Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o79. doi: 10.1107/S1600536810050488

2,3-Dibromo-1-(4-methyl­phen­yl)-3-(5-nitro­furan-2-yl)propan-1-one

Hoong-Kun Fun a,*,, Tara Shahani a, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3050337  PMID: 21522790

Abstract

In the title compound, C14H11Br2NO4, the whole mol­ecule is disordered over two positions with a refined occupancy ratio of 0.539 (9):0.461 (9). The 2-nitro­furan and toluene groups are approximately planar, with maximum deviations of 0.176 (11) and 0.121 (14) Å, respectively, in the major component and 0.208 (11) and 0.30 (17) Å in the minor component. The dihedral angles between the 2-nitro­furan and toluene groups are 8.7 (5) and 8.0 (9)° for the major and minor components, respectively. In the crystal, weak inter­molecular C—H⋯O inter­actions connect mol­ecules into a three-dimensional network, generating R 2 1(6) ring motifs.

Related literature

For the biological activity of nitrofurans, see: Holla et al. (1986, 1987, 1992); Hegde et al. (2006); Rai et al. (2008). For a related structure, see: Fun et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-00o79-scheme1.jpg

Experimental

Crystal data

  • C14H11Br2NO4

  • M r = 417.06

  • Triclinic, Inline graphic

  • a = 8.7766 (3) Å

  • b = 9.0386 (3) Å

  • c = 10.4841 (3) Å

  • α = 87.601 (2)°

  • β = 75.505 (2)°

  • γ = 69.554 (2)°

  • V = 753.53 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.39 mm−1

  • T = 100 K

  • 0.47 × 0.21 × 0.13 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.184, T max = 0.550

  • 10357 measured reflections

  • 3465 independent reflections

  • 2729 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.103

  • S = 1.19

  • 3465 reflections

  • 274 parameters

  • 658 restraints

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050488/lh5178sup1.cif

e-67-00o79-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050488/lh5178Isup2.hkl

e-67-00o79-Isup2.hkl (169.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AA⋯O3Ai 0.93 2.53 3.210 (15) 131
C3A—H3AA⋯O2Aii 0.93 2.51 3.216 (12) 133
C6A—H6AA⋯O2Aii 0.98 2.33 3.217 (10) 151
C13A—H13A⋯O3Aiii 0.93 2.55 3.434 (13) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Nitrofurans are a class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in position-5 of the molecule conferred antibacterial activity (Holla et al.1986). A number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activities (Holla & Kalluraya et al., 1992; Holla et al., 1987). The incorporation of 5-nitrofuran or 5-nitrothiophene moiety into various heterocyclic systems has found to increase their biological activities. We have reported few heterocyclic systems carrying a 5-nitrofuran moiety as potent antimicrobial agents (Hegde et al., 2006). During the synthetic procedures, the dibromopropanones were obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with nitrofural diacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones (chalcones) (Rai et al., 2008).

In the title compound (Fig. 1), the whole molecule is disordered over two positions with a refined occupancy ratio of 0539 (9):0.461 (9) The molecule consists of a 2-nitrofuran (C1–C3/C5/N1/O1/O3/O4) group, a toluene group which (C9–C15) and one 2, 3-dibromopropanal (C6–C9/Br1/Br2/O2) moiety. Both ring groups are essentially planar (maximum deviation of 0.176 (11) and 0.121 (14) Å in the major component and 0.208 (11) and 0.30 (17) Å in the minor component for the 2-nitrofuran and toluene groups respectively). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a closely related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), intermolecular C3A—H3A···O2Aii and C6A—H6A···O2Aii hydrogen bonds connect neighbouring molecules generating R21(6) ring motifs (Bernstein et al., 1995) (Table 1). These dimers are linked into a three-dimensional network by intermolecular C2A—H2AA···O3Ai and C13A—H13A···O3Aiii hydrogen bonds (Table 1).

Experimental

1-(4-Methylphenyl)-3-(5-nitro-2-furyl)-2-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30%w/v) was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanones which separated out were collected by filtration and washed with ethanol and dried and then recrystallized from glacial acetic acid. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All the H atoms were positioned geometrically [C–H = 0.93 to 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq (C). The whole molecule is disordered over two positions with a refined ratio of 0539 (9):0.461 (9) Initially rigid, similarity and simulation restraints were applied. After steady state has been reached, rigid restraints were removed for the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The minor component of disorder is shown with open bonds.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along a axis. Only the major disordered component is shown. Hydrogen atoms not involved in hydrogen boding are omitted for clarity.

Crystal data

C14H11Br2NO4 Z = 2
Mr = 417.06 F(000) = 408
Triclinic, P1 Dx = 1.838 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7766 (3) Å Cell parameters from 4461 reflections
b = 9.0386 (3) Å θ = 2.8–29.8°
c = 10.4841 (3) Å µ = 5.39 mm1
α = 87.601 (2)° T = 100 K
β = 75.505 (2)° Block, colourless
γ = 69.554 (2)° 0.47 × 0.21 × 0.13 mm
V = 753.53 (4) Å3

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3465 independent reflections
Radiation source: fine-focus sealed tube 2729 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.184, Tmax = 0.550 k = −11→11
10357 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.118P] where P = (Fo2 + 2Fc2)/3
3465 reflections (Δ/σ)max < 0.001
274 parameters Δρmax = 0.88 e Å3
658 restraints Δρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.3252 (8) 0.1907 (8) 0.2855 (6) 0.0247 (12) 0.539 (9)
O2A 0.7200 (11) 0.4559 (10) 0.3552 (8) 0.0263 (15) 0.539 (9)
O3A 0.0607 (10) −0.0275 (11) 0.3127 (8) 0.0353 (18) 0.539 (9)
O4A 0.2823 (12) −0.0290 (13) 0.1606 (10) 0.029 (2) 0.539 (9)
N1A 0.188 (3) 0.009 (3) 0.2706 (15) 0.025 (3) 0.539 (9)
C1A 0.1954 (16) 0.1367 (19) 0.3437 (13) 0.024 (2) 0.539 (9)
C2A 0.0942 (13) 0.2160 (16) 0.4548 (12) 0.024 (2) 0.539 (9)
H2AA −0.0059 0.2062 0.5033 0.029* 0.539 (9)
C3A 0.1735 (15) 0.3187 (18) 0.4824 (14) 0.026 (3) 0.539 (9)
H3AA 0.1409 0.3841 0.5579 0.031* 0.539 (9)
C5A 0.3058 (10) 0.3035 (9) 0.3781 (8) 0.0256 (15) 0.539 (9)
C8A 0.7314 (16) 0.3690 (17) 0.2649 (12) 0.028 (2) 0.539 (9)
C9A 0.8760 (16) 0.322 (2) 0.1492 (12) 0.024 (3) 0.539 (9)
C10A 1.009 (2) 0.374 (4) 0.148 (2) 0.023 (3) 0.539 (9)
H10A 1.0027 0.4368 0.2193 0.028* 0.539 (9)
C11A 1.1495 (18) 0.334 (2) 0.0434 (16) 0.027 (2) 0.539 (9)
H11A 1.2350 0.3720 0.0449 0.032* 0.539 (9)
C12A 1.1681 (14) 0.2394 (19) −0.0645 (13) 0.027 (2) 0.539 (9)
C13A 1.0316 (14) 0.1904 (19) −0.0648 (12) 0.028 (3) 0.539 (9)
H13A 1.0379 0.1293 −0.1364 0.033* 0.539 (9)
C14A 0.8896 (14) 0.2312 (18) 0.0384 (11) 0.031 (3) 0.539 (9)
H14A 0.8015 0.1982 0.0348 0.037* 0.539 (9)
C15A 1.3292 (18) 0.177 (2) −0.1713 (17) 0.049 (4) 0.539 (9)
H15A 1.4031 0.2314 −0.1629 0.073* 0.539 (9)
H15B 1.3048 0.1948 −0.2561 0.073* 0.539 (9)
H15C 1.3823 0.0660 −0.1629 0.073* 0.539 (9)
Br1A 0.6688 (5) 0.1302 (5) 0.4219 (5) 0.0395 (7) 0.539 (9)
Br2A 0.3626 (5) 0.5504 (4) 0.2175 (5) 0.0414 (6) 0.539 (9)
C6A 0.4234 (8) 0.3896 (8) 0.3487 (7) 0.0309 (16) 0.539 (9)
H6AA 0.4189 0.4424 0.4301 0.037* 0.539 (9)
C7A 0.5995 (9) 0.2863 (9) 0.2889 (7) 0.0312 (15) 0.539 (9)
H7AA 0.6066 0.2322 0.2074 0.037* 0.539 (9)
O1B 0.3468 (10) 0.1563 (9) 0.3082 (8) 0.024 (2)* 0.461 (9)
O2B 0.6979 (14) 0.4869 (11) 0.3410 (10) 0.022 (2)* 0.461 (9)
O3B 0.1011 (13) −0.0594 (12) 0.2947 (11) 0.037 (3)* 0.461 (9)
O4B 0.3032 (19) −0.0313 (19) 0.1354 (13) 0.037 (3)* 0.461 (9)
N1B 0.197 (4) 0.012 (4) 0.241 (2) 0.025 (3) 0.461 (9)
C1B 0.206 (2) 0.122 (2) 0.3321 (16) 0.025 (3)* 0.461 (9)
C2B 0.1002 (19) 0.194 (2) 0.4467 (16) 0.030 (3)* 0.461 (9)
H2BA 0.0011 0.1790 0.4910 0.036* 0.461 (9)
C3B 0.171 (2) 0.298 (2) 0.4858 (17) 0.031 (4)* 0.461 (9)
H3BA 0.1208 0.3734 0.5552 0.037* 0.461 (9)
C5B 0.3271 (12) 0.2658 (10) 0.4029 (9) 0.021 (2)* 0.461 (9)
C8B 0.713 (2) 0.393 (2) 0.2559 (14) 0.025 (3)* 0.461 (9)
C9B 0.860 (2) 0.340 (3) 0.1418 (16) 0.025 (4)* 0.461 (9)
C10B 1.003 (3) 0.374 (5) 0.145 (3) 0.030 (5)* 0.461 (9)
H10B 1.0002 0.4344 0.2156 0.036* 0.461 (9)
C11B 1.149 (2) 0.320 (3) 0.0433 (19) 0.029 (3)* 0.461 (9)
H11B 1.2444 0.3393 0.0480 0.035* 0.461 (9)
C12B 1.1500 (17) 0.235 (2) −0.0665 (15) 0.026 (3)* 0.461 (9)
C13B 1.0072 (18) 0.203 (2) −0.0705 (16) 0.029 (4)* 0.461 (9)
H13B 1.0071 0.1493 −0.1440 0.035* 0.461 (9)
C14B 0.8655 (18) 0.252 (2) 0.0331 (14) 0.028 (3)* 0.461 (9)
H14B 0.7728 0.2254 0.0308 0.033* 0.461 (9)
C15B 1.306 (2) 0.188 (2) −0.1803 (17) 0.028 (3)* 0.461 (9)
H15D 1.4029 0.1346 −0.1477 0.043* 0.461 (9)
H15E 1.3172 0.2816 −0.2225 0.043* 0.461 (9)
H15F 1.2962 0.1196 −0.2428 0.043* 0.461 (9)
Br1B 0.6416 (5) 0.1406 (5) 0.4607 (4) 0.0297 (5) 0.461 (9)
Br2B 0.4087 (6) 0.5267 (6) 0.1895 (6) 0.0438 (8) 0.461 (9)
C6B 0.4744 (8) 0.3165 (8) 0.3932 (6) 0.0174 (16)* 0.461 (9)
H6BA 0.4387 0.4117 0.4505 0.021* 0.461 (9)
C7B 0.5614 (9) 0.3472 (9) 0.2554 (7) 0.0208 (17)* 0.461 (9)
H7BA 0.5963 0.2535 0.1965 0.025* 0.461 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.025 (3) 0.024 (3) 0.035 (3) −0.015 (2) −0.015 (2) 0.000 (2)
O2A 0.030 (4) 0.024 (3) 0.033 (3) −0.015 (3) −0.014 (3) 0.002 (3)
O3A 0.028 (4) 0.044 (4) 0.044 (4) −0.029 (4) 0.000 (3) −0.015 (3)
O4A 0.025 (4) 0.040 (4) 0.024 (5) −0.018 (3) 0.000 (3) −0.017 (3)
N1A 0.035 (3) 0.0307 (16) 0.021 (7) −0.0187 (17) −0.020 (4) 0.008 (5)
C1A 0.021 (3) 0.025 (4) 0.038 (4) −0.015 (3) −0.017 (2) −0.001 (2)
C2A 0.021 (3) 0.025 (4) 0.038 (4) −0.015 (3) −0.017 (2) −0.001 (2)
C3A 0.024 (4) 0.021 (5) 0.041 (4) −0.016 (3) −0.013 (3) −0.004 (3)
C5A 0.030 (3) 0.022 (3) 0.033 (4) −0.014 (3) −0.014 (3) 0.003 (3)
C8A 0.024 (4) 0.028 (5) 0.043 (4) −0.016 (4) −0.016 (3) 0.000 (4)
C9A 0.025 (4) 0.025 (5) 0.029 (4) −0.014 (4) −0.014 (3) 0.001 (3)
C10A 0.030 (4) 0.027 (4) 0.026 (4) −0.018 (3) −0.018 (3) 0.004 (2)
C11A 0.025 (3) 0.026 (3) 0.037 (3) −0.013 (2) −0.015 (2) 0.005 (2)
C12A 0.025 (3) 0.026 (3) 0.037 (3) −0.013 (2) −0.015 (2) 0.005 (2)
C13A 0.027 (4) 0.030 (5) 0.030 (4) −0.008 (4) −0.016 (3) −0.009 (3)
C14A 0.025 (4) 0.037 (6) 0.044 (4) −0.017 (4) −0.021 (3) −0.005 (4)
C15A 0.033 (6) 0.059 (7) 0.044 (6) −0.010 (5) 0.001 (5) −0.020 (5)
Br1A 0.0302 (12) 0.0365 (8) 0.0632 (18) −0.0172 (8) −0.0264 (13) 0.0195 (12)
Br2A 0.0509 (16) 0.0327 (8) 0.0597 (17) −0.0246 (10) −0.0357 (13) 0.0189 (8)
C6A 0.033 (3) 0.031 (3) 0.037 (4) −0.017 (3) −0.017 (3) 0.002 (3)
C7A 0.031 (3) 0.030 (3) 0.039 (4) −0.017 (3) −0.012 (3) 0.001 (3)
N1B 0.035 (3) 0.0307 (16) 0.021 (7) −0.0187 (17) −0.020 (4) 0.008 (5)
Br1B 0.0228 (10) 0.0363 (6) 0.0371 (12) −0.0145 (7) −0.0151 (9) 0.0096 (9)
Br2B 0.0455 (16) 0.0513 (16) 0.0555 (18) −0.0310 (13) −0.0328 (14) 0.0264 (12)

Geometric parameters (Å, °)

O1A—C5A 1.375 (7) O1B—C1B 1.343 (10)
O1A—C1A 1.387 (8) O1B—C5B 1.368 (9)
O2A—C8A 1.218 (8) O2B—C8B 1.207 (11)
O3A—N1A 1.243 (10) O3B—N1B 1.251 (12)
O4A—N1A 1.222 (9) O4B—N1B 1.228 (11)
N1A—C1A 1.439 (9) N1B—C1B 1.436 (11)
C1A—C2A 1.329 (9) C1B—C2B 1.347 (10)
C2A—C3A 1.416 (9) C2B—C3B 1.413 (11)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C5A 1.352 (9) C3B—C5B 1.364 (11)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C5A—C6A 1.465 (9) C5B—C6B 1.496 (11)
C8A—C9A 1.469 (9) C8B—C9B 1.472 (10)
C8A—C7A 1.550 (13) C8B—C7B 1.527 (18)
C9A—C10A 1.405 (9) C9B—C10B 1.399 (11)
C9A—C14A 1.406 (8) C9B—C14B 1.401 (11)
C10A—C11A 1.380 (9) C10B—C11B 1.391 (11)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.390 (9) C11B—C12B 1.406 (10)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C13A 1.416 (10) C12B—C13B 1.388 (11)
C12A—C15A 1.508 (9) C12B—C15B 1.515 (10)
C13A—C14A 1.377 (9) C13B—C14B 1.379 (11)
C13A—H13A 0.9300 C13B—H13B 0.9300
C14A—H14A 0.9300 C14B—H14B 0.9300
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15E 0.9600
C15A—H15C 0.9600 C15B—H15F 0.9600
Br1A—C7A 1.992 (10) Br1B—C6B 1.994 (8)
Br2A—C6A 1.987 (8) Br2B—C7B 1.938 (10)
C6A—C7A 1.486 (10) C6B—C7B 1.520 (10)
C6A—H6AA 0.9800 C6B—H6BA 0.9800
C7A—H7AA 0.9800 C7B—H7BA 0.9800
C5A—O1A—C1A 101.7 (6) O3B—N1B—C1B 111.7 (12)
O4A—N1A—O3A 124.4 (10) O1B—C1B—C2B 110.1 (8)
O4A—N1A—C1A 118.0 (9) O1B—C1B—N1B 117.5 (10)
O3A—N1A—C1A 115.5 (10) C2B—C1B—N1B 132.3 (10)
C2A—C1A—O1A 114.5 (7) C1B—C2B—C3B 105.8 (9)
C2A—C1A—N1A 130.6 (8) C1B—C2B—H2BA 127.1
O1A—C1A—N1A 114.8 (8) C3B—C2B—H2BA 127.1
C1A—C2A—C3A 104.2 (7) C5B—C3B—C2B 107.5 (10)
C1A—C2A—H2AA 127.9 C5B—C3B—H3BA 126.3
C3A—C2A—H2AA 127.9 C2B—C3B—H3BA 126.3
C5A—C3A—C2A 106.9 (7) C3B—C5B—O1B 107.6 (8)
C5A—C3A—H3AA 126.5 C3B—C5B—C6B 136.7 (9)
C2A—C3A—H3AA 126.5 O1B—C5B—C6B 115.8 (7)
C3A—C5A—O1A 112.1 (6) O2B—C8B—C9B 123.2 (13)
C3A—C5A—C6A 130.6 (7) O2B—C8B—C7B 118.0 (12)
O1A—C5A—C6A 117.3 (6) C9B—C8B—C7B 118.1 (10)
O2A—C8A—C9A 122.9 (9) C10B—C9B—C14B 118.6 (10)
O2A—C8A—C7A 115.9 (9) C10B—C9B—C8B 118.5 (11)
C9A—C8A—C7A 120.4 (8) C14B—C9B—C8B 122.9 (11)
C10A—C9A—C14A 117.7 (8) C11B—C10B—C9B 121.1 (12)
C10A—C9A—C8A 117.3 (8) C11B—C10B—H10B 119.5
C14A—C9A—C8A 125.0 (9) C9B—C10B—H10B 119.5
C11A—C10A—C9A 120.5 (9) C10B—C11B—C12B 119.3 (12)
C11A—C10A—H10A 119.7 C10B—C11B—H11B 120.3
C9A—C10A—H10A 119.7 C12B—C11B—H11B 120.3
C10A—C11A—C12A 122.6 (9) C13B—C12B—C11B 119.5 (10)
C10A—C11A—H11A 118.7 C13B—C12B—C15B 122.3 (11)
C12A—C11A—H11A 118.7 C11B—C12B—C15B 118.1 (10)
C11A—C12A—C13A 116.6 (8) C14B—C13B—C12B 120.8 (12)
C11A—C12A—C15A 123.1 (10) C14B—C13B—H13B 119.6
C13A—C12A—C15A 120.1 (10) C12B—C13B—H13B 119.6
C14A—C13A—C12A 121.6 (8) C13B—C14B—C9B 120.6 (12)
C14A—C13A—H13A 119.2 C13B—C14B—H14B 119.7
C12A—C13A—H13A 119.2 C9B—C14B—H14B 119.7
C13A—C14A—C9A 120.9 (8) C12B—C15B—H15D 109.5
C13A—C14A—H14A 119.5 C12B—C15B—H15E 109.5
C9A—C14A—H14A 119.5 H15D—C15B—H15E 109.5
C5A—C6A—C7A 113.1 (6) C12B—C15B—H15F 109.5
C5A—C6A—Br2A 110.2 (5) H15D—C15B—H15F 109.5
C7A—C6A—Br2A 105.6 (6) H15E—C15B—H15F 109.5
C5A—C6A—H6AA 109.3 C5B—C6B—C7B 115.9 (6)
C7A—C6A—H6AA 109.3 C5B—C6B—Br1B 106.1 (5)
Br2A—C6A—H6AA 109.3 C7B—C6B—Br1B 107.6 (5)
C6A—C7A—C8A 115.3 (7) C5B—C6B—H6BA 109.0
C6A—C7A—Br1A 106.7 (5) C7B—C6B—H6BA 109.0
C8A—C7A—Br1A 102.9 (7) Br1B—C6B—H6BA 109.0
C6A—C7A—H7AA 110.5 C6B—C7B—C8B 111.7 (8)
C8A—C7A—H7AA 110.5 C6B—C7B—Br2B 109.3 (6)
Br1A—C7A—H7AA 110.5 C8B—C7B—Br2B 105.6 (8)
C1B—O1B—C5B 108.3 (8) C6B—C7B—H7BA 110.0
O4B—N1B—O3B 124.1 (14) C8B—C7B—H7BA 110.0
O4B—N1B—C1B 121.7 (12) Br2B—C7B—H7BA 110.0
C5A—O1A—C1A—C2A 5.5 (14) C5B—O1B—C1B—C2B −5.7 (17)
C5A—O1A—C1A—N1A −177.3 (19) C5B—O1B—C1B—N1B 178 (2)
O4A—N1A—C1A—C2A 169 (2) O4B—N1B—C1B—O1B −10 (5)
O3A—N1A—C1A—C2A 5(4) O3B—N1B—C1B—O1B 153 (2)
O4A—N1A—C1A—O1A −7(4) O4B—N1B—C1B—C2B 175 (2)
O3A—N1A—C1A—O1A −172 (2) O3B—N1B—C1B—C2B −23 (5)
O1A—C1A—C2A—C3A −7.5 (16) O1B—C1B—C2B—C3B 8.7 (19)
N1A—C1A—C2A—C3A 176 (3) N1B—C1B—C2B—C3B −175 (3)
C1A—C2A—C3A—C5A 6.3 (17) C1B—C2B—C3B—C5B −8(2)
C2A—C3A—C5A—O1A −3.3 (17) C2B—C3B—C5B—O1B 5(2)
C2A—C3A—C5A—C6A 174.7 (11) C2B—C3B—C5B—C6B −173.2 (13)
C1A—O1A—C5A—C3A −1.1 (14) C1B—O1B—C5B—C3B 0.1 (17)
C1A—O1A—C5A—C6A −179.3 (11) C1B—O1B—C5B—C6B 178.9 (13)
O2A—C8A—C9A—C10A 3(3) O2B—C8B—C9B—C10B 13 (4)
C7A—C8A—C9A—C10A −166 (2) C7B—C8B—C9B—C10B −176 (3)
O2A—C8A—C9A—C14A −175.3 (16) O2B—C8B—C9B—C14B −170 (2)
C7A—C8A—C9A—C14A 15 (3) C7B—C8B—C9B—C14B 1(3)
C14A—C9A—C10A—C11A −2(4) C14B—C9B—C10B—C11B −1(5)
C8A—C9A—C10A—C11A 180 (2) C8B—C9B—C10B—C11B 176 (3)
C9A—C10A—C11A—C12A −1(4) C9B—C10B—C11B—C12B 3(5)
C10A—C11A—C12A—C13A 3(3) C10B—C11B—C12B—C13B −1(4)
C10A—C11A—C12A—C15A −172 (3) C10B—C11B—C12B—C15B 175 (3)
C11A—C12A—C13A—C14A −2(2) C11B—C12B—C13B—C14B −1(3)
C15A—C12A—C13A—C14A 172.9 (17) C15B—C12B—C13B—C14B −177.8 (19)
C12A—C13A—C14A—C9A −1(3) C12B—C13B—C14B—C9B 3(3)
C10A—C9A—C14A—C13A 2(3) C10B—C9B—C14B—C13B −2(4)
C8A—C9A—C14A—C13A −178.9 (17) C8B—C9B—C14B—C13B −179 (2)
C3A—C5A—C6A—C7A 140.5 (14) C3B—C5B—C6B—C7B −138.9 (18)
O1A—C5A—C6A—C7A −41.6 (10) O1B—C5B—C6B—C7B 42.8 (10)
C3A—C5A—C6A—Br2A −101.6 (14) C3B—C5B—C6B—Br1B 101.8 (18)
O1A—C5A—C6A—Br2A 76.3 (8) O1B—C5B—C6B—Br1B −76.5 (8)
C5A—C6A—C7A—C8A −175.9 (8) C5B—C6B—C7B—C8B −178.2 (9)
Br2A—C6A—C7A—C8A 63.6 (8) Br1B—C6B—C7B—C8B −59.7 (9)
C5A—C6A—C7A—Br1A −62.3 (6) C5B—C6B—C7B—Br2B 65.3 (7)
Br2A—C6A—C7A—Br1A 177.1 (3) Br1B—C6B—C7B—Br2B −176.3 (4)
O2A—C8A—C7A—C6A 45.1 (16) O2B—C8B—C7B—C6B −43.9 (18)
C9A—C8A—C7A—C6A −144.9 (13) C9B—C8B—C7B—C6B 145.4 (16)
O2A—C8A—C7A—Br1A −70.7 (13) O2B—C8B—C7B—Br2B 74.8 (16)
C9A—C8A—C7A—Br1A 99.4 (14) C9B—C8B—C7B—Br2B −95.9 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2A—H2AA···O3Ai 0.93 2.53 3.210 (15) 131
C3A—H3AA···O2Aii 0.93 2.51 3.216 (12) 133
C6A—H6AA···O2Aii 0.98 2.33 3.217 (10) 151
C13A—H13A···O3Aiii 0.93 2.55 3.434 (13) 158

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5178).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Fun, H.-K., Shahani, T., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o2818–o2819. [DOI] [PMC free article] [PubMed]
  6. Hegde, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285–1290.
  7. Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73–76.
  8. Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236–238.
  9. Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159–1164.
  10. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050488/lh5178sup1.cif

e-67-00o79-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050488/lh5178Isup2.hkl

e-67-00o79-Isup2.hkl (169.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES