Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 18;67(Pt 1):o157. doi: 10.1107/S1600536810051470

3-[(E)-(2,4-Dichloro­pbenzyl­idene)amino]­benzoic acid

Muhammad Akmal a, Waseeq Ahmad Siddiqui a, M Nawaz Tahir b,*, Adnan Ashraf a, Farhat Nosheen a
PMCID: PMC3050322  PMID: 21522664

Abstract

In the crystal of the title compound, C14H9Cl2NO2, inversion-related dimers with R 2 2(8) ring motifs are formed by inter­molecular O—H⋯O hydrogen bonding. The 3-amino­benzoic acid group and the 2,4-dichlobenzaldehyde moiety subtend a dihedral angle of 55.10 (2)°. The H atom of the carboxyl group is disordered over two sites with equal occupancies.

Related literature

For our project on the synthesis of various Schiff bases of 2,4-dichloro­benzaldehyde, see: Hayat et al. (2010). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-0o157-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl2NO2

  • M r = 294.12

  • Triclinic, Inline graphic

  • a = 7.4065 (2) Å

  • b = 7.6176 (3) Å

  • c = 11.5330 (4) Å

  • α = 86.946 (2)°

  • β = 80.433 (1)°

  • γ = 85.833 (2)°

  • V = 639.38 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.903, T max = 0.932

  • 9596 measured reflections

  • 2293 independent reflections

  • 2048 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.084

  • S = 1.05

  • 2293 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051470/bg2380sup1.cif

e-67-0o157-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051470/bg2380Isup2.hkl

e-67-0o157-Isup2.hkl (110.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.6364 (17) 170
O2—H2⋯O1i 0.82 1.84 2.6364 (17) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) is being reported as a part of our project related to the synthesis of various Schiff bases of 2,4-dichlorobenzaldehyde (Hayat et al., 2010) and then their metal complexation.

In the title compound, C14H9Cl2NO2, the 3-aminobenzoic group A (C1—C7/N1/O1/O2, ring centroid Cg1) and 2,4-dichlobenzaldehyde moiety B (C7—C14/CL1/CL2, ring centroid Cg2) are planar with r. m. s. deviation of 0.0200 and 0.0352 Å, respectively. The A/B dihedral angle is 55.10 (2)°. An S(5) ring motif is formed due to an intramolecular H-bond of the C—H···Cl type (Fig. 1 and Table 1). The title compound consists of H-bonded dimers due to intermolecular H-bondings of the O—H···O type (Table 1, Fig. 1) with R22(8) ring motifs (Bernstein et al., 1995). There exist π–π interactions between phenyl rings, connecting dimers into a 3D arrangement. The ring in the aminobenzoic group (Cg1) interacts with its symmetrry related ones Cg1i and Cg1ii, (i: -x, -y, - z, ii: -x, 1 - y, -z, intercentroid distances 4.1122 (9), 4.4517 (9)Å; interplanar separations: 3.3935 (6), 3.4518 (6)Å, respectively); the one in the dichlobenzaldehyde group (Cg2), in turn, interacts with Cg2iii and Cg2iv, (iii: -x, -y, 1 - z, iv: 1- x, -y, 1 - z; intercentroid distances 4.2926 (9), 4.0256 (9) Å; interplanar separations: 3.5346 (6), 3.5224 (6) Å, respectively). The H-atom of the carboxylate group is disordered over two sites with equal occupancy ratio.

Experimental

A mixture of m-aminobenzoic acid (0.25 g, 1.82 mmol) and 2,4-dichlorobenzaldehyde (0.32 g, 1.82 mmol) in absolute ethanol (20 ml) with few drops of acetic acid was heated to reflux (2 h), cooled to room temperature and filtered. The yellow precipitates were washed with the same solvent and dried at room temperature to get 0.47 g of the title compound (1.62 mmol, 89%). The crude material was dissolved in methanol and subjected to slow evaporation. Light yellow prisms of (I) were obtained after 48 h.

Refinement

The H-atom of carboxylate is disordered over two sites with equal occupancy ratio. Initially the coordinates and multiplicity of both H-atoms were refined, which resulted with equal occupancy ratio.

The C–H atoms were positioned geometrically (O—H = 0.82, C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the H-bonded dimeric unit, with the atom numbering scheme. Only one of the two disordered carboxylate hydrogens is shown (the one attached to O1, in broken circles; the one attached to O2, omited for clarity). Thermal ellipsoids are drawn at the 50% probability level. Thin dotted lines represent intramolecular H-bonds, while intermoleculer ones, linking dimers through an R22(8) ring motif are shown as thick broken lines.

Crystal data

C14H9Cl2NO2 Z = 2
Mr = 294.12 F(000) = 300
Triclinic, P1 Dx = 1.528 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4065 (2) Å Cell parameters from 2048 reflections
b = 7.6176 (3) Å θ = 2.7–25.2°
c = 11.5330 (4) Å µ = 0.50 mm1
α = 86.946 (2)° T = 296 K
β = 80.433 (1)° Prism, light yellow
γ = 85.833 (2)° 0.32 × 0.24 × 0.20 mm
V = 639.38 (4) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 2293 independent reflections
Radiation source: fine-focus sealed tube 2048 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 8.10 pixels mm-1 θmax = 25.2°, θmin = 2.7°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −9→9
Tmin = 0.903, Tmax = 0.932 l = −13→13
9596 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1996P] where P = (Fo2 + 2Fc2)/3
2293 reflections (Δ/σ)max = 0.001
175 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.14614 (7) 0.31116 (6) 0.46678 (5) 0.0613 (2)
Cl2 0.34568 (7) −0.30520 (8) 0.66465 (4) 0.0699 (2)
O1 −0.31523 (16) 0.47023 (16) −0.11702 (10) 0.0495 (4)
O2 −0.35921 (16) 0.36164 (19) 0.06779 (10) 0.0561 (4)
N1 0.24397 (17) 0.05365 (17) 0.13189 (12) 0.0410 (4)
C1 −0.2595 (2) 0.3841 (2) −0.03090 (13) 0.0380 (5)
C2 −0.0681 (2) 0.30632 (19) −0.04703 (13) 0.0366 (5)
C3 0.0469 (2) 0.3230 (2) −0.15456 (14) 0.0428 (5)
C4 0.2252 (2) 0.2494 (2) −0.16592 (15) 0.0473 (5)
C5 0.2899 (2) 0.1604 (2) −0.07207 (15) 0.0447 (5)
C6 0.1764 (2) 0.14779 (19) 0.03695 (14) 0.0378 (5)
C7 −0.0034 (2) 0.21942 (19) 0.04811 (13) 0.0376 (5)
C8 0.2038 (2) 0.1171 (2) 0.23329 (14) 0.0409 (5)
C9 0.24798 (19) 0.0188 (2) 0.33878 (14) 0.0377 (5)
C10 0.2208 (2) 0.0909 (2) 0.44960 (14) 0.0407 (5)
C11 0.2511 (2) −0.0074 (2) 0.54930 (14) 0.0462 (6)
C12 0.3130 (2) −0.1807 (2) 0.53859 (14) 0.0457 (5)
C13 0.3461 (2) −0.2580 (2) 0.43038 (15) 0.0454 (5)
C14 0.3120 (2) −0.1581 (2) 0.33285 (14) 0.0413 (5)
H1 −0.42024 0.51169 −0.09627 0.0594* 0.500
H2 −0.45884 0.41608 0.06763 0.0674* 0.500
H3 0.00466 0.38291 −0.21822 0.0514*
H4 0.30252 0.26012 −0.23786 0.0568*
H5 0.40898 0.10905 −0.08158 0.0536*
H7 −0.08095 0.20897 0.11998 0.0450*
H8 0.14485 0.22894 0.24079 0.0491*
H11 0.23000 0.04301 0.62242 0.0555*
H13 0.39052 −0.37508 0.42399 0.0545*
H14 0.33213 −0.21006 0.26025 0.0496*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0635 (3) 0.0463 (3) 0.0721 (3) 0.0077 (2) −0.0049 (2) −0.0192 (2)
Cl2 0.0718 (3) 0.0863 (4) 0.0455 (3) 0.0067 (3) −0.0032 (2) 0.0180 (2)
O1 0.0445 (7) 0.0579 (7) 0.0441 (7) 0.0117 (5) −0.0093 (5) 0.0021 (5)
O2 0.0403 (7) 0.0810 (9) 0.0423 (7) 0.0139 (6) −0.0025 (5) 0.0040 (6)
N1 0.0351 (7) 0.0435 (8) 0.0434 (8) 0.0036 (5) −0.0063 (5) −0.0009 (6)
C1 0.0381 (8) 0.0398 (8) 0.0363 (8) 0.0016 (6) −0.0077 (6) −0.0052 (6)
C2 0.0359 (8) 0.0355 (8) 0.0392 (8) −0.0010 (6) −0.0073 (6) −0.0061 (6)
C3 0.0436 (9) 0.0471 (9) 0.0375 (9) −0.0008 (7) −0.0067 (7) −0.0014 (7)
C4 0.0417 (9) 0.0584 (10) 0.0388 (9) 0.0000 (7) 0.0017 (7) −0.0041 (8)
C5 0.0354 (8) 0.0494 (10) 0.0474 (10) 0.0042 (7) −0.0027 (7) −0.0062 (7)
C6 0.0372 (8) 0.0345 (8) 0.0417 (9) 0.0007 (6) −0.0070 (6) −0.0033 (6)
C7 0.0357 (8) 0.0385 (8) 0.0373 (8) −0.0003 (6) −0.0028 (6) −0.0038 (6)
C8 0.0363 (8) 0.0374 (8) 0.0480 (10) 0.0025 (6) −0.0059 (7) −0.0019 (7)
C9 0.0302 (7) 0.0396 (8) 0.0420 (9) −0.0012 (6) −0.0022 (6) −0.0033 (7)
C10 0.0317 (8) 0.0407 (9) 0.0484 (9) −0.0013 (6) −0.0010 (6) −0.0087 (7)
C11 0.0404 (9) 0.0592 (11) 0.0379 (9) −0.0044 (8) −0.0003 (7) −0.0088 (8)
C12 0.0379 (8) 0.0575 (10) 0.0393 (9) −0.0034 (7) −0.0018 (7) 0.0048 (7)
C13 0.0444 (9) 0.0416 (9) 0.0470 (9) 0.0018 (7) −0.0010 (7) 0.0012 (7)
C14 0.0416 (8) 0.0426 (9) 0.0380 (8) 0.0009 (7) −0.0016 (7) −0.0064 (7)

Geometric parameters (Å, °)

Cl1—C10 1.7391 (16) C8—C9 1.466 (2)
Cl2—C12 1.7345 (16) C9—C14 1.397 (2)
O1—C1 1.2708 (19) C9—C10 1.396 (2)
O2—C1 1.2603 (19) C10—C11 1.379 (2)
O1—H1 0.8200 C11—C12 1.371 (2)
O2—H2 0.8200 C12—C13 1.386 (2)
N1—C6 1.418 (2) C13—C14 1.372 (2)
N1—C8 1.270 (2) C3—H3 0.9300
C1—C2 1.482 (2) C4—H4 0.9300
C2—C7 1.387 (2) C5—H5 0.9300
C2—C3 1.388 (2) C7—H7 0.9300
C3—C4 1.385 (2) C8—H8 0.9300
C4—C5 1.381 (2) C11—H11 0.9300
C5—C6 1.394 (2) C13—H13 0.9300
C6—C7 1.390 (2) C14—H14 0.9300
Cl1···C12i 3.6226 (16) C12···C10ix 3.594 (2)
Cl1···Cl1ii 3.5113 (7) C12···C11ix 3.596 (2)
Cl2···O2i 3.1100 (12) C12···Cl1i 3.6226 (16)
Cl1···H8 2.7100 C1···H2v 2.5700
Cl1···H13iii 3.0700 C1···H1v 2.6600
Cl2···H7i 2.9900 C4···H11x 2.9700
Cl2···H13iv 3.1200 C7···H8 2.6400
O1···O2v 2.6364 (17) C8···H7 2.6900
O1···C6vi 3.3784 (19) C14···H4viii 2.9500
O2···C1v 3.380 (2) H1···H2 1.9700
O2···O1v 2.6364 (17) H1···O1v 2.8800
O2···Cl2i 3.1100 (12) H1···O2v 1.8300
O1···H2v 1.8400 H1···C1v 2.6600
O1···H3 2.5200 H2···H1 1.9700
O1···H1v 2.8800 H2···O1v 1.8400
O1···H8vi 2.8900 H2···O2v 2.6800
O1···H14vii 2.6700 H2···C1v 2.5700
O2···H7 2.4400 H3···O1 2.5200
O2···H1v 1.8300 H4···H11x 2.5100
O2···H2v 2.6800 H4···C14viii 2.9500
N1···C2vii 3.377 (2) H5···N1viii 2.7600
N1···H14 2.5400 H7···O2 2.4400
N1···H5viii 2.7600 H7···C8 2.6900
C1···O2v 3.380 (2) H7···H8 2.3700
C2···C2vi 3.470 (2) H7···Cl2i 2.9900
C2···C6vii 3.599 (2) H8···Cl1 2.7100
C2···N1vii 3.377 (2) H8···C7 2.6400
C6···C2vii 3.599 (2) H8···H7 2.3700
C6···C7vii 3.415 (2) H8···O1vi 2.8900
C6···O1vi 3.3784 (19) H11···C4xi 2.9700
C7···C7vii 3.572 (2) H11···H4xi 2.5100
C7···C6vii 3.415 (2) H13···Cl1xii 3.0700
C10···C12ix 3.594 (2) H13···Cl2iv 3.1200
C10···C11i 3.596 (2) H14···N1 2.5400
C11···C12ix 3.596 (2) H14···O1vii 2.6700
C11···C10i 3.596 (2)
C1—O1—H1 109.00 C10—C11—C12 118.77 (15)
C1—O2—H2 109.00 Cl2—C12—C13 119.88 (12)
C6—N1—C8 117.97 (13) Cl2—C12—C11 118.61 (12)
O1—C1—O2 123.13 (14) C11—C12—C13 121.50 (15)
O1—C1—C2 118.55 (13) C12—C13—C14 118.57 (14)
O2—C1—C2 118.32 (14) C9—C14—C13 122.33 (15)
C1—C2—C3 120.96 (13) C2—C3—H3 120.00
C3—C2—C7 120.10 (14) C4—C3—H3 120.00
C1—C2—C7 118.93 (13) C3—C4—H4 119.00
C2—C3—C4 119.23 (15) C5—C4—H4 120.00
C3—C4—C5 121.03 (15) C4—C5—H5 120.00
C4—C5—C6 119.87 (14) C6—C5—H5 120.00
N1—C6—C7 121.59 (14) C2—C7—H7 120.00
N1—C6—C5 119.16 (13) C6—C7—H7 120.00
C5—C6—C7 119.16 (14) N1—C8—H8 119.00
C2—C7—C6 120.56 (14) C9—C8—H8 119.00
N1—C8—C9 121.74 (14) C10—C11—H11 121.00
C8—C9—C14 120.23 (14) C12—C11—H11 121.00
C8—C9—C10 123.03 (14) C12—C13—H13 121.00
C10—C9—C14 116.66 (14) C14—C13—H13 121.00
Cl1—C10—C11 117.26 (12) C9—C14—H14 119.00
Cl1—C10—C9 120.59 (12) C13—C14—H14 119.00
C9—C10—C11 122.16 (14)
C8—N1—C6—C5 139.76 (15) C5—C6—C7—C2 −1.6 (2)
C8—N1—C6—C7 −43.9 (2) N1—C8—C9—C10 174.01 (15)
C6—N1—C8—C9 172.33 (13) N1—C8—C9—C14 −9.3 (2)
O1—C1—C2—C3 −1.6 (2) C8—C9—C10—Cl1 −4.6 (2)
O1—C1—C2—C7 176.92 (14) C8—C9—C10—C11 175.35 (14)
O2—C1—C2—C3 178.44 (15) C14—C9—C10—Cl1 178.61 (11)
O2—C1—C2—C7 −3.0 (2) C14—C9—C10—C11 −1.5 (2)
C1—C2—C3—C4 179.60 (14) C8—C9—C14—C13 −176.55 (14)
C7—C2—C3—C4 1.1 (2) C10—C9—C14—C13 0.4 (2)
C1—C2—C7—C6 −178.74 (14) Cl1—C10—C11—C12 −178.91 (12)
C3—C2—C7—C6 −0.2 (2) C9—C10—C11—C12 1.2 (2)
C2—C3—C4—C5 −0.1 (2) C10—C11—C12—Cl2 −178.48 (12)
C3—C4—C5—C6 −1.7 (2) C10—C11—C12—C13 0.3 (2)
C4—C5—C6—N1 179.03 (14) Cl2—C12—C13—C14 177.42 (12)
C4—C5—C6—C7 2.6 (2) C11—C12—C13—C14 −1.3 (2)
N1—C6—C7—C2 −178.01 (14) C12—C13—C14—C9 1.0 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+1, −y−1, −z+1; (v) −x−1, −y+1, −z; (vi) −x, −y+1, −z; (vii) −x, −y, −z; (viii) −x+1, −y, −z; (ix) −x+1, −y, −z+1; (x) x, y, z−1; (xi) x, y, z+1; (xii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2v 0.82 1.83 2.6364 (17) 170
O2—H2···O1v 0.82 1.84 2.6364 (17) 162
C8—H8···Cl1 0.93 2.71 3.0934 (17) 105

Symmetry codes: (v) −x−1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2380).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Hayat, U., Siddiqui, W. A., Tahir, M. N. & Hussain, G. (2010). Acta Cryst. E66, o2523. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051470/bg2380sup1.cif

e-67-0o157-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051470/bg2380Isup2.hkl

e-67-0o157-Isup2.hkl (110.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES