Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o104. doi: 10.1107/S1600536810051305

N-(3,4-Dichloro­phen­yl)-4-methyl­benzene­sulfonamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3050347  PMID: 21522617

Abstract

In the title compound, C13H11Cl2NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of 64.3 (4)°. Furthermore, the conformation of the N—H bond and the meta-chloro group in the adjacent benzene ring are anti to each other. The two benzene rings are tilted relative to each other by 82.5 (1)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O(S) hydrogen bonds, forming inversion dimers.

Related literature

For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009); Shakuntala et al. (2010, 2011); For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-67-0o104-scheme1.jpg

Experimental

Crystal data

  • C13H11Cl2NO2S

  • M r = 316.19

  • Monoclinic, Inline graphic

  • a = 9.543 (1) Å

  • b = 13.628 (2) Å

  • c = 10.893 (1) Å

  • β = 94.85 (1)°

  • V = 1411.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.50 mm−1

  • T = 299 K

  • 0.40 × 0.28 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.217, T max = 0.438

  • 2927 measured reflections

  • 2462 independent reflections

  • 1791 reflections with I > 2σ(I)

  • R int = 0.117

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.086

  • wR(F 2) = 0.236

  • S = 1.03

  • 2462 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810051305/ds2077sup1.cif

e-67-0o104-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051305/ds2077Isup2.hkl

e-67-0o104-Isup2.hkl (121KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (3) 2.10 (3) 2.908 (5) 166 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; Shakuntala et al., 2010; 2011), in the present work, the structure of N-(3,4-dichlorophenyl)-4-methylbenzenesulfonamide (I) has been determined. In (I), the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S═O bonds (Fig. 1). The conformation of the N—H bond and the meta-chloro groups in the adjacent benzene ring are anti to each other.

The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 64.3 (4)°, compared to the values of 65.4 (2)° (molecule 1) and -61.7 (2)° (molecule 2) in N-(2,3-dichlorophenyl)-4- methylbenzenesulfonamide (II) (Shakuntala et al., 2010), 62.1 (2)° in N-(2,5-dichlorophenyl)-4-methylbenzenesulfonamide (III) (Shakuntala et al., 2011) and 69.3 (4)° in N-(3,5-dichlorophenyl)-4-methylbenzenesulfonamide (IV) (Gowda et al., 2009).

The benzene rings in the title compound are tilted relative to each other by 82.5 (1)°, compared to the values of 76.0 (1)° (molecule 1) and 79.9 (1)° (molecule 2) in (II), 67.8 (1)° in (III) and 79.6 (1)° in (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

Experimental

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,4-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant N-(3,4-dichlorophenyl)-4-methylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra.

Prism like light brown single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (3) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C13H11Cl2NO2S F(000) = 648
Mr = 316.19 Dx = 1.488 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 9.543 (1) Å θ = 5.7–18.6°
b = 13.628 (2) Å µ = 5.50 mm1
c = 10.893 (1) Å T = 299 K
β = 94.85 (1)° Prism, light brown
V = 1411.6 (3) Å3 0.40 × 0.28 × 0.18 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1791 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.117
graphite θmax = 66.9°, θmin = 4.7°
ω/2θ scans h = −11→2
Absorption correction: ψ scan (North et al., 1968) k = −16→0
Tmin = 0.217, Tmax = 0.438 l = −13→13
2927 measured reflections 3 standard reflections every 120 min
2462 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1697P)2 + 0.0915P] where P = (Fo2 + 2Fc2)/3
2462 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.38 e Å3
1 restraint Δρmin = −0.97 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8141 (4) 0.4519 (3) 0.0796 (4) 0.0606 (10)
C2 0.7845 (5) 0.3933 (4) −0.0224 (5) 0.0831 (15)
H2 0.7044 0.4049 −0.0751 0.100*
C3 0.8723 (6) 0.3186 (4) −0.0457 (6) 0.0875 (15)
H3 0.8519 0.2801 −0.1154 0.105*
C4 0.9909 (5) 0.2983 (4) 0.0311 (5) 0.0800 (14)
C5 1.0181 (6) 0.3562 (6) 0.1314 (6) 0.103 (2)
H5 1.0970 0.3433 0.1851 0.124*
C6 0.9322 (5) 0.4336 (5) 0.1561 (6) 0.0953 (18)
H6 0.9544 0.4733 0.2245 0.114*
C7 0.5844 (4) 0.4522 (3) 0.2993 (4) 0.0572 (9)
C8 0.6858 (5) 0.4779 (3) 0.3929 (4) 0.0654 (11)
H8 0.7506 0.5271 0.3806 0.079*
C9 0.6891 (5) 0.4292 (3) 0.5048 (4) 0.0640 (10)
C10 0.5946 (5) 0.3574 (4) 0.5250 (4) 0.0684 (11)
C11 0.4920 (5) 0.3339 (4) 0.4311 (5) 0.0769 (13)
H11 0.4256 0.2859 0.4438 0.092*
C12 0.4885 (4) 0.3809 (3) 0.3209 (4) 0.0648 (11)
H12 0.4195 0.3644 0.2589 0.078*
C13 1.0877 (7) 0.2150 (5) 0.0040 (8) 0.118 (3)
H13A 1.1115 0.2196 −0.0796 0.142*
H13B 1.0414 0.1536 0.0158 0.142*
H13C 1.1719 0.2187 0.0587 0.142*
N1 0.5735 (4) 0.4999 (3) 0.1825 (4) 0.0644 (9)
H1N 0.515 (4) 0.467 (3) 0.139 (4) 0.077*
O1 0.7751 (4) 0.6143 (3) 0.1958 (3) 0.0814 (10)
O2 0.6338 (3) 0.5836 (2) −0.0009 (3) 0.0746 (9)
Cl1 0.81491 (16) 0.46318 (12) 0.61972 (13) 0.0981 (6)
Cl2 0.59783 (18) 0.29657 (12) 0.66355 (13) 0.1038 (6)
S1 0.70098 (11) 0.54753 (8) 0.11309 (10) 0.0632 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.051 (2) 0.076 (3) 0.053 (2) −0.0054 (18) −0.0029 (16) 0.0103 (19)
C2 0.075 (3) 0.095 (3) 0.075 (3) 0.018 (3) −0.019 (2) −0.017 (3)
C3 0.090 (3) 0.088 (3) 0.084 (4) 0.013 (3) 0.000 (3) −0.011 (3)
C4 0.069 (3) 0.083 (3) 0.090 (4) 0.009 (2) 0.018 (2) 0.023 (3)
C5 0.069 (3) 0.149 (6) 0.088 (4) 0.034 (3) −0.016 (3) −0.001 (4)
C6 0.063 (3) 0.141 (5) 0.077 (4) 0.017 (3) −0.018 (2) −0.019 (3)
C7 0.054 (2) 0.065 (2) 0.053 (2) 0.0078 (17) 0.0068 (16) −0.0095 (18)
C8 0.062 (2) 0.071 (3) 0.062 (3) −0.0084 (19) −0.0018 (18) −0.002 (2)
C9 0.064 (2) 0.070 (3) 0.057 (2) 0.004 (2) 0.0003 (18) −0.008 (2)
C10 0.078 (3) 0.072 (3) 0.057 (2) −0.003 (2) 0.018 (2) −0.005 (2)
C11 0.072 (3) 0.086 (3) 0.076 (3) −0.016 (2) 0.020 (2) −0.012 (3)
C12 0.055 (2) 0.083 (3) 0.057 (2) −0.004 (2) 0.0075 (17) −0.015 (2)
C13 0.102 (4) 0.108 (5) 0.151 (7) 0.037 (4) 0.043 (4) 0.032 (4)
N1 0.0579 (19) 0.073 (2) 0.061 (2) −0.0018 (16) 0.0008 (15) 0.0013 (18)
O1 0.094 (2) 0.078 (2) 0.072 (2) −0.0218 (17) 0.0003 (17) −0.0074 (17)
O2 0.0768 (19) 0.077 (2) 0.068 (2) 0.0037 (15) −0.0080 (15) 0.0107 (16)
Cl1 0.0977 (10) 0.1188 (12) 0.0725 (9) −0.0217 (8) −0.0235 (7) 0.0056 (7)
Cl2 0.1393 (13) 0.1090 (11) 0.0655 (8) −0.0192 (9) 0.0224 (8) 0.0143 (7)
S1 0.0652 (6) 0.0664 (7) 0.0567 (6) −0.0025 (4) −0.0028 (4) 0.0024 (5)

Geometric parameters (Å, °)

C1—C6 1.366 (6) C8—H8 0.9300
C1—C2 1.378 (7) C9—C10 1.361 (6)
C1—S1 1.751 (5) C9—Cl1 1.723 (4)
C2—C3 1.356 (7) C10—C11 1.392 (7)
C2—H2 0.9300 C10—Cl2 1.720 (5)
C3—C4 1.377 (8) C11—C12 1.359 (7)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.355 (8) C12—H12 0.9300
C4—C13 1.509 (7) C13—H13A 0.9600
C5—C6 1.377 (8) C13—H13B 0.9600
C5—H5 0.9300 C13—H13C 0.9600
C6—H6 0.9300 N1—S1 1.621 (4)
C7—C12 1.368 (6) N1—H1N 0.83 (3)
C7—C8 1.390 (6) O1—S1 1.426 (3)
C7—N1 1.425 (6) O2—S1 1.435 (3)
C8—C9 1.385 (6)
C6—C1—C2 119.3 (5) C8—C9—Cl1 118.2 (4)
C6—C1—S1 120.0 (4) C9—C10—C11 118.7 (4)
C2—C1—S1 120.7 (3) C9—C10—Cl2 121.7 (4)
C3—C2—C1 119.9 (5) C11—C10—Cl2 119.6 (4)
C3—C2—H2 120.1 C12—C11—C10 120.3 (4)
C1—C2—H2 120.1 C12—C11—H11 119.9
C2—C3—C4 121.7 (6) C10—C11—H11 119.9
C2—C3—H3 119.1 C11—C12—C7 121.3 (4)
C4—C3—H3 119.1 C11—C12—H12 119.4
C5—C4—C3 117.7 (5) C7—C12—H12 119.4
C5—C4—C13 121.1 (6) C4—C13—H13A 109.5
C3—C4—C13 121.2 (6) C4—C13—H13B 109.5
C4—C5—C6 121.8 (5) H13A—C13—H13B 109.5
C4—C5—H5 119.1 C4—C13—H13C 109.5
C6—C5—H5 119.1 H13A—C13—H13C 109.5
C1—C6—C5 119.6 (5) H13B—C13—H13C 109.5
C1—C6—H6 120.2 C7—N1—S1 126.8 (3)
C5—C6—H6 120.2 C7—N1—H1N 105 (4)
C12—C7—C8 119.1 (4) S1—N1—H1N 116 (4)
C12—C7—N1 118.5 (4) O1—S1—O2 119.3 (2)
C8—C7—N1 122.3 (4) O1—S1—N1 108.2 (2)
C9—C8—C7 119.2 (4) O2—S1—N1 104.04 (19)
C9—C8—H8 120.4 O1—S1—C1 109.0 (2)
C7—C8—H8 120.4 O2—S1—C1 108.3 (2)
C10—C9—C8 121.4 (4) N1—S1—C1 107.4 (2)
C10—C9—Cl1 120.4 (4)
C6—C1—C2—C3 −0.1 (9) Cl1—C9—C10—Cl2 −1.0 (6)
S1—C1—C2—C3 −179.0 (5) C9—C10—C11—C12 1.2 (7)
C1—C2—C3—C4 0.9 (10) Cl2—C10—C11—C12 −179.7 (4)
C2—C3—C4—C5 −0.4 (9) C10—C11—C12—C7 −0.2 (7)
C2—C3—C4—C13 180.0 (6) C8—C7—C12—C11 −1.1 (6)
C3—C4—C5—C6 −0.8 (9) N1—C7—C12—C11 −179.0 (4)
C13—C4—C5—C6 178.8 (6) C12—C7—N1—S1 −151.4 (3)
C2—C1—C6—C5 −1.1 (9) C8—C7—N1—S1 30.8 (6)
S1—C1—C6—C5 177.8 (5) C7—N1—S1—O1 −53.2 (4)
C4—C5—C6—C1 1.6 (10) C7—N1—S1—O2 178.9 (4)
C12—C7—C8—C9 1.4 (6) C7—N1—S1—C1 64.3 (4)
N1—C7—C8—C9 179.2 (4) C6—C1—S1—O1 19.7 (5)
C7—C8—C9—C10 −0.4 (7) C2—C1—S1—O1 −161.4 (4)
C7—C8—C9—Cl1 −179.4 (3) C6—C1—S1—O2 150.9 (4)
C8—C9—C10—C11 −0.8 (7) C2—C1—S1—O2 −30.2 (5)
Cl1—C9—C10—C11 178.2 (4) C6—C1—S1—N1 −97.4 (5)
C8—C9—C10—Cl2 −180.0 (4) C2—C1—S1—N1 81.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.83 (3) 2.10 (3) 2.908 (5) 166 (5)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2077).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2334. [DOI] [PMC free article] [PubMed]
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  6. Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o40. [DOI] [PMC free article] [PubMed]
  7. Shakuntala, K., Foro, S., Gowda, B. T., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o3062. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810051305/ds2077sup1.cif

e-67-0o104-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051305/ds2077Isup2.hkl

e-67-0o104-Isup2.hkl (121KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES