Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):o77. doi: 10.1107/S1600536810050956

Methyl (2Z)-3-[(4-nitro­phen­yl)carbamo­yl]prop-2-enoate

Khurram Shahzad Munawar a, Saqib Ali a, M Nawaz Tahir b,*
PMCID: PMC3050372  PMID: 21522788

Abstract

In the title compound, C11H10N2O5, the amide group is nearly coplanar and the ester group approximately perpendicular to the vinyl C—HC=CH—C group [dihedral angles of 5.0 (2) and 88.89 (5)°, respectively]. This results in a short intra­molecular O =C⋯O=C contact of 2.7201 (17) Å between the amide O atom and the ester carbonyl C atom. The prop-2-enamide fragment and the nitro group make dihedral angles of 20.42 (6) and 13.54 (17)°, respectively, with the benzene ring. An intra­molecular C—H⋯O inter­action between the benzene ring and the amide group generates an S(6) ring motif. Inter­molecular C—H⋯O and N—H⋯O hydrogen bonds complete R 2 2(11) ring motifs and join mol­ecules into [100] chains.

Related literature

For crystal structures of N-substituted maleamic acids, see: Lo & Ng (2009); Wardell et al. (2005). For the synthesis of (4-[(4-nitro­phen­yl)amino]-4-oxobut-2-enoic acid, see: Shahid et al. (2006). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-00o77-scheme1.jpg

Experimental

Crystal data

  • C11H10N2O5

  • M r = 250.21

  • Triclinic, Inline graphic

  • a = 6.8382 (2) Å

  • b = 7.7497 (2) Å

  • c = 11.8277 (5) Å

  • α = 97.805 (2)°

  • β = 92.119 (2)°

  • γ = 114.425 (1)°

  • V = 562.39 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.35 × 0.26 × 0.24 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.897, T max = 0.922

  • 8150 measured reflections

  • 2021 independent reflections

  • 1754 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.08

  • 2021 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050956/gk2328sup1.cif

e-67-00o77-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050956/gk2328Isup2.hkl

e-67-00o77-Isup2.hkl (97.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.11 2.9467 (17) 164
C7—H7⋯O3 0.93 2.33 2.8983 (17) 119
C11—H12⋯O3i 0.93 2.45 3.3020 (19) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

SA and KS Munawar are grateful to the Pakistan Science Foundation for financial support, project No. PSF/R and D/C–QU/CHEM (270).

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) has been crystallized in an attempt to synthesize the vanadium complex of 3-(4-nitrophenylaminocarbonyl)prop-2-enoic acid.

The crystal structure of N-phenylmaleamic acid (II) (Lo & Ng, 2009) and (E)-3-(4-nitrophenylaminocarbonyl)prop-2-enoic acid (III) (Wardell et al., 2005) have been published which are related to (I).

In (I), the methyl formate and prop-2-enamide moieties A (C1/O1/C2/O2) and B (C3/C4/C5/N1/O3) are planar with r. m. s. deviations of 0.012 and 0.019 Å, respectively. The benzene ring C (C6—C11) is planar with r. m. s. deviation of 0.008 Å. The nitro group D (N2/O4/O5) is of course planar. The dihedral angle between A/B, A/C, A/D, B/C, B/D and C/D is 88.78 (4), 86.03 (5), 80.82 (14), 20.42 (6), 12.62 (20) and 13.54 (17)°, respectively. In (I) the value of C═C is 1.318 (2) Å. There exists an intramolecular hydrogen bonding of C—H···O type (Table 1, Fig. 1) completing an S(6) ring motif (Bernstein et al., 1995). There exist intermolecular hydrogen bondings of C—H···O and N—H···O types (Table 1, Fig. 2). Due to these H-bondings R22(11) ring motifs are formed and the molecules are finally stabilized in the form of one dimensional polymeric chains extending along the crystallographic a axis (Fig. 2).

Experimental

3-(4-Nitrophenylaminocarbonyl)prop-2-enoic acid was prepared according to the procedure reported by Shahid et al. (2006). 3-(4-Nitrophenylaminocarbonyl)prop-2-enoic acid (3 mmol) and VCl3 (1 mmol) were refluxed in methanol for 4 h resulting in greenish solution. Light green prisms of the title compound were formed after two days.

Refinement

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.96 Å) and treated as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted line shows intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009) which shows one dimensional polymeric chain of hydrogen-bonded molecules, extending along the a-axis.

Crystal data

C11H10N2O5 Z = 2
Mr = 250.21 F(000) = 260
Triclinic, P1 Dx = 1.478 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8382 (2) Å Cell parameters from 1754 reflections
b = 7.7497 (2) Å θ = 3.2–25.3°
c = 11.8277 (5) Å µ = 0.12 mm1
α = 97.805 (2)° T = 296 K
β = 92.119 (2)° Prism, light green
γ = 114.425 (1)° 0.35 × 0.26 × 0.24 mm
V = 562.39 (3) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 2021 independent reflections
Radiation source: fine-focus sealed tube 1754 reflections with I > 2σ(I)
graphite Rint = 0.020
Detector resolution: 8.10 pixels mm-1 θmax = 25.3°, θmin = 3.2°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −9→9
Tmin = 0.897, Tmax = 0.922 l = −14→14
8150 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.101P] where P = (Fo2 + 2Fc2)/3
2021 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14198 (15) 0.84577 (15) 0.41306 (9) 0.0545 (3)
O2 0.10967 (16) 1.06232 (16) 0.31587 (9) 0.0568 (4)
O3 0.34399 (14) 0.84813 (15) 0.17681 (8) 0.0518 (3)
O4 0.5882 (2) 0.46462 (19) −0.33243 (11) 0.0766 (5)
O5 0.92706 (19) 0.55754 (18) −0.28426 (12) 0.0743 (5)
N1 0.70053 (17) 0.91905 (18) 0.16737 (10) 0.0484 (4)
N2 0.7481 (2) 0.54311 (18) −0.26298 (12) 0.0567 (5)
C1 −0.0900 (3) 0.7351 (3) 0.39699 (17) 0.0670 (6)
C2 0.2191 (2) 1.0025 (2) 0.36544 (11) 0.0433 (4)
C3 0.4580 (2) 1.1052 (2) 0.39010 (12) 0.0467 (4)
C4 0.5981 (2) 1.0757 (2) 0.32569 (12) 0.0467 (4)
C5 0.5316 (2) 0.9364 (2) 0.21728 (12) 0.0422 (4)
C6 0.6983 (2) 0.8127 (2) 0.06154 (12) 0.0429 (4)
C7 0.5276 (2) 0.7463 (2) −0.02453 (12) 0.0461 (5)
C8 0.5423 (2) 0.6543 (2) −0.12949 (12) 0.0476 (4)
C9 0.7270 (2) 0.6289 (2) −0.14903 (13) 0.0466 (4)
C10 0.8956 (2) 0.6898 (2) −0.06399 (14) 0.0542 (5)
C11 0.8810 (2) 0.7806 (2) 0.04099 (14) 0.0537 (5)
H1 0.82501 0.98188 0.20614 0.0581*
H1A −0.15939 0.81926 0.41485 0.1005*
H1B −0.13094 0.64057 0.44679 0.1005*
H1C −0.13336 0.67204 0.31868 0.1005*
H3 0.51277 1.19737 0.45606 0.0560*
H4 0.74467 1.14518 0.34934 0.0560*
H7 0.40353 0.76407 −0.01099 0.0553*
H8 0.42826 0.60944 −0.18708 0.0571*
H11 1.01806 0.66940 −0.07773 0.0651*
H12 0.99377 0.82118 0.09894 0.0644*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0396 (5) 0.0613 (7) 0.0579 (6) 0.0170 (5) 0.0001 (4) 0.0103 (5)
O2 0.0425 (6) 0.0708 (7) 0.0618 (7) 0.0301 (5) −0.0034 (5) 0.0087 (5)
O3 0.0288 (5) 0.0674 (7) 0.0542 (6) 0.0187 (5) −0.0003 (4) 0.0006 (5)
O4 0.0659 (8) 0.0831 (9) 0.0654 (8) 0.0238 (7) 0.0026 (6) −0.0111 (7)
O5 0.0610 (7) 0.0715 (8) 0.0904 (9) 0.0299 (6) 0.0290 (6) 0.0013 (7)
N1 0.0273 (5) 0.0678 (8) 0.0473 (7) 0.0184 (5) −0.0002 (4) 0.0069 (6)
N2 0.0524 (8) 0.0481 (7) 0.0670 (9) 0.0186 (6) 0.0162 (7) 0.0070 (6)
C1 0.0427 (9) 0.0682 (11) 0.0792 (12) 0.0157 (8) 0.0089 (8) 0.0018 (9)
C2 0.0382 (7) 0.0559 (8) 0.0360 (7) 0.0230 (6) 0.0007 (5) −0.0013 (6)
C3 0.0389 (7) 0.0549 (8) 0.0425 (7) 0.0184 (6) −0.0043 (5) 0.0032 (6)
C4 0.0312 (7) 0.0570 (8) 0.0477 (8) 0.0145 (6) −0.0022 (5) 0.0103 (6)
C5 0.0318 (7) 0.0542 (8) 0.0432 (7) 0.0194 (6) 0.0025 (5) 0.0134 (6)
C6 0.0301 (6) 0.0509 (8) 0.0476 (8) 0.0154 (6) 0.0051 (5) 0.0133 (6)
C7 0.0318 (7) 0.0601 (9) 0.0507 (8) 0.0225 (6) 0.0045 (5) 0.0130 (7)
C8 0.0369 (7) 0.0543 (8) 0.0500 (8) 0.0175 (6) 0.0005 (6) 0.0100 (7)
C9 0.0399 (7) 0.0435 (8) 0.0553 (8) 0.0151 (6) 0.0115 (6) 0.0110 (6)
C10 0.0334 (7) 0.0630 (9) 0.0693 (10) 0.0233 (7) 0.0100 (7) 0.0101 (8)
C11 0.0306 (7) 0.0705 (10) 0.0599 (9) 0.0217 (7) 0.0005 (6) 0.0103 (7)

Geometric parameters (Å, °)

O1—C1 1.448 (2) C6—C7 1.392 (2)
O1—C2 1.3224 (18) C7—C8 1.374 (2)
O2—C2 1.2029 (19) C8—C9 1.379 (2)
O3—C5 1.2177 (18) C9—C10 1.378 (2)
O4—N2 1.220 (2) C10—C11 1.370 (2)
O5—N2 1.221 (2) C1—H1A 0.9600
N1—C5 1.363 (2) C1—H1B 0.9600
N1—C6 1.3980 (18) C1—H1C 0.9600
N2—C9 1.459 (2) C3—H3 0.9300
N1—H1 0.8600 C4—H4 0.9300
C2—C3 1.488 (2) C7—H7 0.9300
C3—C4 1.318 (2) C8—H8 0.9300
C4—C5 1.480 (2) C10—H11 0.9300
C6—C11 1.395 (2) C11—H12 0.9300
O1···O3 3.1615 (14) C1···C2ix 3.595 (2)
O1···O5i 3.1218 (17) C2···O3 2.7201 (17)
O1···C3ii 3.3877 (18) C2···C1ix 3.595 (2)
O1···C4ii 3.3565 (18) C3···O1ii 3.3877 (18)
O2···C9iii 3.1785 (18) C3···C3ii 3.400 (2)
O2···O3 3.1114 (16) C4···O1ii 3.3565 (18)
O2···N1iv 2.9467 (17) C5···O4i 3.363 (2)
O2···N2iii 2.9652 (17) C6···C8i 3.523 (2)
O2···O5iii 3.1282 (18) C7···O3 2.8983 (17)
O3···O1 3.1615 (14) C8···C6i 3.523 (2)
O3···C11iv 3.3020 (19) C9···O2iii 3.1785 (18)
O3···C7 2.8983 (17) C11···C11vii 3.404 (2)
O3···O2 3.1114 (16) C11···O3viii 3.3020 (19)
O3···C2 2.7201 (17) C2···H1Aix 2.9000
O3···N2i 3.1522 (17) C5···H7 2.7800
O4···C5i 3.363 (2) H1···O2viii 2.1100
O4···C1v 3.116 (3) H1···H4 2.2000
O5···O1i 3.1218 (17) H1···H12 2.3100
O5···O2iii 3.1282 (18) H1A···O2 2.4900
O5···C1i 3.089 (3) H1A···O4v 2.8700
O1···H4ii 2.8700 H1A···C2ix 2.9000
O2···H1C 2.7900 H1C···O2 2.7900
O2···H1A 2.4900 H1C···O4v 2.8600
O2···H12iv 2.8300 H1C···O5i 2.6900
O2···H1iv 2.1100 H1C···H8v 2.5400
O2···H4iv 2.8500 H3···O4x 2.9000
O3···H12iv 2.4500 H4···O2viii 2.8500
O3···H7 2.3300 H4···H1 2.2000
O4···H1Av 2.8700 H4···O1ii 2.8700
O4···H1Cv 2.8600 H4···O5vii 2.7000
O4···H3vi 2.9000 H7···O3 2.3300
O4···H8 2.4600 H7···C5 2.7800
O5···H11 2.4400 H7···H11iv 2.4900
O5···H1Ci 2.6900 H8···O4 2.4600
O5···H4vii 2.7000 H8···H1Cv 2.5400
N1···O2viii 2.9467 (17) H11···O5 2.4400
N2···O2iii 2.9652 (17) H11···H7viii 2.4900
N2···O3i 3.1522 (17) H12···O2viii 2.8300
C1···O4v 3.116 (3) H12···O3viii 2.4500
C1···O5i 3.089 (3) H12···H1 2.3100
C1—O1—C2 116.39 (13) C8—C9—C10 121.14 (14)
C5—N1—C6 128.61 (13) C9—C10—C11 119.34 (14)
O4—N2—O5 123.51 (15) C6—C11—C10 120.46 (14)
O4—N2—C9 118.66 (14) O1—C1—H1A 109.00
O5—N2—C9 117.81 (14) O1—C1—H1B 109.00
C5—N1—H1 116.00 O1—C1—H1C 109.00
C6—N1—H1 116.00 H1A—C1—H1B 109.00
O2—C2—C3 124.08 (13) H1A—C1—H1C 109.00
O1—C2—O2 124.52 (14) H1B—C1—H1C 109.00
O1—C2—C3 111.18 (12) C2—C3—H3 117.00
C2—C3—C4 125.07 (13) C4—C3—H3 117.00
C3—C4—C5 122.68 (14) C3—C4—H4 119.00
O3—C5—C4 122.79 (13) C5—C4—H4 119.00
N1—C5—C4 113.42 (13) C6—C7—H7 120.00
O3—C5—N1 123.79 (13) C8—C7—H7 120.00
C7—C6—C11 119.37 (13) C7—C8—H8 120.00
N1—C6—C7 122.98 (14) C9—C8—H8 120.00
N1—C6—C11 117.58 (13) C9—C10—H11 120.00
C6—C7—C8 119.98 (14) C11—C10—H11 120.00
C7—C8—C9 119.67 (14) C6—C11—H12 120.00
N2—C9—C10 119.33 (14) C10—C11—H12 120.00
N2—C9—C8 119.49 (13)
C1—O1—C2—O2 4.0 (2) C3—C4—C5—O3 4.5 (2)
C1—O1—C2—C3 178.82 (13) C3—C4—C5—N1 −176.21 (14)
C5—N1—C6—C7 17.9 (2) N1—C6—C7—C8 175.40 (14)
C5—N1—C6—C11 −165.10 (14) C11—C6—C7—C8 −1.6 (2)
C6—N1—C5—O3 4.5 (2) N1—C6—C11—C10 −175.18 (13)
C6—N1—C5—C4 −174.85 (13) C7—C6—C11—C10 2.0 (2)
O5—N2—C9—C10 −12.0 (2) C6—C7—C8—C9 −0.2 (2)
O5—N2—C9—C8 165.51 (14) C7—C8—C9—N2 −175.78 (13)
O4—N2—C9—C10 169.43 (14) C7—C8—C9—C10 1.7 (2)
O4—N2—C9—C8 −13.0 (2) N2—C9—C10—C11 176.17 (13)
O1—C2—C3—C4 90.27 (17) C8—C9—C10—C11 −1.3 (2)
O2—C2—C3—C4 −94.83 (19) C9—C10—C11—C6 −0.5 (2)
C2—C3—C4—C5 1.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+2, −z; (iv) x−1, y, z; (v) −x, −y+1, −z; (vi) x, y−1, z−1; (vii) −x+2, −y+2, −z; (viii) x+1, y, z; (ix) −x, −y+2, −z+1; (x) x, y+1, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2viii 0.86 2.11 2.9467 (17) 164
C7—H7···O3 0.93 2.33 2.8983 (17) 119
C11—H12···O3viii 0.93 2.45 3.3020 (19) 152

Symmetry codes: (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2328).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [DOI] [PMC free article] [PubMed]
  7. Shahid, K., Shahzadi, S., Ali, S. & Mazhar, M. (2006). Bull. Korean Chem. Soc. 27, 44–52.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3849–o3851.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050956/gk2328sup1.cif

e-67-00o77-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050956/gk2328Isup2.hkl

e-67-00o77-Isup2.hkl (97.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES