Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):m112. doi: 10.1107/S160053681005261X

Bis(2-ethyl-1H-imidazol-3-ium) tetra­chloridocuprate(II)

Run-Qiang Zhu a,*
PMCID: PMC3050348  PMID: 21522525

Abstract

In the crystal structure of the title salt, (C5H9N2)2[CuCl4], the organic cations and the tetrahedral [CuCl4] anions are linked into a three-dimensional network by N—H⋯Cl hydrogen bonds. The two 2-ethyl imidazolium cations in the asymmetric unit differ in the orientation of the ethyl group, with N—C—C—C torsion angles of −170.0 (4) and −87.6 (5)°.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).graphic file with name e-67-0m112-scheme1.jpg

Experimental

Crystal data

  • (C5H9N2)2[CuCl4]

  • M r = 399.63

  • Triclinic, Inline graphic

  • a = 7.992 (4) Å

  • b = 9.003 (4) Å

  • c = 12.216 (6) Å

  • α = 79.641 (14)°

  • β = 84.646 (14)°

  • γ = 72.154 (12)°

  • V = 822.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.559, T max = 0.674

  • 9065 measured reflections

  • 3775 independent reflections

  • 3124 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.123

  • S = 1.17

  • 3775 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681005261X/vm2067sup1.cif

e-67-0m112-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005261X/vm2067Isup2.hkl

e-67-0m112-Isup2.hkl (183KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.39 3.217 (3) 160
N2—H2A⋯Cl2 0.86 2.39 3.195 (3) 157
N3—H3A⋯Cl3 0.86 2.46 3.178 (3) 142
N4—H4C⋯Cl4ii 0.86 2.32 3.149 (3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Southeast University.

supplementary crystallographic information

Comment

Dielectric constant measurements of compounds as a function of temperature is the basic method to find the materials which possess potential ferroelectric phase changes (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). The dielectric constant of the title compound has been measured, but showed no dielectric disuniformity in the range 93–365 K (m.p. 374–381 K).

X-ray crystallographic studies have been carried out for the complex 2[C5N2H9] +.CuCl42- at 123 K. An view of the complex is shown in Fig. 1. The structure is consolidated by extensive intermolecular and intramolecular hydrogen bonds between Cl and N. This hydrogen bonding (Table 1, Fig. 2) produces a three-dimensional network. Within the CuCl42- tetrahedra the Cu-Cl distances are: Cu1—Cl1 = 2.2287 (13) Å, Cu1—Cl2 = 2.2625 Å,Cu1—Cl3 = 2.2688 (12) Å, Cu1—Cl4 = 2.2501 (13) Å.

The two 2-ethyl imidazolium cations in the asymmetric unit differ in the orientation of the ethyl group. In one cation all atoms except H atoms are situated in the same plane(dihedral angle N1—C3—C4—C5 = -170.0 (4)°), while in the other cation the dihedral angle N3—C8—C9—C10 is -87.6 (5) °.

Experimental

A mixture of CuCl2 (4.26 g, 25 mmol), hydrochloric acid (50 mmol), and 2-ethyl imidazole (4.8 g, 50 mmol) in water was stirred for several days at room temperature, yellow block crystals were obtained.

Refinement

Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.97Å and N–H = 0.86 Å, and with Uiso(H)=1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, showing the structure along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

(C5H9N2)2[CuCl4] Z = 2
Mr = 399.63 F(000) = 406
Triclinic, P1 Dx = 1.614 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.992 (4) Å Cell parameters from 2088 reflections
b = 9.003 (4) Å θ = 2.4–27.5°
c = 12.216 (6) Å µ = 1.97 mm1
α = 79.641 (14)° T = 293 K
β = 84.646 (14)° Block, yellow
γ = 72.154 (12)° 0.30 × 0.25 × 0.20 mm
V = 822.4 (7) Å3

Data collection

Rigaku SCXmini diffractometer 3775 independent reflections
Radiation source: fine-focus sealed tube 3124 reflections with I > 2σ(I)
graphite Rint = 0.035
CCD_Profile_fitting scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −10→10
Tmin = 0.559, Tmax = 0.674 k = −11→11
9065 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0636P)2] where P = (Fo2 + 2Fc2)/3
S = 1.17 (Δ/σ)max = 0.001
3775 reflections Δρmax = 0.59 e Å3
174 parameters Δρmin = −0.66 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0014 (1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.91120 (5) 0.05748 (5) 0.21071 (3) 0.01639 (14)
C1 0.8790 (5) 0.4965 (4) −0.1245 (3) 0.0203 (7)
H1 0.9490 0.4905 −0.1897 0.024*
C2 0.8332 (5) 0.3759 (4) −0.0584 (3) 0.0192 (7)
H2 0.8657 0.2709 −0.0691 0.023*
C3 0.7099 (4) 0.5947 (4) 0.0167 (3) 0.0183 (7)
C4 0.6042 (5) 0.7072 (4) 0.0911 (3) 0.0250 (8)
H4A 0.5023 0.7782 0.0523 0.030*
H4B 0.6747 0.7704 0.1076 0.030*
C5 0.5432 (5) 0.6239 (5) 0.1994 (3) 0.0285 (9)
H5A 0.4760 0.5588 0.1835 0.043*
H5B 0.4713 0.7010 0.2426 0.043*
H5C 0.6436 0.5591 0.2406 0.043*
C6 0.7322 (5) 0.0989 (4) 0.5488 (3) 0.0223 (8)
H6 0.8545 0.0669 0.5483 0.027*
C7 0.6228 (5) 0.0601 (4) 0.6319 (3) 0.0208 (7)
H7 0.6544 −0.0045 0.6998 0.025*
C8 0.4588 (5) 0.2168 (4) 0.4944 (3) 0.0177 (7)
C9 0.3058 (5) 0.3210 (4) 0.4307 (3) 0.0257 (8)
H9A 0.2071 0.2783 0.4487 0.031*
H9B 0.3347 0.3231 0.3517 0.031*
C10 0.2529 (6) 0.4888 (5) 0.4567 (4) 0.0397 (11)
H10A 0.2191 0.4877 0.5343 0.060*
H10B 0.1557 0.5535 0.4126 0.060*
H10C 0.3507 0.5311 0.4397 0.060*
Cl1 1.16150 (11) 0.01933 (9) 0.10773 (7) 0.01903 (19)
Cl2 0.61789 (11) 0.16204 (10) 0.18983 (7) 0.0194 (2)
Cl3 0.94259 (11) 0.24838 (10) 0.29860 (7) 0.0204 (2)
Cl4 0.91629 (11) −0.19331 (10) 0.27848 (8) 0.0233 (2)
N1 0.8018 (4) 0.6294 (3) −0.0763 (2) 0.0193 (6)
H1A 0.8113 0.7219 −0.1024 0.023*
N2 0.7279 (4) 0.4409 (3) 0.0285 (2) 0.0187 (6)
H2A 0.6811 0.3891 0.0823 0.022*
N3 0.6284 (4) 0.1948 (3) 0.4648 (2) 0.0201 (6)
H3A 0.6673 0.2350 0.4020 0.024*
N4 0.4552 (4) 0.1350 (3) 0.5963 (2) 0.0186 (6)
H4C 0.3608 0.1298 0.6347 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0145 (2) 0.0147 (2) 0.0195 (2) −0.00468 (17) 0.00088 (16) −0.00158 (16)
C1 0.0197 (18) 0.0200 (17) 0.0211 (18) −0.0069 (14) −0.0028 (14) −0.0008 (14)
C2 0.0228 (18) 0.0141 (16) 0.0215 (18) −0.0061 (14) 0.0004 (14) −0.0046 (13)
C3 0.0176 (17) 0.0170 (16) 0.0219 (18) −0.0063 (14) −0.0059 (14) −0.0029 (13)
C4 0.029 (2) 0.0196 (18) 0.027 (2) −0.0036 (16) −0.0039 (16) −0.0077 (15)
C5 0.029 (2) 0.029 (2) 0.025 (2) 0.0003 (17) −0.0018 (16) −0.0111 (16)
C6 0.0176 (17) 0.0208 (18) 0.026 (2) −0.0031 (14) 0.0002 (15) −0.0040 (15)
C7 0.0209 (18) 0.0199 (17) 0.0191 (18) −0.0021 (14) −0.0051 (14) −0.0012 (14)
C8 0.0213 (18) 0.0142 (16) 0.0181 (17) −0.0053 (14) 0.0002 (14) −0.0046 (13)
C9 0.0232 (19) 0.0235 (19) 0.028 (2) 0.0009 (16) −0.0101 (16) −0.0062 (16)
C10 0.042 (3) 0.023 (2) 0.048 (3) 0.0048 (19) −0.020 (2) −0.0072 (19)
Cl1 0.0178 (4) 0.0166 (4) 0.0227 (4) −0.0061 (3) 0.0043 (3) −0.0042 (3)
Cl2 0.0147 (4) 0.0207 (4) 0.0209 (4) −0.0052 (3) −0.0015 (3) 0.0019 (3)
Cl3 0.0213 (4) 0.0221 (4) 0.0206 (4) −0.0103 (3) 0.0030 (3) −0.0061 (3)
Cl4 0.0208 (4) 0.0152 (4) 0.0293 (5) −0.0035 (3) 0.0054 (4) 0.0017 (3)
N1 0.0217 (15) 0.0157 (14) 0.0206 (15) −0.0080 (12) −0.0038 (12) 0.0027 (12)
N2 0.0195 (15) 0.0158 (14) 0.0195 (15) −0.0052 (12) −0.0007 (12) 0.0006 (11)
N3 0.0221 (16) 0.0188 (14) 0.0177 (15) −0.0058 (12) 0.0012 (12) 0.0000 (12)
N4 0.0161 (14) 0.0221 (15) 0.0181 (15) −0.0067 (12) 0.0034 (12) −0.0048 (12)

Geometric parameters (Å, °)

Cu1—Cl1 2.2287 (13) C6—C7 1.346 (5)
Cu1—Cl4 2.2501 (13) C6—N3 1.374 (4)
Cu1—Cl2 2.2625 (14) C6—H6 0.9300
Cu1—Cl3 2.2688 (12) C7—N4 1.374 (4)
C1—C2 1.355 (5) C7—H7 0.9300
C1—N1 1.375 (5) C8—N4 1.330 (4)
C1—H1 0.9300 C8—N3 1.333 (4)
C2—N2 1.391 (4) C8—C9 1.481 (5)
C2—H2 0.9300 C9—C10 1.523 (5)
C3—N2 1.330 (4) C9—H9A 0.9700
C3—N1 1.335 (5) C9—H9B 0.9700
C3—C4 1.493 (5) C10—H10A 0.9600
C4—C5 1.516 (6) C10—H10B 0.9600
C4—H4A 0.9700 C10—H10C 0.9600
C4—H4B 0.9700 N1—H1A 0.8600
C5—H5A 0.9600 N2—H2A 0.8600
C5—H5B 0.9600 N3—H3A 0.8600
C5—H5C 0.9600 N4—H4C 0.8600
Cl1—Cu1—Cl4 101.08 (4) C6—C7—N4 106.2 (3)
Cl1—Cu1—Cl2 139.56 (4) C6—C7—H7 126.9
Cl4—Cu1—Cl2 98.32 (4) N4—C7—H7 126.9
Cl1—Cu1—Cl3 97.91 (4) N4—C8—N3 105.9 (3)
Cl4—Cu1—Cl3 130.13 (5) N4—C8—C9 126.9 (3)
Cl2—Cu1—Cl3 96.09 (4) N3—C8—C9 127.0 (3)
C2—C1—N1 106.7 (3) C8—C9—C10 111.8 (3)
C2—C1—H1 126.7 C8—C9—H9A 109.3
N1—C1—H1 126.7 C10—C9—H9A 109.3
C1—C2—N2 106.1 (3) C8—C9—H9B 109.3
C1—C2—H2 127.0 C10—C9—H9B 109.3
N2—C2—H2 127.0 H9A—C9—H9B 107.9
N2—C3—N1 106.5 (3) C9—C10—H10A 109.5
N2—C3—C4 126.7 (3) C9—C10—H10B 109.5
N1—C3—C4 126.8 (3) H10A—C10—H10B 109.5
C3—C4—C5 112.6 (3) C9—C10—H10C 109.5
C3—C4—H4A 109.1 H10A—C10—H10C 109.5
C5—C4—H4A 109.1 H10B—C10—H10C 109.5
C3—C4—H4B 109.1 C3—N1—C1 110.5 (3)
C5—C4—H4B 109.1 C3—N1—H1A 124.7
H4A—C4—H4B 107.8 C1—N1—H1A 124.7
C4—C5—H5A 109.5 C3—N2—C2 110.3 (3)
C4—C5—H5B 109.5 C3—N2—H2A 124.9
H5A—C5—H5B 109.5 C2—N2—H2A 124.9
C4—C5—H5C 109.5 C8—N3—C6 110.3 (3)
H5A—C5—H5C 109.5 C8—N3—H3A 124.8
H5B—C5—H5C 109.5 C6—N3—H3A 124.8
C7—C6—N3 106.8 (3) C8—N4—C7 110.8 (3)
C7—C6—H6 126.6 C8—N4—H4C 124.6
N3—C6—H6 126.6 C7—N4—H4C 124.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1i 0.86 2.39 3.217 (3) 160
N2—H2A···Cl2 0.86 2.39 3.195 (3) 157
N3—H3A···Cl3 0.86 2.46 3.178 (3) 142
N4—H4C···Cl4ii 0.86 2.32 3.149 (3) 164

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2067).

References

  1. Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. [DOI] [PubMed]
  5. Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. [DOI] [PubMed]
  6. Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681005261X/vm2067sup1.cif

e-67-0m112-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005261X/vm2067Isup2.hkl

e-67-0m112-Isup2.hkl (183KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES