Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o118–o119. doi: 10.1107/S1600536810049925

Bis(2-phenyl­biguanidium) adipate tetra­hydrate

Irena Matulková a,b,*, Ivana Císařová a, Ivan Němec a
PMCID: PMC3050311  PMID: 21522629

Abstract

In the title salt, 2C8H12N5 +·C6H8O4 2−·4H2O, the anion is located on a centre of symmetry. The observed supra­molecular network of the crystal structure is produced by ten different hydrogen bonds of the N—H⋯N, N—H⋯O and O—H⋯O types. One additional O—H group is not connected to an acceptor site.

Related literature

For uses of biguanide complexes in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Marchi et al. (1999); Shapiro et al. (1959a ,b ). The salts of biguanidium (1+) or (2+) cations have been tested for non-linear optical properties, see: Matulková et al. (2008, 2010); Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978).graphic file with name e-67-0o118-scheme1.jpg

Experimental

Crystal data

  • 2C8H12N5 +·C6H8O4 2−·4H2O

  • M r = 572.64

  • Triclinic, Inline graphic

  • a = 7.1560 (1) Å

  • b = 10.8670 (2) Å

  • c = 11.1410 (2) Å

  • α = 61.5590 (9)°

  • β = 88.682 (1)°

  • γ = 71.702 (1)°

  • V = 714.93 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.4 × 0.4 × 0.3 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • 20455 measured reflections

  • 3260 independent reflections

  • 2953 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.093

  • S = 1.06

  • 3260 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049925/im2248sup1.cif

e-67-0o118-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049925/im2248Isup2.hkl

e-67-0o118-Isup2.hkl (159.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1⋯O1 0.89 2.12 2.982 (1) 163
N2—H2A⋯O2i 0.94 1.92 2.837 (1) 168
N2—H2B⋯O2ii 0.88 2.07 2.855 (1) 149
N4—H4A⋯N3iii 0.90 2.14 3.041 (1) 178
N4—H4B⋯O1W 0.92 2.23 2.998 (1) 141
N1—H5A⋯O1i 0.94 1.95 2.882 (1) 171
N5—H5B⋯O1W 0.92 2.03 2.897 (1) 158
O1W—H11⋯O1iv 0.85 1.99 2.825 (1) 168
O1W—H12⋯O2Wv 0.92 1.86 2.781 (1) 174
O2W—H22⋯O2 0.93 1.89 2.797 (1) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857).

supplementary crystallographic information

Comment

The wide area of application of biguanides involves the field of medical research (Sirtori & Pasik, 1994; Clement & Girreser, 1999), especially in the treatment of diabetes mellitus (N,N-dimethylbiguanide and N-phenylethylbiguanide) (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999). Biguanide derivatives are also used in the synthesis of antimalarial drugs (N-butylbiguanide) (Watkins et al., 1987), and in therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994) and hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a, 1959b).

All the ionic crystal structures containing biguanide moieties are formed by relatively strong hydrogen bonds (Matulková et al., 2010; Matulková et al., 2008). These intermolecular and intramolecular hydrogen bonds can substantially affect the geometry of the biguanidium cations (Martin et al., 1996; Martin & Pinkerton, 1996; Pinkerton et al., 1978). It was found in general that, as the value of the angle between the planes (formed by three nitrogen atoms and one carbon atom) in the biguanide molecule increases, the bonding distances increase and thus the electron distribution changes.

The molecular conformation of the constituents of the title compound is illustrated in Fig. 1. Hydrogen bonds in the crystal structure are formed between N-phenylbiguanidium cations and adipate anions, between N-phenylbiguanidium cations and water molecules, as well as between the carboxylate functions and water molecules. Hydrogen-bonding geometries in the title compound are listed in Table 1 and are illustrated in Fig. 2. Additionally, two N-phenylbiguanidium cations form a dimer via two centrosymmetrically related N—H···N hydrogen bonds. These dimers are interconnected by adipate anions into a network further supported by hydrogen bonds involving water molecules. The lengths of the N—H···O hydrogen bonds range from 2.837 (1) to 3.000 (1) Å. O - H···O hydrogen bonds connect water molecules with adipate anions and range from 2.781 (1) to 2.825 (1) Å.

Experimental

Crystals of the title compound were obtained from a solution of 0.3 g of N-phenylbiguanide (98%, Aldrich) and 0.53 g of adipic acid (purum, Lachema) in 4 ml of water and 8 ml of methanol. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in a vacuum desiccator over KOH (m.p. 350-352 K).

Infrared spectra were recorded at room temperature using DRIFTS and nujol or fluorolube mull techniques on a Nicolet Magna 760 FTIR spectrometer with 2 cm-1 resolution (4 cm-1 resolution in far IR region) and Happ-Genzel apodization in the 85–4000 cm-1 region.

FTIR spectrum (cm-1): 3623 w; 3377 m; 3307 m; 3139 m; 3072 m; 2923 m; 2723 m; 1650 s; 1632 s; 1600 m; 1582 m; 1555 m; 1494 vw; 1456 vw; 1409 s; 1365 sh; 1317 m; 1303 s; 1290 s; 1266 s; 1200 m; 1169 w; 1153 vw; 1139 w; 1122 w; 1073 w; 1065 w; 1026 vw; 1003 vw; 936 w; 926 w; 911 w; 860 vw; 835 vw; 799 vw; 772 w; 741 m; 722 m; 714 vw; 696 m; 673 vw; 640 vw; 623 vw; 581 wb; 541 vw; 497 w; 483 w; 389 w; 316 w; 280 w; 235 w; 179 w.

Raman spectra of polycrystalline samples were recorded at room temperature on a Nicolet Magna 760 FTIR spectrometer equipped with the Nicolet Nexus FT Raman module (2 cm-1 resolution, Happ-Genzel apodization, 1064 nm Nd:YVO4 laser excitation, 450 mW power at the sample) in the 100–3700 cm-1 region.

FT Raman spectrum (cm-1): 3296 vw; 3196 wb; 3069 m; 3057 m; 2967 w; 2931 m; 2919 m; 2900 w; 2875 w; 1696 vw; 1647 vwb; 1601 s; 1586 m; 1545 w; 1515 w; 1494 m; 1444 w; 1424 m; 1411 m; 1362 vw; 1321 m; 1308 w; 1288 w; 1269 s; 1243 sh; 1229 sh; 1176 m; 1155 m; 1084 m; 1060 m; 1030 m; 1018 vw; 1003 vs; 991 vw; 963 vw; 936 m; 909 m; 885 m; 857 m; 775 w; 740 m; 728 w; 671 w; 638 w; 615 m; 539 m; 493 m; 482 w; 408 m; 388 m; 376 w; 274 m; 234 m; 183 m; 151 mb.

Refinement

H atoms attached to C atoms were calculated in geometrically idealized positions, with Csp3 - H = 0.97 Å and Csp2 - H = 0.93 Å. The positions of H atoms attached to O and N atoms were localized on difference Fourier maps. All hydrogen atoms were constrained to ride on their parent atoms during refinement, with Uiso(H) = 1.2 Ueq(pivot atom).

Figures

Fig. 1.

Fig. 1.

Atom-labelling scheme of N-phenylbiguanidium(1+) adipate dihydrate. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing scheme of the crystalstructure of N-phenylbiguanidium(1+) adipate dihydrate. Hydrogen bonds are indicated by dashed lines.

Crystal data

2C8H12N5+·C6H8O42·4H2O Z = 1
Mr = 572.64 F(000) = 306
Triclinic, P1 Dx = 1.330 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1560 (1) Å Cell parameters from 3257 reflections
b = 10.8670 (2) Å θ = 1.0–27.5°
c = 11.1410 (2) Å µ = 0.10 mm1
α = 61.5590 (9)° T = 150 K
β = 88.682 (1)° Prism, colourless
γ = 71.702 (1)° 0.4 × 0.4 × 0.3 mm
V = 714.93 (2) Å3

Data collection

Nonius KappaCCD area-detector diffractometer 2953 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.025
graphite θmax = 27.4°, θmin = 2.1°
Detector resolution: 9.091 pixels mm-1 h = −9→9
ω and π scans to fill the Ewald sphere k = −14→14
20455 measured reflections l = −14→14
3260 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2629P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.25 e Å3
3260 reflections Δρmin = −0.25 e Å3
181 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.08265 (15) 0.19532 (11) 0.51868 (10) 0.0166 (2)
C2 1.02860 (14) 0.43683 (11) 0.33714 (10) 0.0157 (2)
N1 1.01068 (14) 0.10880 (10) 0.62783 (9) 0.0198 (2)
H1 0.9966 0.3356 0.2376 0.024*
N2 1.23411 (14) 0.12406 (10) 0.47705 (10) 0.0211 (2)
H2A 1.2927 0.0211 0.5352 0.025*
H2B 1.3012 0.1750 0.4191 0.025*
N3 1.00775 (13) 0.34344 (10) 0.46586 (9) 0.01745 (19)
N4 1.03596 (14) 0.56792 (10) 0.31118 (9) 0.0205 (2)
H4A 1.0268 0.5929 0.3779 0.025*
H4B 1.0357 0.6423 0.2236 0.025*
N5 1.03464 (14) 0.40864 (10) 0.23239 (9) 0.01899 (19)
H5A 1.0784 0.0048 0.6749 0.023*
H5B 1.0304 0.4875 0.1479 0.023*
C3 0.83808 (15) 0.16121 (11) 0.67987 (11) 0.0170 (2)
C4 0.85199 (17) 0.11060 (13) 0.82069 (11) 0.0232 (2)
H4 0.9739 0.0489 0.8776 0.028*
C5 0.68398 (18) 0.15191 (14) 0.87700 (12) 0.0262 (2)
H5 0.6938 0.1175 0.9715 0.031*
C6 0.50251 (17) 0.24393 (13) 0.79302 (13) 0.0246 (2)
H6 0.3900 0.2708 0.8308 0.030*
C7 0.48929 (17) 0.29590 (14) 0.65196 (13) 0.0289 (3)
H7 0.3678 0.3591 0.5950 0.035*
C8 0.65620 (17) 0.25428 (14) 0.59510 (12) 0.0251 (2)
H8 0.6461 0.2886 0.5006 0.030*
C9 0.65021 (15) 0.26120 (11) 0.25517 (10) 0.0159 (2)
C10 0.55128 (16) 0.42815 (11) 0.19755 (11) 0.0185 (2)
H10A 0.6186 0.4595 0.2467 0.022*
H10B 0.4142 0.4488 0.2143 0.022*
C11 0.55403 (16) 0.51991 (11) 0.04279 (10) 0.0180 (2)
H11A 0.4914 0.6250 0.0133 0.022*
H11B 0.6910 0.5030 0.0260 0.022*
O1 0.82344 (11) 0.21203 (8) 0.23165 (8) 0.02091 (18)
O2 0.55463 (12) 0.17812 (8) 0.32638 (8) 0.02243 (18)
O1W 0.98182 (13) 0.70284 (10) 0.00316 (8) 0.0287 (2)
H11 1.0494 0.7325 −0.0619 0.034*
H12 0.8552 0.7580 −0.0462 0.034*
O2W 0.40159 (15) 0.11820 (11) 0.13910 (10) 0.0353 (2)
H21 0.4200 0.0216 0.1821 0.042*
H22 0.4504 0.1220 0.2138 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0182 (5) 0.0161 (5) 0.0150 (5) −0.0064 (4) 0.0028 (4) −0.0069 (4)
C2 0.0126 (4) 0.0157 (5) 0.0168 (5) −0.0042 (4) 0.0033 (4) −0.0070 (4)
N1 0.0214 (4) 0.0130 (4) 0.0193 (4) −0.0042 (3) 0.0081 (4) −0.0049 (3)
N2 0.0208 (5) 0.0142 (4) 0.0214 (4) −0.0042 (3) 0.0091 (4) −0.0050 (4)
N3 0.0211 (4) 0.0142 (4) 0.0158 (4) −0.0063 (3) 0.0057 (3) −0.0065 (3)
N4 0.0296 (5) 0.0158 (4) 0.0166 (4) −0.0101 (4) 0.0067 (4) −0.0071 (4)
N5 0.0246 (5) 0.0182 (4) 0.0151 (4) −0.0103 (4) 0.0043 (3) −0.0073 (3)
C3 0.0197 (5) 0.0140 (5) 0.0186 (5) −0.0077 (4) 0.0064 (4) −0.0080 (4)
C4 0.0222 (5) 0.0234 (5) 0.0182 (5) −0.0051 (4) 0.0024 (4) −0.0075 (4)
C5 0.0303 (6) 0.0293 (6) 0.0185 (5) −0.0092 (5) 0.0081 (4) −0.0124 (5)
C6 0.0229 (5) 0.0248 (6) 0.0299 (6) −0.0083 (4) 0.0110 (5) −0.0166 (5)
C7 0.0195 (6) 0.0327 (6) 0.0277 (6) −0.0031 (5) 0.0016 (5) −0.0133 (5)
C8 0.0236 (6) 0.0303 (6) 0.0171 (5) −0.0069 (5) 0.0026 (4) −0.0099 (5)
C9 0.0177 (5) 0.0159 (5) 0.0121 (4) −0.0055 (4) 0.0011 (4) −0.0055 (4)
C10 0.0194 (5) 0.0152 (5) 0.0176 (5) −0.0041 (4) 0.0027 (4) −0.0068 (4)
C11 0.0199 (5) 0.0132 (5) 0.0171 (5) −0.0053 (4) 0.0013 (4) −0.0047 (4)
O1 0.0181 (4) 0.0159 (4) 0.0228 (4) −0.0045 (3) 0.0060 (3) −0.0061 (3)
O2 0.0218 (4) 0.0176 (4) 0.0228 (4) −0.0080 (3) 0.0078 (3) −0.0056 (3)
O1W 0.0340 (5) 0.0277 (4) 0.0182 (4) −0.0116 (4) 0.0084 (3) −0.0063 (3)
O2W 0.0436 (5) 0.0304 (5) 0.0366 (5) −0.0187 (4) 0.0049 (4) −0.0164 (4)

Geometric parameters (Å, °)

C1—N2 1.3347 (13) C5—H5 0.9300
C1—N3 1.3397 (13) C6—C7 1.3877 (17)
C1—N1 1.3469 (13) C6—H6 0.9300
C2—N4 1.3303 (13) C7—C8 1.3897 (16)
C2—N5 1.3370 (13) C7—H7 0.9300
C2—N3 1.3445 (13) C8—H8 0.9300
N1—C3 1.4233 (13) C9—O2 1.2622 (13)
N1—H5A 0.9432 C9—O1 1.2623 (13)
N2—H2A 0.9353 C9—C10 1.5198 (14)
N2—H2B 0.8755 C10—C11 1.5299 (14)
N4—H4A 0.8999 C10—H10A 0.9700
N4—H4B 0.9233 C10—H10B 0.9700
N5—H1 0.8934 C11—C11i 1.527 (2)
N5—H5B 0.9158 C11—H11A 0.9700
C3—C4 1.3874 (15) C11—H11B 0.9700
C3—C8 1.3888 (15) O1W—H11 0.8499
C4—C5 1.3911 (16) O1W—H12 0.9225
C4—H4 0.9300 O2W—H21 0.8864
C5—C6 1.3824 (17) O2W—H22 0.9334
N2—C1—N3 124.93 (9) C4—C5—H5 119.9
N2—C1—N1 116.20 (9) C5—C6—C7 119.57 (10)
N3—C1—N1 118.73 (9) C5—C6—H6 120.2
N4—C2—N5 117.95 (9) C7—C6—H6 120.2
N4—C2—N3 117.89 (9) C6—C7—C8 120.50 (11)
N5—C2—N3 124.12 (9) C6—C7—H7 119.8
C1—N1—C3 125.27 (9) C8—C7—H7 119.8
C1—N1—H5A 118.6 C3—C8—C7 119.77 (10)
C3—N1—H5A 116.1 C3—C8—H8 120.1
C1—N2—H2A 116.5 C7—C8—H8 120.1
C1—N2—H2B 118.5 O2—C9—O1 123.20 (9)
H2A—N2—H2B 120.5 O2—C9—C10 117.75 (9)
C1—N3—C2 121.23 (9) O1—C9—C10 119.03 (9)
C2—N4—H4A 120.7 C9—C10—C11 113.44 (8)
C2—N4—H4B 123.1 C9—C10—H10A 108.9
H4A—N4—H4B 115.8 C11—C10—H10A 108.9
C2—N5—H1 121.2 C9—C10—H10B 108.9
C2—N5—H5B 114.6 C11—C10—H10B 108.9
H1—N5—H5B 119.8 H10A—C10—H10B 107.7
C4—C3—C8 119.78 (10) C11i—C11—C10 112.27 (11)
C4—C3—N1 118.26 (10) C11i—C11—H11A 109.2
C8—C3—N1 121.87 (10) C10—C11—H11A 109.2
C3—C4—C5 120.12 (11) C11i—C11—H11B 109.2
C3—C4—H4 119.9 C10—C11—H11B 109.2
C5—C4—H4 119.9 H11A—C11—H11B 107.9
C6—C5—C4 120.25 (11) H11—O1W—H12 99.6
C6—C5—H5 119.9 H21—O2W—H22 97.8

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H1···O1 0.89 2.12 2.982 (1) 163
N2—H2A···O2ii 0.94 1.92 2.837 (1) 168
N2—H2B···O2iii 0.88 2.07 2.855 (1) 149
N4—H4A···N3iv 0.90 2.14 3.041 (1) 178
N4—H4B···O1W 0.92 2.23 2.998 (1) 141
N1—H5A···O1ii 0.94 1.95 2.882 (1) 171
N5—H5B···O1W 0.92 2.03 2.897 (1) 158
O1W—H11···O1v 0.85 1.99 2.825 (1) 168
O1W—H12···O2Wi 0.92 1.86 2.781 (1) 174
O2W—H22···O2 0.93 1.89 2.797 (1) 165

Symmetry codes: (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y+1, −z; (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2248).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Clement, B. & Girreser, U. (1999). Magn. Reson. Chem. 37, 662–666.
  3. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  4. Marchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937–1943.
  5. Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048–1052.
  6. Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970.
  7. Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 886, 103–120.
  8. Matulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct. 966, 23–32.
  9. Morain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol. 46, 732–742. [PubMed]
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton Trans. pp. 989–996.
  12. Ross, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev. 104, 1255–1282. [DOI] [PubMed]
  13. Shapiro, S. L., Parrino, V. A. & Freedman, L. (1959b). J. Am. Chem. Soc. 81, 2220–2225.
  14. Shapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959a). J. Am. Chem. Soc. 81, 3725–3728.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sirtori, C. R. & Pasik, C. (1994). Pharmacol. Res. 30, 187–228. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571. [DOI] [PubMed]
  19. Watkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol. 39, 261–265. [DOI] [PubMed]
  20. Woo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem., 76, 251–257. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049925/im2248sup1.cif

e-67-0o118-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049925/im2248Isup2.hkl

e-67-0o118-Isup2.hkl (159.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES