10 −66.8 (4)
C9—C10—C12—C20 −63.0 (5) C20'—C12'—C13'—C14' 3.7 (9)
C12'—C10—C12—C20 41.5 (4) C10—C12'—C13'—C14' 131.5 (8)
C1—C10—C12—C13 −106.5 (4) C11—C12'—C13'—C14' −105.7 (9)
C9—C10—C12—C13 55.7 (6) C12'—C13'—C14'—C15' −4.1 (12)
C12'—C10—C12—C13 160.1 (6) C13'—C14'—C15'—C16' 178.9 (6)
C1—C10—C12—C11 23.6 (4) C13'—C14'—C15'—C20' 2.7 (11)
C9—C10—C12—C11 −174.2 (4) C20'—C15'—C16'—C17' 0.0
C12'—C10—C12—C11 −69.8 (4) C14'—C15'—C16'—C17' −175.8 (8)
O1—C11—C12—C20 53.8 (6) C15'—C16'—C17'—C18' 0.0
N1—C11—C12—C20 −141.0 (4) C16'—C17'—C18'—C19' 0.0
C12'—C11—C12—C20 −46.1 (4) C17'—C18'—C19'—C20' 0.0
O1—C11—C12—C10 171.5 (5) C18'—C19'—C20'—C15' 0.0
N1—C11—C12—C10 −23.4 (4) C18'—C19'—C20'—C12' 176.2 (5)
C12'—C11—C12—C10 71.5 (4) C16'—C15'—C20'—C19' 0.0
O1—C11—C12—C13 −58.0 (7) C14'—C15'—C20'—C19' 176.8 (6)
N1—C11—C12—C13 107.2 (5) C16'—C15'—C20'—C12' −176.9 (4)
C12'—C11—C12—C13 −157.9 (6) C14'—C15'—C20'—C12' −0.1 (7)
C20—C12—C13—C14 −1.7 (6) C13'—C12'—C20'—C19' −178.5 (4)
C10—C12—C13—C14 −126.8 (5) C10—C12'—C20'—C19' 49.9 (6)
C11—C12—C13—C14 112.8 (5) C11—C12'—C20'—C19' −53.2 (5)
C12—C13—C14—C15 0.4 (7) C13'—C12'—C20'—C15' −2.0 (5)
C13—C14—C15—C16 −178.6 (4) C10—C12'—C20'—C15' −133.6 (4)
C13—C14—C15—C20 1.2 (6) C11—C12'—C20'—C15' 123.3 (4)
C20—C15—C16—C17 0.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 1.99 2.815 (3) 162
C18—H18A···O1ii 0.93 2.35 3.064 (5) 133

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5073).

References

  1. Chen, Z.-P., Tan, D.-M., Su, C.-Y. & Xu, Z.-L. (2005). Acta Cryst. E61, o1308–o1309.
  2. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  3. Ready, J. M., Reisman, S. E. & Hirata, M. (2004). Angew. Chem. Int. Ed. 43, 1270–1273. [DOI] [PubMed]
  4. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  5. Rigaku/MSC, (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  6. Schoemaker, H. E. & Speckamp, W. N. (1978). Tetrahedron Lett. 19, 1515–1518.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tsuda, M., Kasai, Y. & Komatsu, K. (2004). Org. Lett. 6, 3087–3089. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049809/xu5073sup1.cif

e-67-000o9-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049809/xu5073Isup2.hkl

e-67-000o9-Isup2.hkl (124.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES