Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o68. doi: 10.1107/S1600536810050427

2-Chloro-N-methyl-N-phenyl­acetamide

Li-Hua Zhi a, Wei-Na Wu a,*, Xiao-Xia Li b, Yan-Wei Li a, Yuan Wang a
PMCID: PMC3050318  PMID: 21522779

Abstract

In the title compound, C9H10ClNO, the non-H atoms, excluding the phenyl group, are almost coplanar (r.m.s. deviation of the non-H atoms = 0.1015 Å). The dihedral angle formed between this plane and the benzene ring is 87.07 (5)°. Weak inter­molecular C—H⋯O inter­actions help to stabilize the packing.

Related literature

For the synthesis of lanthanide complexes with amide-type ligands, see: Wu et al. (2008). For related a structure, see: Yuan et al. (2010).graphic file with name e-67-00o68-scheme1.jpg

Experimental

Crystal data

  • C9H10ClNO

  • M r = 183.63

  • Monoclinic, Inline graphic

  • a = 7.3391 (12) Å

  • b = 6.5898 (10) Å

  • c = 18.941 (3) Å

  • β = 91.192 (9)°

  • V = 915.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.26 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.912, T max = 0.936

  • 9758 measured reflections

  • 3003 independent reflections

  • 1869 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.136

  • S = 1.04

  • 3003 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050427/vm2064sup1.cif

e-67-00o68-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050427/vm2064Isup2.hkl

e-67-00o68-Isup2.hkl (147.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.58 3.4356 (19) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 21001040).

supplementary crystallographic information

Comment

The luminescent properties of lanthanide complexes with amide type ligands have been investigated in our previous work (Wu et al., 2008). As part of our ongoing studies of the amide type ligands, the title compound was synthesized and characterized by X-ray diffraction.

In the title compound (Fig. 1), the C—N bond lengths are shorter than those observed in a similar compound (Yuan et al.,2010). The non-hydrogen atoms excluding the phenyl group are almost coplanar (r.m.s. deviation of the non-hydrogen atoms being 0.1015 Å). The dihedral angle formed between this plane and the benzene ring (r.m.s. deviation 0.0021 Å) is 87.07 (5)°.

As expected, there are no classic hydrogen bonds in the structure. However, there is a weak intermolecular C2—H2···O1 hydrogen bond stabilizing the packing. An intramolecular C7—H7A···O1 hydrogen bond is also present (Table 1).

Experimental

A chloroform solution containing chloroacetyl chloride (2.26 g, 0.02 mol) was added dropwise to a solution of N-methylbenzenamine (2.14 g, 0.02 mol) and pyridine (2.60 g, 0.03 mol) in chloroform (20 ml) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 3.5 h. A solid product was separated from the solution by suction filtration, purified by succesive washing with water, 0.5 mol/L HCl, 0.5 mol/L NaOH and distilled water, respectively. Colourless block crystals were obtained by slow evaporation of the ethanol solution at room temperature.

Refinement

The H atoms were placed at calculated positions and refined in riding mode, with the carrier atom-H distances = 0.93 Å for aryl, 0.97 for methylene, 0.96 Å for the methyl. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure shown with 50% probability displacement ellipsoids.

Crystal data

C9H10ClNO F(000) = 384
Mr = 183.63 Dx = 1.332 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3217 reflections
a = 7.3391 (12) Å θ = 2.8–25.4°
b = 6.5898 (10) Å µ = 0.37 mm1
c = 18.941 (3) Å T = 296 K
β = 91.192 (9)° Block, colourless
V = 915.9 (2) Å3 0.26 × 0.21 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3003 independent reflections
Radiation source: fine-focus sealed tube 1869 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 31.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→9
Tmin = 0.912, Tmax = 0.936 k = −9→9
9758 measured reflections l = −26→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.0768P] where P = (Fo2 + 2Fc2)/3
3003 reflections (Δ/σ)max < 0.001
110 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.13525 (7) 0.14663 (8) 0.40483 (2) 0.07202 (19)
N1 0.29635 (16) 0.47779 (19) 0.56727 (6) 0.0477 (3)
C1 0.2909 (2) 0.3393 (2) 0.62581 (7) 0.0435 (3)
C8 0.22967 (19) 0.4317 (2) 0.50259 (7) 0.0457 (3)
C2 0.4463 (2) 0.2337 (2) 0.64621 (7) 0.0494 (3)
H2 0.5533 0.2483 0.6212 0.059*
C6 0.1317 (2) 0.3191 (3) 0.66275 (8) 0.0542 (4)
H6 0.0279 0.3909 0.6489 0.065*
O1 0.21932 (15) 0.55459 (18) 0.45449 (6) 0.0632 (3)
C4 0.2821 (2) 0.0864 (3) 0.74123 (8) 0.0605 (4)
H4 0.2794 0.0017 0.7805 0.073*
C9 0.1674 (2) 0.2147 (3) 0.49372 (7) 0.0566 (4)
H9A 0.0539 0.1962 0.5182 0.068*
H9B 0.2575 0.1252 0.5154 0.068*
C3 0.4407 (2) 0.1065 (3) 0.70395 (8) 0.0574 (4)
H3 0.5442 0.0341 0.7178 0.069*
C5 0.1284 (2) 0.1911 (3) 0.72052 (8) 0.0620 (4)
H5 0.0214 0.1758 0.7455 0.074*
C7 0.3571 (3) 0.6832 (3) 0.58295 (10) 0.0643 (4)
H7A 0.3770 0.7546 0.5396 0.096*
H7B 0.4686 0.6784 0.6103 0.096*
H7C 0.2656 0.7523 0.6093 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0829 (3) 0.0883 (4) 0.0447 (2) −0.0124 (2) −0.0002 (2) −0.00826 (18)
N1 0.0533 (7) 0.0396 (7) 0.0501 (6) −0.0039 (5) −0.0009 (5) 0.0047 (5)
C1 0.0526 (8) 0.0397 (7) 0.0379 (6) −0.0028 (6) −0.0028 (5) −0.0021 (5)
C8 0.0450 (7) 0.0475 (8) 0.0446 (7) 0.0003 (6) 0.0043 (5) 0.0089 (5)
C2 0.0499 (8) 0.0490 (9) 0.0494 (7) −0.0004 (7) −0.0012 (6) −0.0011 (6)
C6 0.0542 (9) 0.0634 (10) 0.0449 (7) 0.0054 (7) 0.0002 (6) 0.0026 (6)
O1 0.0722 (7) 0.0610 (7) 0.0563 (6) −0.0022 (6) −0.0001 (5) 0.0232 (5)
C4 0.0796 (11) 0.0583 (10) 0.0436 (8) −0.0018 (8) −0.0030 (7) 0.0096 (6)
C9 0.0768 (10) 0.0539 (9) 0.0389 (7) −0.0095 (8) −0.0006 (7) 0.0029 (6)
C3 0.0646 (10) 0.0537 (9) 0.0533 (8) 0.0065 (8) −0.0121 (7) 0.0034 (7)
C5 0.0650 (10) 0.0755 (12) 0.0459 (8) −0.0011 (9) 0.0085 (7) 0.0070 (7)
C7 0.0686 (11) 0.0438 (9) 0.0803 (11) −0.0076 (7) −0.0038 (9) 0.0011 (8)

Geometric parameters (Å, °)

Cl1—C9 1.7537 (15) C6—H6 0.9300
N1—C8 1.3446 (18) C4—C5 1.373 (3)
N1—C1 1.4372 (17) C4—C3 1.381 (2)
N1—C7 1.454 (2) C4—H4 0.9300
C1—C6 1.380 (2) C9—H9A 0.9700
C1—C2 1.384 (2) C9—H9B 0.9700
C8—O1 1.2203 (16) C3—H3 0.9300
C8—C9 1.509 (2) C5—H5 0.9300
C2—C3 1.379 (2) C7—H7A 0.9600
C2—H2 0.9300 C7—H7B 0.9600
C6—C5 1.382 (2) C7—H7C 0.9600
C8—N1—C1 122.95 (12) C8—C9—Cl1 112.56 (10)
C8—N1—C7 120.05 (13) C8—C9—H9A 109.1
C1—N1—C7 116.56 (12) Cl1—C9—H9A 109.1
C6—C1—C2 120.72 (13) C8—C9—H9B 109.1
C6—C1—N1 119.34 (13) Cl1—C9—H9B 109.1
C2—C1—N1 119.90 (13) H9A—C9—H9B 107.8
O1—C8—N1 123.09 (14) C2—C3—C4 120.20 (15)
O1—C8—C9 122.12 (13) C2—C3—H3 119.9
N1—C8—C9 114.78 (12) C4—C3—H3 119.9
C3—C2—C1 119.30 (14) C4—C5—C6 120.32 (15)
C3—C2—H2 120.4 C4—C5—H5 119.8
C1—C2—H2 120.4 C6—C5—H5 119.8
C1—C6—C5 119.29 (15) N1—C7—H7A 109.5
C1—C6—H6 120.4 N1—C7—H7B 109.5
C5—C6—H6 120.4 H7A—C7—H7B 109.5
C5—C4—C3 120.16 (15) N1—C7—H7C 109.5
C5—C4—H4 119.9 H7A—C7—H7C 109.5
C3—C4—H4 119.9 H7B—C7—H7C 109.5
C8—N1—C1—C6 −80.39 (18) N1—C1—C2—C3 177.81 (13)
C7—N1—C1—C6 91.92 (17) C2—C1—C6—C5 −0.3 (2)
C8—N1—C1—C2 102.04 (17) N1—C1—C6—C5 −177.81 (14)
C7—N1—C1—C2 −85.65 (17) O1—C8—C9—Cl1 14.8 (2)
C1—N1—C8—O1 173.27 (13) N1—C8—C9—Cl1 −165.31 (11)
C7—N1—C8—O1 1.2 (2) C1—C2—C3—C4 −0.5 (2)
C1—N1—C8—C9 −6.6 (2) C5—C4—C3—C2 0.8 (3)
C7—N1—C8—C9 −178.63 (14) C3—C4—C5—C6 −0.8 (3)
C6—C1—C2—C3 0.3 (2) C1—C6—C5—C4 0.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···O1 0.96 2.37 2.749 (2) 103.
C2—H2···O1i 0.93 2.58 3.4356 (19) 154.

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2064).

References

  1. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA .
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
  4. Yuan, M.-S., Li, Z. & Wang, Q. (2010). Acta Cryst. E66, o2017. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050427/vm2064sup1.cif

e-67-00o68-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050427/vm2064Isup2.hkl

e-67-00o68-Isup2.hkl (147.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES