Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):o23–o24. doi: 10.1107/S1600536810049950

4-(Piperidin-1-yl)-4H-benzo[b]tetra­zolo[1,5-d][1,4]diazepin-5(6H)-one

Gary S Nichol a,*, Zhigang Xu b, Christine E Kaiser b, Christopher Hulme b
PMCID: PMC3050344  PMID: 21522729

Abstract

There are two crystallographically unique mol­ecules present in the asymmetric unit of the title compound, C14H16N6O; in both mol­ecules, the seven-membered diazepinone ring adopts a boat-like conformation and the chair conformation piperidine ring is an axial substituent on the diazepinone ring. In the crystal, each mol­ecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between mol­ecule A and symmetry equivalents forms two ring motifs, the first formed by inversion-related N—H⋯O inter­actions and the second formed by C—H⋯O and C—H⋯N inter­actions. The combination of both ring motifs results in the formation of an infinite double tape, which propagates in the a-axis direction. Hydrogen bonding between mol­ecule B and symmetry equivalents forms one ring motif by inversion-related N—H⋯O inter­actions and a second ring motif by C—H⋯O inter­actions, which propagate as a single tape parallel with the c axis.

Related literature

The structure of the title compound was determined as part of a larger study on development of synthetic methods for high-throughput medicinal chemistry. For background to the use of multi-component reactions in high-throughput medicinal chemistry, see: Gunawan et al. (2010); Hulme & Dietrich (2009); Hulme & Gore (2003). For the Ugi reaction, see: Ugi & Steinbrückner (1961). For graph-set notation for hydrogen bonding, see: Bernstein et al. (1995) and puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-00o23-scheme1.jpg

Experimental

Crystal data

  • C14H16N6O

  • M r = 284.33

  • Triclinic, Inline graphic

  • a = 8.8210 (7) Å

  • b = 13.1802 (10) Å

  • c = 13.4476 (11) Å

  • α = 105.549 (2)°

  • β = 99.490 (2)°

  • γ = 106.623 (2)°

  • V = 1392.99 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.39 × 0.28 × 0.09 mm

Data collection

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 1996) T min = 0.965, T max = 0.992

  • 51078 measured reflections

  • 12177 independent reflections

  • 9733 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.123

  • S = 1.05

  • 12177 reflections

  • 507 parameters

  • All H-atom parameters refined

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049950/kj2167sup1.cif

e-67-00o23-sup1.cif (37.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049950/kj2167Isup2.hkl

e-67-00o23-Isup2.hkl (595.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.850 (14) 2.069 (14) 2.9089 (9) 169.4 (13)
N51—H51N⋯O51ii 0.886 (16) 1.929 (16) 2.8116 (10) 173.6 (14)
C6—H6⋯N2iii 0.936 (15) 2.531 (15) 3.4638 (11) 174.8 (12)
C7—H7⋯O1iii 0.947 (15) 2.406 (15) 3.3394 (10) 168.4 (13)
C55—H55⋯N54iv 0.974 (13) 2.548 (13) 3.2293 (11) 127.0 (10)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The diffractometer was purchased with funding from NSF grant CHE-0741837.

supplementary crystallographic information

Comment

At present there is a huge need for unique small molecules in the lead development stages of drug discovery. In this process, speed is paramount, and the development of high speed parallel synthesis in concert with isocyanide based multi-component reactions (MCRs) has enabled a revolution in high-throughput medicinal chemistry (Gunawan et al., (2010); Hulme & Dietrich (2009); Hulme & Gore (2003)). Following this theme, a novel two step solution phase protocol for the synthesis of an array of tricyclic fused tetrazole-benzodiazepines was recently investigated (Figure 1). The methodology employs ortho-N-Boc benzylisonitriles 1 and ethyl glyoxylate 2 in the 4-component TMS-N3 modified Ugi reaction (Ugi & Steinbrückner, 1961) to assemble the desired product 3. Subsequent treatment with trifluoroacetic acid unmasks an internal amino nucleophile and promotes cyclization to form the diazepine ring of the generic structure 4. Here we report the crystal structure of 4.

The asymmetric unit of 4 is shown in Figure 2. There are two crystallographically unique molecules in the asymmetric unit; the molecule composed of atoms O1 to C14 will henceforth be referred to as "molecule A" and the molecule composed of atoms O51 to C64 referred to as "molecule B". Where appropriate, discussion will be limited to molecule A with results for molecule B presented in square brackets. Molecular dimensions are unexceptional.

The molecule adopts a U-shaped conformation in which the 7-membered diazepinone ring has adopted a boat-like conformation (total Q parameter 0.8021 (8)Å [0.8177 (9) Å]; Cremer & Pople (1975)) and the chair conformation piperidinyl ring is an axial substituent on the diazepinone ring. Both molecules have a very similar overall shape as shown by an overlay, fitting N1, N5, C4 > C9 with N51, N55, C54 > C59 (these representing the largest planar moiety in the structure, Figure 3).

In the crystal each molecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between molecule A and symmetry equivalents forms two ring motifs (Bernstein et al., 1995), an R22(8) motif formed by inversion-related N—H···O interactions and an R22(9) motif formed by C—H···O and C—H···N interactions. The combination of both ring motifs results in the formation of an infinite double tape which propagates in the a axis direction (Figure 4). Hydrogen bonding between molecule B and symmetry equivalents forms one ring motif composed of an R22(8) motif formed by inversion-related N—H···O interactions and an R22(10) motif formed by C—H···O interactions (Figure 5). This propagates as a single tape parallel with the c axis.

Experimental

A solution of piperidine (0.017 g, 0.20 mmol) and ethyl glyoxylate (0.04 ml, 50% in toluene, 0.20 mmol) in methanol (0.5 ml) were stirred at room temperature. After 5 minutes, ortho-N-Boc-phenylisonitrile (0.0436 g, 0.20 mmol) and trimethylsilylazide (0.023 g, 0.20 mmol) was added dropwise to the above solution and stirred at room temperature for 23 h. The solvent was evaporated in vacuo and the product was purified using column chromatography (5–30% Hexane/Ethyl Acetate) to afford the desired Ugi product (0.056 g, 0.20 mmol, 65%) as colorless oil. The purified Ugi product was treated with 10% trifluoroacetic acid in dichloroethane (4 ml) and irradiated in a Biotage Initiator™ for 10 minutes at 120°C. The organic layer was washed with 1M NaHCO3 (3 × 5 ml) and dried (MgSO4). The solvent was evaporated in vacuo and purified by column chromatography (0–50% Hexane/Ethyl Acetate) to afford the desired product (0.030 g, 0.116 mmol, 92%) as a white solid.

Refinement

All hydrogen atoms were located in a difference Fourier map and are freely refined.

Figures

Fig. 1.

Fig. 1.

The synthetic route to 4.

Fig. 2.

Fig. 2.

The asymmetric unit of 4 with displacement ellipsoids at the 50% probability level and C-bound H atoms omitted.

Fig. 3.

Fig. 3.

An overlay of molecule A (orange) and molecule B (black), r.m.s. deviation = 0.0185 Å), in 4.

Fig. 4.

Fig. 4.

Hydrogen bonding patterns (dotted blue lines) formed by molecule A in 4. Symmetry operations: a, -x + 1, -y, -z + 1; c, x + 1, y, z.

Fig. 5.

Fig. 5.

Hydrogen bonding patterns (dotted blue lines) formed by molecule B in 4. Symmetry operations: b, -x + 1, -y + 1, -z; d, -x + 1, -y + 1, -z + 1.

Crystal data

C14H16N6O Z = 4
Mr = 284.33 F(000) = 600
Triclinic, P1 Dx = 1.356 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8210 (7) Å Cell parameters from 9970 reflections
b = 13.1802 (10) Å θ = 2.5–35.5°
c = 13.4476 (11) Å µ = 0.09 mm1
α = 105.549 (2)° T = 100 K
β = 99.490 (2)° Prism, colourless
γ = 106.623 (2)° 0.39 × 0.28 × 0.09 mm
V = 1392.99 (19) Å3

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 12177 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics 9733 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 35.0°, θmin = 1.6°
Absorption correction: numerical (SADABS; Sheldrick, 1996) h = −8→14
Tmin = 0.965, Tmax = 0.992 k = −21→21
51078 measured reflections l = −21→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: difference Fourier map
wR(F2) = 0.123 All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.1991P] where P = (Fo2 + 2Fc2)/3
12177 reflections (Δ/σ)max < 0.001
507 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38761 (7) 0.05350 (5) 0.43124 (5) 0.01571 (11)
N1 0.60561 (8) 0.01832 (6) 0.38204 (5) 0.01320 (11)
H1N 0.6179 (16) −0.0054 (11) 0.4346 (11) 0.022 (3)*
N2 0.28444 (8) −0.02275 (6) 0.10021 (5) 0.01491 (11)
N3 0.31273 (9) −0.10081 (6) 0.02234 (5) 0.01668 (12)
N4 0.45718 (9) −0.10612 (6) 0.05193 (5) 0.01538 (12)
N5 0.52683 (8) −0.02989 (5) 0.15250 (5) 0.01189 (10)
N6 0.60485 (8) 0.20364 (5) 0.29571 (5) 0.01251 (11)
C1 0.48112 (9) 0.05928 (6) 0.37255 (6) 0.01170 (11)
C2 0.45700 (9) 0.11124 (6) 0.28435 (6) 0.01159 (11)
H2 0.3595 (15) 0.1330 (10) 0.2855 (10) 0.017 (3)*
C3 0.41921 (9) 0.02050 (6) 0.17984 (6) 0.01156 (11)
C4 0.68763 (9) −0.01103 (6) 0.21140 (6) 0.01208 (12)
C5 0.80602 (10) −0.02132 (7) 0.15637 (7) 0.01617 (13)
H5 0.7760 (17) −0.0426 (12) 0.0765 (11) 0.027 (3)*
C6 0.96362 (10) −0.00308 (7) 0.21295 (7) 0.01873 (14)
H6 1.0457 (18) −0.0093 (12) 0.1781 (12) 0.030 (3)*
C7 1.00262 (10) 0.02641 (7) 0.32418 (7) 0.01900 (14)
H7 1.1107 (19) 0.0416 (12) 0.3635 (12) 0.033 (4)*
C8 0.88362 (9) 0.03591 (7) 0.37831 (7) 0.01614 (13)
H8 0.9081 (16) 0.0536 (11) 0.4581 (11) 0.022 (3)*
C9 0.72383 (9) 0.01681 (6) 0.32280 (6) 0.01220 (12)
C10 0.57954 (10) 0.25511 (7) 0.21242 (6) 0.01617 (13)
H10A 0.5286 (16) 0.1938 (11) 0.1401 (11) 0.023 (3)*
H10B 0.4961 (17) 0.2921 (11) 0.2234 (11) 0.025 (3)*
C11 0.74158 (12) 0.33854 (7) 0.21560 (8) 0.02248 (16)
H11A 0.8144 (18) 0.2980 (13) 0.1966 (12) 0.033 (4)*
H11 0.722 (2) 0.3742 (13) 0.1604 (13) 0.040 (4)*
C12 0.81799 (14) 0.42864 (8) 0.32592 (9) 0.02767 (19)
H12A 0.753 (2) 0.4792 (14) 0.3395 (13) 0.039 (4)*
H12B 0.933 (2) 0.4793 (14) 0.3300 (13) 0.039 (4)*
C13 0.82547 (12) 0.37556 (8) 0.41398 (8) 0.02422 (17)
H13A 0.9033 (18) 0.3335 (12) 0.4088 (12) 0.031 (4)*
H13B 0.8589 (17) 0.4330 (12) 0.4846 (11) 0.027 (3)*
C14 0.65953 (10) 0.28969 (7) 0.40202 (6) 0.01774 (14)
H14A 0.6707 (17) 0.2514 (11) 0.4561 (11) 0.026 (3)*
H14B 0.5794 (18) 0.3278 (12) 0.4109 (11) 0.029 (3)*
O51 0.52486 (10) 0.64389 (6) 0.05346 (5) 0.02384 (13)
N51 0.40757 (10) 0.50343 (6) 0.11293 (6) 0.01766 (13)
H51N 0.4212 (19) 0.4560 (13) 0.0574 (13) 0.036 (4)*
N52 0.67271 (10) 0.77756 (6) 0.37934 (6) 0.02130 (14)
N53 0.72173 (10) 0.73295 (7) 0.45426 (6) 0.02402 (15)
N54 0.62468 (10) 0.63061 (7) 0.43334 (6) 0.02147 (14)
N55 0.50786 (9) 0.60616 (6) 0.34204 (5) 0.01671 (12)
N56 0.26638 (9) 0.67324 (6) 0.22010 (5) 0.01605 (12)
C51 0.45755 (11) 0.61293 (7) 0.11881 (6) 0.01729 (14)
C52 0.43580 (10) 0.69955 (6) 0.21216 (6) 0.01637 (13)
H52 0.4837 (16) 0.7759 (11) 0.2025 (10) 0.020 (3)*
C53 0.53997 (10) 0.69786 (7) 0.31100 (6) 0.01685 (13)
C54 0.38196 (10) 0.49889 (6) 0.29242 (6) 0.01599 (13)
C55 0.31368 (11) 0.44075 (7) 0.35588 (7) 0.01975 (15)
H55 0.3508 (16) 0.4735 (11) 0.4336 (11) 0.022 (3)*
C56 0.19621 (11) 0.33379 (8) 0.30809 (8) 0.02194 (16)
H56 0.1541 (17) 0.2909 (12) 0.3505 (11) 0.027 (3)*
C57 0.14557 (11) 0.28606 (7) 0.19694 (8) 0.02214 (16)
H57 0.0629 (17) 0.2098 (12) 0.1595 (12) 0.029 (3)*
C58 0.21359 (11) 0.34480 (7) 0.13379 (7) 0.01951 (15)
H58 0.1781 (17) 0.3104 (12) 0.0555 (11) 0.027 (3)*
C59 0.33285 (10) 0.45203 (6) 0.18068 (6) 0.01597 (13)
C60 0.14703 (12) 0.64876 (7) 0.11863 (7) 0.02103 (15)
H60 0.1632 (16) 0.7177 (11) 0.1003 (11) 0.023 (3)*
H60B 0.1633 (17) 0.5889 (12) 0.0625 (11) 0.028 (3)*
C61 −0.02563 (12) 0.60567 (8) 0.13221 (8) 0.02450 (17)
H61A −0.1061 (19) 0.5883 (13) 0.0638 (13) 0.038 (4)*
H61B −0.0431 (17) 0.5330 (12) 0.1488 (11) 0.027 (3)*
C62 −0.05395 (13) 0.69164 (9) 0.22197 (9) 0.0310 (2)
H62A −0.059 (2) 0.7574 (15) 0.1989 (14) 0.049 (5)*
H62B −0.164 (2) 0.6604 (14) 0.2299 (13) 0.039 (4)*
C63 0.08227 (13) 0.73000 (9) 0.32478 (8) 0.02806 (19)
H63A 0.075 (2) 0.6703 (14) 0.3558 (13) 0.039 (4)*
H63B 0.0736 (19) 0.7914 (13) 0.3791 (13) 0.038 (4)*
C64 0.25074 (11) 0.76573 (7) 0.30339 (7) 0.02088 (15)
H64A 0.3370 (17) 0.7863 (11) 0.3681 (11) 0.025 (3)*
H64B 0.2700 (17) 0.8337 (12) 0.2788 (11) 0.030 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0141 (2) 0.0241 (3) 0.0131 (2) 0.0092 (2) 0.00717 (19) 0.0080 (2)
N1 0.0118 (2) 0.0199 (3) 0.0118 (2) 0.0077 (2) 0.0050 (2) 0.0080 (2)
N2 0.0124 (3) 0.0189 (3) 0.0118 (3) 0.0044 (2) 0.0018 (2) 0.0046 (2)
N3 0.0167 (3) 0.0181 (3) 0.0123 (3) 0.0043 (2) 0.0021 (2) 0.0034 (2)
N4 0.0179 (3) 0.0152 (3) 0.0108 (2) 0.0049 (2) 0.0028 (2) 0.0023 (2)
N5 0.0120 (2) 0.0138 (2) 0.0102 (2) 0.0050 (2) 0.00305 (19) 0.00371 (19)
N6 0.0132 (3) 0.0130 (2) 0.0109 (2) 0.0040 (2) 0.0037 (2) 0.00355 (19)
C1 0.0102 (3) 0.0149 (3) 0.0102 (3) 0.0048 (2) 0.0032 (2) 0.0038 (2)
C2 0.0109 (3) 0.0146 (3) 0.0103 (3) 0.0054 (2) 0.0035 (2) 0.0042 (2)
C3 0.0108 (3) 0.0142 (3) 0.0107 (3) 0.0047 (2) 0.0035 (2) 0.0050 (2)
C4 0.0105 (3) 0.0147 (3) 0.0127 (3) 0.0056 (2) 0.0041 (2) 0.0053 (2)
C5 0.0159 (3) 0.0203 (3) 0.0176 (3) 0.0096 (3) 0.0090 (3) 0.0084 (3)
C6 0.0142 (3) 0.0241 (4) 0.0242 (4) 0.0101 (3) 0.0104 (3) 0.0109 (3)
C7 0.0113 (3) 0.0238 (4) 0.0247 (4) 0.0079 (3) 0.0053 (3) 0.0099 (3)
C8 0.0114 (3) 0.0208 (3) 0.0168 (3) 0.0065 (2) 0.0026 (2) 0.0070 (3)
C9 0.0103 (3) 0.0150 (3) 0.0134 (3) 0.0055 (2) 0.0044 (2) 0.0059 (2)
C10 0.0185 (3) 0.0160 (3) 0.0159 (3) 0.0063 (3) 0.0051 (3) 0.0076 (2)
C11 0.0251 (4) 0.0194 (3) 0.0221 (4) 0.0027 (3) 0.0097 (3) 0.0090 (3)
C12 0.0297 (5) 0.0174 (3) 0.0284 (4) −0.0010 (3) 0.0088 (4) 0.0050 (3)
C13 0.0205 (4) 0.0219 (4) 0.0203 (4) −0.0014 (3) 0.0043 (3) 0.0015 (3)
C14 0.0177 (3) 0.0176 (3) 0.0132 (3) 0.0027 (3) 0.0049 (3) 0.0010 (2)
O51 0.0383 (4) 0.0196 (3) 0.0197 (3) 0.0109 (3) 0.0165 (3) 0.0097 (2)
N51 0.0272 (3) 0.0141 (3) 0.0140 (3) 0.0077 (2) 0.0090 (3) 0.0054 (2)
N52 0.0236 (3) 0.0198 (3) 0.0173 (3) 0.0063 (3) 0.0042 (3) 0.0032 (2)
N53 0.0253 (4) 0.0247 (3) 0.0186 (3) 0.0083 (3) 0.0019 (3) 0.0044 (3)
N54 0.0247 (4) 0.0246 (3) 0.0143 (3) 0.0102 (3) 0.0018 (3) 0.0056 (2)
N55 0.0202 (3) 0.0180 (3) 0.0126 (3) 0.0074 (2) 0.0042 (2) 0.0055 (2)
N56 0.0200 (3) 0.0147 (3) 0.0128 (3) 0.0066 (2) 0.0037 (2) 0.0033 (2)
C51 0.0245 (4) 0.0157 (3) 0.0137 (3) 0.0078 (3) 0.0070 (3) 0.0059 (2)
C52 0.0221 (3) 0.0142 (3) 0.0135 (3) 0.0063 (3) 0.0059 (3) 0.0049 (2)
C53 0.0206 (3) 0.0162 (3) 0.0143 (3) 0.0070 (3) 0.0060 (3) 0.0044 (2)
C54 0.0192 (3) 0.0163 (3) 0.0150 (3) 0.0075 (3) 0.0059 (3) 0.0068 (2)
C55 0.0243 (4) 0.0234 (4) 0.0189 (3) 0.0120 (3) 0.0102 (3) 0.0119 (3)
C56 0.0226 (4) 0.0242 (4) 0.0269 (4) 0.0099 (3) 0.0119 (3) 0.0159 (3)
C57 0.0207 (4) 0.0194 (3) 0.0278 (4) 0.0057 (3) 0.0071 (3) 0.0111 (3)
C58 0.0222 (4) 0.0165 (3) 0.0190 (3) 0.0057 (3) 0.0042 (3) 0.0065 (3)
C59 0.0202 (3) 0.0158 (3) 0.0150 (3) 0.0078 (3) 0.0065 (3) 0.0071 (2)
C60 0.0260 (4) 0.0214 (4) 0.0149 (3) 0.0088 (3) 0.0022 (3) 0.0060 (3)
C61 0.0238 (4) 0.0219 (4) 0.0229 (4) 0.0070 (3) 0.0005 (3) 0.0041 (3)
C62 0.0237 (4) 0.0301 (5) 0.0333 (5) 0.0114 (4) 0.0046 (4) 0.0010 (4)
C63 0.0242 (4) 0.0281 (4) 0.0259 (4) 0.0074 (3) 0.0098 (3) −0.0006 (3)
C64 0.0229 (4) 0.0161 (3) 0.0193 (4) 0.0058 (3) 0.0058 (3) −0.0001 (3)

Geometric parameters (Å, °)

O1—C1 1.2329 (9) O51—C51 1.2317 (10)
N1—H1N 0.850 (14) N51—H51N 0.886 (16)
N1—C1 1.3578 (9) N51—C51 1.3589 (10)
N1—C9 1.4142 (10) N51—C59 1.4131 (11)
N2—N3 1.3686 (10) N52—N53 1.3663 (11)
N2—C3 1.3229 (9) N52—C53 1.3202 (11)
N3—N4 1.2983 (10) N53—N54 1.2992 (12)
N4—N5 1.3640 (9) N54—N55 1.3615 (10)
N5—C3 1.3499 (9) N55—C53 1.3524 (11)
N5—C4 1.4225 (9) N55—C54 1.4244 (11)
N6—C2 1.4605 (10) N56—C52 1.4632 (11)
N6—C10 1.4752 (10) N56—C60 1.4731 (11)
N6—C14 1.4674 (10) N56—C64 1.4748 (11)
C1—C2 1.5351 (10) C51—C52 1.5338 (11)
C2—H2 0.982 (12) C52—H52 1.026 (13)
C2—C3 1.4944 (10) C52—C53 1.4955 (11)
C4—C5 1.3923 (10) C54—C55 1.3908 (11)
C4—C9 1.4004 (10) C54—C59 1.4005 (11)
C5—H5 1.002 (14) C55—H55 0.974 (13)
C5—C6 1.3897 (11) C55—C56 1.3904 (13)
C6—H6 0.936 (15) C56—H56 0.951 (14)
C6—C7 1.3959 (13) C56—C57 1.3943 (14)
C7—H7 0.947 (15) C57—H57 0.992 (14)
C7—C8 1.3877 (12) C57—C58 1.3912 (13)
C8—H8 1.007 (13) C58—H58 0.983 (14)
C8—C9 1.3988 (10) C58—C59 1.3982 (12)
C10—H10A 1.014 (13) C60—H60 0.982 (13)
C10—H10B 1.001 (14) C60—H60B 0.997 (14)
C10—C11 1.5196 (12) C60—C61 1.5258 (14)
C11—H11A 0.969 (15) C61—H61A 0.991 (16)
C11—H11 0.996 (16) C61—H61B 1.016 (14)
C11—C12 1.5275 (14) C61—C62 1.5269 (14)
C12—H12A 0.996 (16) C62—H62A 1.005 (18)
C12—H12B 1.023 (16) C62—H62B 0.974 (17)
C12—C13 1.5300 (15) C62—C63 1.5300 (16)
C13—H13A 0.998 (15) C63—H63A 0.977 (16)
C13—H13B 0.979 (14) C63—H63B 0.965 (16)
C13—C14 1.5252 (12) C63—C64 1.5252 (14)
C14—H14A 0.998 (14) C64—H64A 0.973 (14)
C14—H14B 0.982 (14) C64—H64B 1.015 (14)
H1N—N1—C1 114.3 (9) H51N—N51—C51 115.8 (10)
H1N—N1—C9 115.7 (9) H51N—N51—C59 114.1 (10)
C1—N1—C9 129.81 (6) C51—N51—C59 130.00 (7)
N3—N2—C3 105.55 (6) N53—N52—C53 105.52 (7)
N2—N3—N4 111.36 (6) N52—N53—N54 111.29 (7)
N3—N4—N5 106.08 (6) N53—N54—N55 106.29 (7)
N4—N5—C3 108.10 (6) N54—N55—C53 107.76 (7)
N4—N5—C4 122.45 (6) N54—N55—C54 122.40 (7)
C3—N5—C4 129.44 (6) C53—N55—C54 129.82 (7)
C2—N6—C10 111.02 (6) C52—N56—C60 113.57 (7)
C2—N6—C14 112.06 (6) C52—N56—C64 110.57 (6)
C10—N6—C14 109.94 (6) C60—N56—C64 109.24 (7)
O1—C1—N1 121.56 (7) O51—C51—N51 121.40 (7)
O1—C1—C2 120.43 (6) O51—C51—C52 119.90 (7)
N1—C1—C2 118.00 (6) N51—C51—C52 118.64 (7)
N6—C2—C1 111.27 (6) N56—C52—C51 113.38 (7)
N6—C2—H2 113.6 (7) N56—C52—H52 113.6 (7)
N6—C2—C3 109.40 (6) N56—C52—C53 108.84 (7)
C1—C2—H2 108.1 (7) C51—C52—H52 105.9 (7)
C1—C2—C3 107.10 (6) C51—C52—C53 105.63 (6)
H2—C2—C3 107.0 (7) H52—C52—C53 109.1 (7)
N2—C3—N5 108.91 (6) N52—C53—N55 109.13 (7)
N2—C3—C2 128.45 (7) N52—C53—C52 128.94 (8)
N5—C3—C2 122.63 (6) N55—C53—C52 121.92 (7)
N5—C4—C5 118.89 (7) N55—C54—C55 119.38 (7)
N5—C4—C9 119.78 (6) N55—C54—C59 119.52 (7)
C5—C4—C9 121.33 (7) C55—C54—C59 121.06 (8)
C4—C5—H5 119.5 (8) C54—C55—H55 120.3 (8)
C4—C5—C6 119.48 (7) C54—C55—C56 119.71 (8)
H5—C5—C6 121.0 (8) H55—C55—C56 119.9 (8)
C5—C6—H6 121.3 (9) C55—C56—H56 120.7 (9)
C5—C6—C7 119.99 (7) C55—C56—C57 119.95 (8)
H6—C6—C7 118.7 (9) H56—C56—C57 119.3 (9)
C6—C7—H7 120.5 (9) C56—C57—H57 122.7 (8)
C6—C7—C8 120.13 (7) C56—C57—C58 120.12 (8)
H7—C7—C8 119.4 (9) H57—C57—C58 117.2 (8)
C7—C8—H8 121.2 (8) C57—C58—H58 119.8 (8)
C7—C8—C9 120.79 (7) C57—C58—C59 120.60 (8)
H8—C8—C9 118.0 (8) H58—C58—C59 119.6 (8)
N1—C9—C4 123.90 (6) N51—C59—C54 123.27 (7)
N1—C9—C8 117.64 (7) N51—C59—C58 117.95 (7)
C4—C9—C8 118.27 (7) C54—C59—C58 118.55 (7)
N6—C10—H10A 109.2 (7) N56—C60—H60 109.4 (8)
N6—C10—H10B 109.5 (8) N56—C60—H60B 108.1 (8)
N6—C10—C11 109.81 (7) N56—C60—C61 108.76 (7)
H10A—C10—H10B 105.0 (11) H60—C60—H60B 111.6 (11)
H10A—C10—C11 111.8 (8) H60—C60—C61 109.8 (8)
H10B—C10—C11 111.4 (8) H60B—C60—C61 109.2 (8)
C10—C11—H11A 108.7 (9) C60—C61—H61A 108.9 (9)
C10—C11—H11 108.8 (9) C60—C61—H61B 109.5 (8)
C10—C11—C12 110.94 (8) C60—C61—C62 111.39 (8)
H11A—C11—H11 107.3 (13) H61A—C61—H61B 107.4 (12)
H11A—C11—C12 111.0 (9) H61A—C61—C62 110.2 (9)
H11—C11—C12 109.9 (9) H61B—C61—C62 109.4 (8)
C11—C12—H12A 110.7 (9) C61—C62—H62A 109.2 (10)
C11—C12—H12B 110.5 (9) C61—C62—H62B 109.1 (9)
C11—C12—C13 110.97 (8) C61—C62—C63 110.61 (8)
H12A—C12—H12B 105.6 (13) H62A—C62—H62B 102.9 (13)
H12A—C12—C13 108.5 (9) H62A—C62—C63 110.7 (10)
H12B—C12—C13 110.4 (9) H62B—C62—C63 114.0 (9)
C12—C13—H13A 110.2 (9) C62—C63—H63A 111.7 (10)
C12—C13—H13B 110.7 (8) C62—C63—H63B 111.2 (9)
C12—C13—C14 111.35 (8) C62—C63—C64 110.88 (9)
H13A—C13—H13B 110.0 (12) H63A—C63—H63B 105.8 (13)
H13A—C13—C14 106.0 (8) H63A—C63—C64 107.8 (9)
H13B—C13—C14 108.4 (8) H63B—C63—C64 109.4 (9)
N6—C14—C13 109.53 (7) N56—C64—C63 110.32 (7)
N6—C14—H14A 107.6 (8) N56—C64—H64A 108.6 (8)
N6—C14—H14B 109.8 (8) N56—C64—H64B 108.5 (8)
C13—C14—H14A 109.5 (8) C63—C64—H64A 110.7 (8)
C13—C14—H14B 109.4 (8) C63—C64—H64B 111.4 (8)
H14A—C14—H14B 111.0 (12) H64A—C64—H64B 107.2 (12)
C3—N2—N3—N4 0.15 (9) C53—N52—N53—N54 0.19 (10)
N2—N3—N4—N5 0.29 (8) N52—N53—N54—N55 0.05 (10)
N3—N4—N5—C3 −0.62 (8) N53—N54—N55—C53 −0.27 (9)
N3—N4—N5—C4 −179.48 (7) N53—N54—N55—C54 177.97 (8)
C9—N1—C1—O1 179.78 (7) C59—N51—C51—O51 178.22 (9)
C9—N1—C1—C2 1.11 (11) C59—N51—C51—C52 0.99 (14)
C10—N6—C2—C1 −178.53 (6) C60—N56—C52—C51 −50.44 (9)
C10—N6—C2—C3 63.32 (7) C60—N56—C52—C53 −167.67 (6)
C14—N6—C2—C1 −55.17 (8) C64—N56—C52—C51 −173.65 (7)
C14—N6—C2—C3 −173.31 (6) C64—N56—C52—C53 69.12 (8)
O1—C1—C2—N6 123.80 (7) O51—C51—C52—N56 126.51 (9)
O1—C1—C2—C3 −116.68 (7) O51—C51—C52—C53 −114.40 (9)
N1—C1—C2—N6 −57.52 (8) N51—C51—C52—N56 −56.22 (10)
N1—C1—C2—C3 62.01 (8) N51—C51—C52—C53 62.87 (10)
N3—N2—C3—N5 −0.53 (8) N53—N52—C53—N55 −0.36 (9)
N3—N2—C3—C2 178.55 (7) N53—N52—C53—C52 −179.19 (8)
N4—N5—C3—N2 0.73 (8) N54—N55—C53—N52 0.40 (9)
N4—N5—C3—C2 −178.43 (6) N54—N55—C53—C52 179.32 (7)
C4—N5—C3—N2 179.49 (7) C54—N55—C53—N52 −177.66 (8)
C4—N5—C3—C2 0.33 (12) C54—N55—C53—C52 1.26 (13)
N6—C2—C3—N2 −121.66 (8) N56—C52—C53—N52 −124.11 (9)
N6—C2—C3—N5 57.31 (9) N56—C52—C53—N55 57.19 (10)
C1—C2—C3—N2 117.62 (8) C51—C52—C53—N52 113.82 (9)
C1—C2—C3—N5 −63.41 (9) C51—C52—C53—N55 −64.87 (10)
N4—N5—C4—C5 33.23 (10) N54—N55—C54—C55 36.85 (11)
N4—N5—C4—C9 −146.46 (7) N54—N55—C54—C59 −140.99 (8)
C3—N5—C4—C5 −145.37 (8) C53—N55—C54—C55 −145.34 (9)
C3—N5—C4—C9 34.94 (11) C53—N55—C54—C59 36.82 (12)
N5—C4—C5—C6 179.98 (7) N55—C54—C55—C56 −177.01 (8)
C9—C4—C5—C6 −0.34 (12) C59—C54—C55—C56 0.80 (13)
C4—C5—C6—C7 −0.64 (12) C54—C55—C56—C57 −0.99 (13)
C5—C6—C7—C8 0.98 (13) C55—C56—C57—C58 0.65 (14)
C6—C7—C8—C9 −0.34 (13) C56—C57—C58—C59 −0.11 (14)
C7—C8—C9—N1 174.59 (7) C57—C58—C59—N51 174.60 (8)
C7—C8—C9—C4 −0.62 (11) C57—C58—C59—C54 −0.09 (13)
N5—C4—C9—N1 5.76 (11) N55—C54—C59—N51 3.16 (12)
N5—C4—C9—C8 −179.36 (7) N55—C54—C59—C58 177.55 (7)
C5—C4—C9—N1 −173.92 (7) C55—C54—C59—N51 −174.65 (8)
C5—C4—C9—C8 0.96 (11) C55—C54—C59—C58 −0.26 (12)
C1—N1—C9—C4 −43.24 (12) C51—N51—C59—C54 −41.97 (13)
C1—N1—C9—C8 141.84 (8) C51—N51—C59—C58 143.61 (9)
C2—N6—C10—C11 −171.45 (6) C52—N56—C60—C61 171.56 (7)
C14—N6—C10—C11 63.98 (8) C64—N56—C60—C61 −64.50 (9)
N6—C10—C11—C12 −57.34 (10) N56—C60—C61—C62 58.95 (10)
C10—C11—C12—C13 50.96 (11) C60—C61—C62—C63 −52.02 (12)
C11—C12—C13—C14 −50.81 (11) C61—C62—C63—C64 50.42 (12)
C2—N6—C14—C13 172.62 (7) C52—N56—C64—C63 −170.26 (8)
C10—N6—C14—C13 −63.41 (9) C60—N56—C64—C63 64.06 (10)
C12—C13—C14—N6 56.84 (10) C62—C63—C64—N56 −56.70 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.850 (14) 2.069 (14) 2.9089 (9) 169.4 (13)
N51—H51N···O51ii 0.886 (16) 1.929 (16) 2.8116 (10) 173.6 (14)
C6—H6···N2iii 0.936 (15) 2.531 (15) 3.4638 (11) 174.8 (12)
C7—H7···O1iii 0.947 (15) 2.406 (15) 3.3394 (10) 168.4 (13)
C55—H55···N54iv 0.974 (13) 2.548 (13) 3.2293 (11) 127.0 (10)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2167).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gunawan, S., Nichol, G. S., Chappeta, S., Dietrich, J. & Hulme, C. (2010). Tetrahedron Lett 51, 4689–4692 [DOI] [PMC free article] [PubMed]
  6. Hulme, C. & Dietrich, J. (2009). Mol. Divers. 13, 195–207. [DOI] [PubMed]
  7. Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–80. [DOI] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Ugi, I. & Steinbrückner, C. (1961). Chem. Ber. 94, 734–742.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049950/kj2167sup1.cif

e-67-00o23-sup1.cif (37.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049950/kj2167Isup2.hkl

e-67-00o23-Isup2.hkl (595.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES