Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 18;67(Pt 1):o181–o182. doi: 10.1107/S1600536810050142

The absolute structure of ptilosarcenone 2.5-hydrate, a diterpenoid briarane from the orange sea pen Ptilosarcus gurneyi (Gray)

Daniel J Nurco a,*, Douglas E Conklin a, Nathan S Shapiro a, Elaine Tran a
PMCID: PMC3050379  PMID: 21522687

Abstract

In the title compound, C24H29ClO8·2.5H2O, which contains two organic mol­ecules (A and B) and five heavily disordered water mol­ecules in the asymmetric unit, the γ-lactone ring and the cyclo­hexenone ring are both trans-fused to the central cyclo­decene ring. The cyclehexenone ring features an α,β-unsaturated ketone with torsion angles between the conjugated carbonyl and alkene bonds of 0.6 (3) and 7.4 (4)° for mol­ecules A and B, respectively. The ptilosarcenone torsion angles between conjugated alkene bonds are 56.2 (5) and 55.4 (6)° for A and B, respectively. In the crystal, the components are linked by O—H⋯O hydrogen bonds. The absolute configuration of ptilosarcenone was determined unambiguously and exhibits similar absolute stereochemistry to that found in the crystal structures of other octocoralline briaranes.

Related literature

In the 1970’s, two diterpenoid briaranes, ptilosarcone and ptilosarcenone, were purified from Ptilosarcus gurneyi (Wekell 1974; Wratten et al. 1977; Wekell 1978) and other octocorals have yielded similar compounds (Sung et al. 2002). In the presence of water or alcohol, ptilosarcone eliminates butyric acid, forming ptilosarcenone. Ptilosarcenone has also been found in extracts of Tochuina tetraquetra, a Tritoniid nudibranch that preys upon Ptilosarcus gurneyi (Williams & Andersen, 1987). For the structure of ptilosarcenone determined from a mostly complete room-temperature dataset, see: Hendrickson (1990); Hendrickson & Cardellina (1986). Sea pens of the species Ptilosarcus gurneyi were collected near Juneau, Alaska (Smith, 2006) at depths of 5 to 10 m. For extraction and purification methods used, see: Wekell (1974). For related structures, see: Burks et al. (1977); Coval et al. (1988); Gonzalez et al. (2002); Grode et al. (1983); Hamann et al. (1996); van der Helm et al. (1986). For scientific background, see: Nurco (2008). graphic file with name e-67-0o181-scheme1.jpg

Experimental

Crystal data

  • 2C24H29ClO8·5H2O

  • M r = 525.98

  • Orthorhombic, Inline graphic

  • a = 9.8505 (4) Å

  • b = 13.5256 (6) Å

  • c = 39.3169 (17) Å

  • V = 5238.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 95 K

  • 0.60 × 0.32 × 0.14 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.888, T max = 0.972

  • 75112 measured reflections

  • 13416 independent reflections

  • 12944 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.172

  • S = 1.22

  • 13416 reflections

  • 673 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.60 e Å−3

  • Absolute structure: Flack (1983), 5967 Friedel pairs

  • Flack parameter: 0.07 (7)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050142/hb5711sup1.cif

e-67-0o181-sup1.cif (40.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050142/hb5711Isup2.hkl

e-67-0o181-Isup2.hkl (655.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O13 0.83 (2) 2.02 (3) 2.784 (4) 154 (6)
O14—H14B⋯O8i 0.85 (2) 2.13 (3) 2.932 (4) 156 (6)
O17—H17A⋯O3ii 0.81 (4) 2.04 (5) 2.834 (4) 167 (8)
O17—H17B⋯O16iii 0.80 (4) 2.31 (5) 3.082 (5) 161 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank Annette G. E. Smith for collecting Ptilosarcus gurneyi sea pens using SCUBA techniques near Juneau, Alaska, and the Alaska Department of Fish and Game for providing a Scientific Collecting Permit allowing the collection. This work was supported in part by a UC Davis Jastro–Shields Grant.

supplementary crystallographic information

Comment

In subtidal waters along the west coast of North America lives the orange sea pen Ptilosarcus gurneyi (Gray). Sea pens are soft-bodied octocorals, cnidarians with 8-tentacled polyps, in the order pennatulacea. Like many acidacians, a single sea pen can be made up of thousands of specialized individuals each providing a specific function. They are also colonial organisms, measuring up to 1 meter in height and tending to live in large groups containing sometimes thousands of individual sea pens. The habit of a sea pen is to anchor into soft substrate of the ocean's bottom by its basal polyp. In the 1970's, two diterpenoid briaranes were purified from Ptilosarcus gurneyi, ptilosarcone and ptilosarcenone (Wekell 1974; Wratten et al. 1977; Wekell 1978). Other octocorals have yielded similar compounds (Sung et al. 2002). In the presence of water or alcohol ptilosarcone eliminates butyric acid, forming ptilosarcenone. Ptilosarcenone has also been found in extracts of Tochuina tetraquetra, a Tritoniid nudibranch that preys upon Ptilosarcus gurneyi (Williams & Andersen 1987). A crystal structure of ptilosarcenone from a room temperature dataset, mostly but not entirely complete, was reported in a dissertation (Hendrickson 1990) and referenced as unpublished data (Hendrickson & Cardellina 1986) but has not appeared in the peer-reviewed literature or the Cambridge Structural Database. Herein, we report a new crystallographic investigation of ptilosarcenone conducted with a low temperature dataset and featuring more favorable calculated results than the previous structure.

The structure (Figure 1) has two ptilosarcenone molecules and five disordered water molecules in the asymmetric unit. The γ-lactone and cyclohexenone rings are both trans-fused to the central cyclodecene ring. The cyclehexenone ring featured an α,β-unsaturated ketone with torsion angles between the conjugated carbonyl and alkene bonds of 0.6 (3)° and 7.4 (4)° for C11=C12—C13=O1 and C35=C36—C37=O9 in 1a and 1 b, respectively. The absolute configuration of ptilosarcenone was unambiguously determined with a Flack parameter of 0.06 (7) and revealed the following stereochemical assignments for 1a: C1(S), C2(S), cis-C3=C4, C6(S), C7(R), C8(R), C9(S), C10(S), cis-C11=C12, C14(R), C21(R), and 1 b: C25(S), C26(S), cis-C27=C28, C30(S), C31(R), C32(R), C33(S), C34(S), cis-C35=C36, C38(R), C45(R). The characterization of ptilosarcenone revealed similar absolute stereochemistry as found in structures of similar briaranes. Specifically, the absolute configuration at C6 (bearing a chlorine) and C8 (bearing a hydroxyl) was the same for ptilosarcenone as for briarein A (Burks, et al., 1977), briantheins V (Coval, et al., 1988), X (van der Helm et al., 1986), and Y (Grode, et al., 1983), 11-hydroxybrainthein (Gonzalez, et al., 2002), and juncin E (Hamann, et al., 1996). The ptilosarcenone C3=C4—C5=C19 and C27=C28—C29=C43 torsion angles between conjugated alkene bonds were 56.2 (5)° and 55.4 (6)° for 1a and 1 b. These values are similar to the analogous torsion angles found in the above mentioned compounds which were 69.0°, 57.0°, 57.3°, 48.7°, 48.5°, and 70.3° respectively, as ordered above.

Experimental

Sea pens of the species Ptilosarcus gurneyi were collected near Juneau, Alaska (Smith, 2006) at depths of 5 to 10 meters using SCUBA techniques. Ptilosarcenone was purified from them via published procedures (Wekell, 1974). Crystals of ptilosarcenone were grown in a one half-dram vial from a binary solvent system using ethanol as the good solvent and water as the poor solvent.

Refinement

Hydrogen atoms bonded to C atoms were generated by their idealized geometry and refined with a riding model, with C—H distances in the range 0.95 - 1.00 Å, and Uiso equal to 1.2Ueq or 1.5Ueq (methyl) of the bonded atom. Hydroxyl H6b and H14b were found on a difference map and refined with a restrained bond length of 0.84 (2) Å. H17a and H17b, bound to water molecule O17, were found in a difference map and refined with a restrained bond length of 0.84 (5) Å. The remaining water oxygen sites were severely disordered, and hydrogen atoms for these O atoms could not be located. For water oxygen atoms O18 through O28, isotropic thermal parameters were fixed at 0.036Å2, and their occupancies were restrained to sum to equal four water molecules.

Figures

Fig. 1.

Fig. 1.

The molecular structure of both organic molecules in the asymmetric unit (1a and 1 b) drawn with 35% probability thermal ellipsoids.

Crystal data

2C24H29ClO8·5H2O F(000) = 2272
Mr = 525.98 Dx = 1.334 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9574 reflections
a = 9.8505 (4) Å θ = 2.3–28.6°
b = 13.5256 (6) Å µ = 0.20 mm1
c = 39.3169 (17) Å T = 95 K
V = 5238.3 (4) Å3 Block, colorless
Z = 8 0.60 × 0.32 × 0.14 mm

Data collection

Bruker SMART APEXII diffractometer 13416 independent reflections
Radiation source: fine-focus sealed tube 12944 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 8.3 pixels mm-1 θmax = 28.6°, θmin = 2.1°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −18→18
Tmin = 0.888, Tmax = 0.972 l = −52→52
75112 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0339P)2 + 10.7413P] where P = (Fo2 + 2Fc2)/3
S = 1.22 (Δ/σ)max = 0.025
13416 reflections Δρmax = 0.92 e Å3
673 parameters Δρmin = −0.60 e Å3
12 restraints Absolute structure: Flack (1983), 5967 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.07 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.84698 (9) 0.41736 (6) 0.22882 (2) 0.02499 (18)
O1 0.2378 (2) 0.2518 (2) 0.23298 (7) 0.0259 (6)
O2 0.6477 (3) −0.01535 (19) 0.30844 (6) 0.0218 (5)
O3 0.7263 (2) 0.0733 (2) 0.35230 (6) 0.0242 (5)
O4 0.9534 (2) 0.28556 (19) 0.17337 (7) 0.0218 (5)
O5 0.9390 (3) 0.3028 (2) 0.11727 (8) 0.0341 (7)
O6 0.6462 (2) 0.28814 (18) 0.18938 (6) 0.0188 (5)
H6B 0.681 (6) 0.328 (4) 0.1761 (12) 0.054 (18)*
O7 0.7689 (2) 0.04304 (17) 0.20640 (6) 0.0154 (4)
O8 0.7265 (2) −0.05124 (18) 0.16024 (6) 0.0194 (5)
C1 0.5560 (3) 0.0517 (2) 0.25706 (8) 0.0153 (6)
C2 0.6687 (3) 0.0667 (2) 0.28492 (8) 0.0148 (6)
H2 0.6514 0.1303 0.2971 0.018*
C3 0.8169 (3) 0.0621 (2) 0.27476 (8) 0.0170 (6)
H3 0.8563 −0.0019 0.2734 0.020*
C4 0.8978 (3) 0.1380 (3) 0.26757 (8) 0.0190 (6)
H4 0.9905 0.1230 0.2634 0.023*
C5 0.8581 (3) 0.2438 (3) 0.26543 (9) 0.0196 (6)
C6 0.9057 (3) 0.2917 (2) 0.23263 (9) 0.0188 (6)
H6 1.0065 0.2969 0.2349 0.023*
C7 0.8828 (3) 0.2328 (3) 0.20048 (9) 0.0178 (6)
H7 0.9304 0.1682 0.2035 0.021*
C8 0.7391 (3) 0.2092 (3) 0.18507 (8) 0.0174 (6)
C9 0.6660 (3) 0.1143 (2) 0.19838 (8) 0.0153 (6)
H9 0.6115 0.0869 0.1791 0.018*
C10 0.5665 (3) 0.1325 (2) 0.22855 (8) 0.0148 (6)
H10 0.5982 0.1943 0.2400 0.018*
C11 0.4281 (3) 0.0707 (3) 0.27753 (9) 0.0181 (6)
H11 0.4159 0.0309 0.2972 0.022*
C12 0.3306 (3) 0.1369 (3) 0.27114 (9) 0.0214 (7)
H12 0.2632 0.1489 0.2879 0.026*
C13 0.3246 (3) 0.1909 (3) 0.23924 (9) 0.0189 (6)
C14 0.4254 (3) 0.1575 (3) 0.21242 (9) 0.0167 (6)
H14 0.4390 0.2137 0.1962 0.020*
C15 0.3532 (4) 0.0736 (3) 0.19285 (9) 0.0224 (7)
H15A 0.3306 0.0200 0.2086 0.034*
H15B 0.4134 0.0484 0.1750 0.034*
H15C 0.2698 0.0992 0.1825 0.034*
C16 0.5534 (4) −0.0566 (2) 0.24422 (9) 0.0182 (6)
H16A 0.4945 −0.0962 0.2590 0.027*
H16B 0.6456 −0.0838 0.2447 0.027*
H16C 0.5186 −0.0583 0.2209 0.027*
C17 0.6850 (3) −0.0030 (3) 0.34076 (10) 0.0207 (7)
C18 0.6728 (4) −0.0981 (3) 0.36027 (11) 0.0319 (9)
H18A 0.7601 −0.1328 0.3599 0.048*
H18B 0.6031 −0.1398 0.3498 0.048*
H18C 0.6473 −0.0837 0.3838 0.048*
C19 0.7988 (4) 0.2904 (3) 0.29077 (10) 0.0257 (7)
H19A 0.7800 0.2563 0.3114 0.031*
H19B 0.7749 0.3581 0.2885 0.031*
C20 0.8961 (4) 0.2672 (3) 0.14283 (10) 0.0248 (7)
C21 0.7802 (4) 0.1953 (3) 0.14754 (9) 0.0213 (7)
H21 0.8185 0.1272 0.1453 0.026*
C22 0.6684 (4) 0.2056 (3) 0.12117 (10) 0.0320 (9)
H22A 0.6250 0.2705 0.1235 0.048*
H22B 0.6006 0.1535 0.1246 0.048*
H22C 0.7073 0.1995 0.0983 0.048*
C23 0.7878 (3) −0.0371 (2) 0.18644 (8) 0.0155 (6)
C24 0.8908 (4) −0.1036 (3) 0.20204 (9) 0.0206 (7)
H24A 0.8474 −0.1448 0.2194 0.031*
H24B 0.9626 −0.0638 0.2126 0.031*
H24C 0.9303 −0.1460 0.1844 0.031*
Cl2 0.49246 (8) 0.78146 (7) 0.15901 (2) 0.02348 (17)
O9 1.0339 (3) 1.0208 (2) 0.14272 (8) 0.0340 (7)
O10 0.7227 (3) 0.9878 (2) 0.00946 (7) 0.0313 (6)
O11 0.5472 (6) 1.0767 (4) 0.02727 (13) 0.090 (2)
O12 0.5834 (2) 0.58739 (19) 0.12846 (6) 0.0208 (5)
O13 0.6885 (3) 0.4573 (2) 0.15048 (7) 0.0269 (6)
O14 0.7957 (2) 0.74182 (19) 0.14636 (6) 0.0197 (5)
H14B 0.760 (6) 0.799 (2) 0.1455 (15) 0.053 (17)*
O15 0.8084 (3) 0.6944 (2) 0.05473 (6) 0.0214 (5)
O16 1.0020 (3) 0.6098 (2) 0.04541 (7) 0.0297 (6)
C25 0.8689 (4) 0.9096 (3) 0.05107 (9) 0.0252 (8)
C26 0.7180 (4) 0.9317 (3) 0.04118 (10) 0.0266 (8)
H26 0.6763 0.9739 0.0593 0.032*
C27 0.6255 (4) 0.8453 (3) 0.03428 (9) 0.0266 (8)
H27 0.6335 0.8141 0.0127 0.032*
C28 0.5334 (4) 0.8088 (3) 0.05569 (9) 0.0226 (7)
H28 0.4756 0.7584 0.0471 0.027*
C29 0.5119 (3) 0.8387 (3) 0.09151 (9) 0.0220 (7)
C30 0.5067 (3) 0.7486 (3) 0.11485 (8) 0.0199 (6)
H30 0.4201 0.7139 0.1091 0.024*
C31 0.6193 (3) 0.6732 (3) 0.10824 (9) 0.0180 (6)
H31 0.6116 0.6531 0.0838 0.022*
C32 0.7731 (3) 0.6916 (3) 0.11541 (8) 0.0171 (6)
C33 0.8587 (3) 0.7372 (3) 0.08619 (8) 0.0180 (6)
H33 0.9532 0.7117 0.0892 0.022*
C34 0.8698 (4) 0.8522 (3) 0.08562 (9) 0.0213 (7)
H34 0.7894 0.8770 0.0986 0.026*
C35 0.9248 (5) 1.0126 (3) 0.05641 (11) 0.0339 (9)
H35 0.9248 1.0552 0.0372 0.041*
C36 0.9743 (5) 1.0501 (3) 0.08541 (12) 0.0359 (10)
H36 0.9922 1.1190 0.0868 0.043*
C37 1.0015 (4) 0.9876 (3) 0.11488 (10) 0.0284 (8)
C38 0.9963 (4) 0.8783 (3) 0.10774 (10) 0.0254 (7)
H38 0.9862 0.8435 0.1300 0.030*
C39 1.1368 (4) 0.8495 (4) 0.09277 (12) 0.0378 (11)
H39A 1.1532 0.8872 0.0719 0.057*
H39B 1.1377 0.7786 0.0876 0.057*
H39C 1.2080 0.8644 0.1094 0.057*
C40 0.9443 (4) 0.8610 (3) 0.02121 (10) 0.0287 (8)
H40A 0.9730 0.9120 0.0050 0.043*
H40B 0.8837 0.8141 0.0098 0.043*
H40C 1.0243 0.8258 0.0298 0.043*
C41 0.6288 (7) 1.0587 (3) 0.00541 (14) 0.0492 (13)
C42 0.6379 (7) 1.1094 (4) −0.02794 (15) 0.0553 (15)
H42A 0.5550 1.0968 −0.0410 0.083*
H42B 0.7166 1.0842 −0.0405 0.083*
H42C 0.6482 1.1807 −0.0243 0.083*
C43 0.4881 (4) 0.9301 (3) 0.10167 (10) 0.0259 (7)
H43A 0.4837 0.9822 0.0855 0.031*
H43B 0.4753 0.9438 0.1252 0.031*
C44 0.6951 (4) 0.5343 (3) 0.13546 (9) 0.0210 (7)
C45 0.8187 (3) 0.5830 (3) 0.12108 (9) 0.0228 (7)
H45 0.8369 0.5530 0.0983 0.027*
C46 0.9462 (4) 0.5708 (3) 0.14259 (12) 0.0341 (9)
H46A 0.9335 0.6040 0.1645 0.051*
H46B 1.0238 0.6002 0.1307 0.051*
H46C 0.9634 0.5003 0.1464 0.051*
C47 0.8881 (4) 0.6288 (3) 0.03764 (9) 0.0254 (8)
C48 0.8111 (5) 0.5895 (4) 0.00796 (10) 0.0362 (10)
H48A 0.7896 0.6437 −0.0077 0.054*
H48B 0.7267 0.5588 0.0159 0.054*
H48C 0.8663 0.5400 −0.0039 0.054*
O17 0.2889 (4) 0.5904 (3) 0.07596 (8) 0.0351 (7)
H17A 0.272 (8) 0.582 (6) 0.0959 (12) 0.08 (2)*
H17B 0.224 (6) 0.592 (6) 0.0639 (16) 0.07 (2)*
O18 0.5303 (4) 1.4924 (3) 0.05414 (11) 0.036* 0.753 (6)
O19 0.7874 (6) 1.4018 (4) 0.06457 (14) 0.036* 0.579 (7)
O20 0.4923 (8) 1.3333 (6) 0.00801 (19) 0.036* 0.419 (7)
O21 0.8447 (8) 1.2950 (6) −0.03643 (19) 0.036* 0.413 (7)
O22 0.7887 (10) 1.3320 (7) −0.0972 (3) 0.036* 0.327 (7)
O23 0.7397 (12) 1.2492 (9) 0.0247 (3) 0.036* 0.278 (7)
O24 0.7695 (11) 1.3529 (8) −0.0514 (3) 0.036* 0.300 (6)
O25 0.5313 (13) 1.4108 (10) 0.0508 (3) 0.036* 0.247 (6)
O26 0.8040 (12) 1.3150 (8) −0.0017 (3) 0.036* 0.287 (6)
O27 0.7929 (17) 1.3123 (12) −0.0754 (4) 0.036* 0.196 (8)
O28 0.6751 (16) 1.3628 (12) 0.0420 (4) 0.036* 0.201 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0206 (4) 0.0162 (4) 0.0381 (5) −0.0005 (3) −0.0080 (4) 0.0002 (3)
O1 0.0143 (11) 0.0282 (13) 0.0353 (14) 0.0039 (10) −0.0018 (10) −0.0038 (11)
O2 0.0213 (12) 0.0237 (12) 0.0203 (12) −0.0013 (10) −0.0025 (10) 0.0051 (10)
O3 0.0137 (11) 0.0355 (15) 0.0234 (12) −0.0005 (11) −0.0016 (9) 0.0032 (11)
O4 0.0151 (11) 0.0228 (12) 0.0275 (12) −0.0009 (10) 0.0036 (9) 0.0065 (10)
O5 0.0328 (15) 0.0389 (17) 0.0307 (15) −0.0024 (13) 0.0093 (12) 0.0143 (13)
O6 0.0121 (10) 0.0169 (11) 0.0274 (12) −0.0003 (9) 0.0004 (9) 0.0045 (10)
O7 0.0133 (10) 0.0147 (10) 0.0183 (11) 0.0017 (9) −0.0009 (8) −0.0014 (9)
O8 0.0162 (11) 0.0228 (12) 0.0193 (11) 0.0017 (9) −0.0013 (9) −0.0026 (10)
C1 0.0122 (13) 0.0159 (14) 0.0176 (14) −0.0005 (12) −0.0006 (11) 0.0008 (11)
C2 0.0136 (14) 0.0116 (13) 0.0194 (14) 0.0000 (11) −0.0004 (11) 0.0040 (11)
C3 0.0160 (14) 0.0188 (15) 0.0161 (14) 0.0048 (12) −0.0016 (11) −0.0019 (12)
C4 0.0116 (13) 0.0286 (17) 0.0168 (15) 0.0004 (12) −0.0016 (12) 0.0005 (13)
C5 0.0080 (13) 0.0225 (16) 0.0282 (17) −0.0032 (12) −0.0010 (12) −0.0004 (13)
C6 0.0102 (13) 0.0164 (14) 0.0297 (17) −0.0001 (12) −0.0012 (12) 0.0030 (13)
C7 0.0117 (13) 0.0188 (15) 0.0231 (16) 0.0008 (12) 0.0010 (11) 0.0022 (13)
C8 0.0116 (13) 0.0209 (16) 0.0197 (15) 0.0001 (12) −0.0013 (11) 0.0019 (12)
C9 0.0112 (13) 0.0187 (15) 0.0161 (14) 0.0036 (12) −0.0010 (11) 0.0006 (11)
C10 0.0113 (13) 0.0131 (13) 0.0199 (14) −0.0006 (11) 0.0001 (12) −0.0002 (12)
C11 0.0161 (15) 0.0196 (15) 0.0187 (15) −0.0045 (12) 0.0006 (12) −0.0011 (12)
C12 0.0122 (14) 0.0263 (17) 0.0255 (17) −0.0029 (12) 0.0043 (13) −0.0035 (14)
C13 0.0114 (14) 0.0191 (15) 0.0262 (17) −0.0028 (12) 0.0009 (12) −0.0025 (13)
C14 0.0120 (14) 0.0179 (15) 0.0201 (15) −0.0022 (12) 0.0002 (11) −0.0007 (12)
C15 0.0149 (14) 0.0256 (17) 0.0269 (17) −0.0032 (14) −0.0017 (13) −0.0029 (14)
C16 0.0202 (15) 0.0139 (14) 0.0205 (15) −0.0021 (12) 0.0003 (12) −0.0010 (12)
C17 0.0100 (13) 0.0271 (17) 0.0251 (16) −0.0014 (12) 0.0010 (12) 0.0069 (14)
C18 0.034 (2) 0.030 (2) 0.032 (2) −0.0027 (17) −0.0037 (17) 0.0116 (16)
C19 0.0167 (15) 0.0274 (18) 0.0328 (19) −0.0055 (14) 0.0026 (14) −0.0050 (15)
C20 0.0178 (15) 0.0243 (18) 0.0323 (19) 0.0025 (14) 0.0048 (14) 0.0054 (15)
C21 0.0212 (16) 0.0212 (16) 0.0216 (16) −0.0021 (13) 0.0038 (13) 0.0037 (13)
C22 0.034 (2) 0.040 (2) 0.0224 (18) −0.0062 (18) −0.0048 (16) 0.0053 (16)
C23 0.0090 (13) 0.0196 (15) 0.0181 (14) 0.0008 (11) 0.0032 (11) −0.0018 (12)
C24 0.0181 (15) 0.0195 (16) 0.0241 (17) 0.0044 (13) −0.0006 (13) −0.0020 (13)
Cl2 0.0180 (3) 0.0302 (4) 0.0222 (4) 0.0001 (3) 0.0066 (3) 0.0009 (3)
O9 0.0271 (14) 0.0402 (17) 0.0348 (15) −0.0139 (12) 0.0049 (12) −0.0154 (13)
O10 0.0403 (16) 0.0263 (14) 0.0273 (14) −0.0041 (12) 0.0031 (12) 0.0004 (11)
O11 0.129 (5) 0.065 (3) 0.077 (3) 0.057 (3) 0.050 (3) 0.027 (3)
O12 0.0182 (11) 0.0228 (12) 0.0213 (12) −0.0035 (10) 0.0025 (9) 0.0025 (10)
O13 0.0289 (14) 0.0227 (13) 0.0292 (14) 0.0015 (11) 0.0055 (11) 0.0028 (11)
O14 0.0165 (11) 0.0253 (13) 0.0172 (11) 0.0004 (10) 0.0000 (9) −0.0049 (10)
O15 0.0197 (11) 0.0287 (13) 0.0158 (11) −0.0081 (10) 0.0021 (9) −0.0069 (10)
O16 0.0278 (14) 0.0347 (15) 0.0266 (13) −0.0044 (12) 0.0084 (11) −0.0072 (11)
C25 0.0262 (18) 0.0267 (18) 0.0226 (17) −0.0114 (15) 0.0054 (14) −0.0057 (14)
C26 0.0297 (19) 0.0288 (19) 0.0214 (17) −0.0101 (16) 0.0044 (14) −0.0011 (14)
C27 0.0289 (19) 0.033 (2) 0.0180 (16) −0.0015 (16) −0.0049 (14) 0.0008 (14)
C28 0.0223 (17) 0.0213 (16) 0.0241 (16) −0.0013 (13) −0.0082 (13) 0.0027 (13)
C29 0.0121 (14) 0.0291 (18) 0.0247 (16) −0.0049 (13) −0.0032 (13) 0.0046 (14)
C30 0.0149 (14) 0.0269 (17) 0.0179 (14) −0.0044 (13) −0.0006 (12) −0.0007 (12)
C31 0.0112 (14) 0.0248 (17) 0.0180 (15) −0.0072 (12) −0.0006 (11) 0.0023 (12)
C32 0.0136 (14) 0.0210 (15) 0.0167 (14) −0.0042 (12) 0.0016 (12) −0.0014 (12)
C33 0.0154 (14) 0.0213 (16) 0.0171 (14) −0.0049 (12) 0.0021 (12) −0.0059 (12)
C34 0.0163 (16) 0.0288 (18) 0.0188 (15) −0.0095 (13) 0.0043 (12) −0.0058 (13)
C35 0.038 (2) 0.034 (2) 0.030 (2) −0.0180 (18) 0.0103 (17) −0.0045 (17)
C36 0.037 (2) 0.031 (2) 0.039 (2) −0.0168 (18) 0.0077 (18) −0.0076 (18)
C37 0.0160 (15) 0.036 (2) 0.0332 (19) −0.0090 (16) 0.0065 (15) −0.0099 (16)
C38 0.0162 (15) 0.0327 (19) 0.0273 (17) −0.0100 (15) 0.0042 (14) −0.0088 (15)
C39 0.0167 (18) 0.052 (3) 0.045 (2) −0.0121 (18) 0.0072 (17) −0.019 (2)
C40 0.032 (2) 0.034 (2) 0.0204 (17) −0.0089 (17) 0.0092 (15) −0.0009 (15)
C41 0.076 (4) 0.021 (2) 0.050 (3) 0.007 (2) 0.014 (3) 0.0032 (19)
C42 0.085 (4) 0.024 (2) 0.057 (3) 0.007 (3) 0.008 (3) 0.011 (2)
C43 0.0199 (16) 0.0294 (19) 0.0284 (18) 0.0016 (15) −0.0003 (14) 0.0043 (15)
C44 0.0195 (16) 0.0231 (17) 0.0204 (16) −0.0001 (13) 0.0041 (13) −0.0047 (13)
C45 0.0169 (16) 0.0284 (18) 0.0231 (17) −0.0055 (14) 0.0038 (13) −0.0018 (14)
C46 0.0224 (18) 0.031 (2) 0.049 (3) 0.0037 (16) −0.0015 (17) 0.0114 (19)
C47 0.0285 (19) 0.0285 (19) 0.0192 (16) −0.0109 (15) 0.0096 (14) −0.0059 (14)
C48 0.035 (2) 0.048 (3) 0.0253 (19) −0.019 (2) 0.0068 (16) −0.0145 (18)
O17 0.0370 (17) 0.0396 (17) 0.0287 (16) −0.0028 (14) −0.0060 (13) −0.0046 (14)

Geometric parameters (Å, °)

Cl1—C6 1.801 (3) O9—C37 1.225 (5)
O1—C13 1.213 (4) O10—C41 1.341 (6)
O2—C17 1.333 (4) O10—C26 1.461 (5)
O2—C2 1.459 (4) O11—C41 1.202 (7)
O3—C17 1.197 (5) O12—C44 1.342 (4)
O4—C20 1.350 (5) O12—C31 1.451 (4)
O4—C7 1.459 (4) O13—C44 1.199 (5)
O5—C20 1.192 (5) O14—C32 1.411 (4)
O6—C8 1.416 (4) O14—H14B 0.849 (19)
O6—H6B 0.83 (2) O15—C47 1.362 (5)
O7—C23 1.351 (4) O15—C33 1.453 (4)
O7—C9 1.434 (4) O16—C47 1.191 (5)
O8—C23 1.209 (4) C25—C35 1.512 (5)
C1—C11 1.517 (5) C25—C40 1.537 (5)
C1—C16 1.550 (4) C25—C34 1.565 (5)
C1—C10 1.569 (4) C25—C26 1.566 (6)
C1—C2 1.572 (4) C26—C27 1.506 (5)
C2—C3 1.515 (4) C26—H26 1.0000
C2—H2 1.0000 C27—C28 1.333 (5)
C3—C4 1.331 (5) C27—H27 0.9500
C3—H3 0.9500 C28—C29 1.480 (5)
C4—C5 1.486 (5) C28—H28 0.9500
C4—H4 0.9500 C29—C43 1.321 (5)
C5—C19 1.315 (5) C29—C30 1.526 (5)
C5—C6 1.517 (5) C30—C31 1.528 (5)
C6—C7 1.511 (5) C30—H30 1.0000
C6—H6 1.0000 C31—C32 1.561 (4)
C7—C8 1.572 (4) C31—H31 1.0000
C7—H7 1.0000 C32—C33 1.553 (5)
C8—C21 1.542 (5) C32—C45 1.553 (5)
C8—C9 1.562 (5) C33—C34 1.560 (5)
C9—C10 1.558 (4) C33—H33 1.0000
C9—H9 1.0000 C34—C38 1.560 (5)
C10—C14 1.565 (4) C34—H34 1.0000
C10—H10 1.0000 C35—C36 1.340 (6)
C11—C12 1.337 (5) C35—H35 0.9500
C11—H11 0.9500 C36—C37 1.459 (6)
C12—C13 1.453 (5) C36—H36 0.9500
C12—H12 0.9500 C37—C38 1.505 (5)
C13—C14 1.518 (5) C38—C39 1.553 (5)
C14—C15 1.544 (5) C38—H38 1.0000
C14—H14 1.0000 C39—H39A 0.9800
C15—H15A 0.9800 C39—H39B 0.9800
C15—H15B 0.9800 C39—H39C 0.9800
C15—H15C 0.9800 C40—H40A 0.9800
C16—H16A 0.9800 C40—H40B 0.9800
C16—H16B 0.9800 C40—H40C 0.9800
C16—H16C 0.9800 C41—C42 1.483 (7)
C17—C18 1.503 (5) C42—H42A 0.9800
C18—H18A 0.9800 C42—H42B 0.9800
C18—H18B 0.9800 C42—H42C 0.9800
C18—H18C 0.9800 C43—H43A 0.9500
C19—H19A 0.9500 C43—H43B 0.9500
C19—H19B 0.9500 C44—C45 1.495 (5)
C20—C21 1.511 (5) C45—C46 1.523 (5)
C21—C22 1.519 (5) C45—H45 1.0000
C21—H21 1.0000 C46—H46A 0.9800
C22—H22A 0.9800 C46—H46B 0.9800
C22—H22B 0.9800 C46—H46C 0.9800
C22—H22C 0.9800 C47—C48 1.490 (5)
C23—C24 1.489 (5) C48—H48A 0.9800
C24—H24A 0.9800 C48—H48B 0.9800
C24—H24B 0.9800 C48—H48C 0.9800
C24—H24C 0.9800 O17—H17A 0.81 (4)
Cl2—C30 1.798 (3) O17—H17B 0.80 (4)
C17—O2—C2 118.0 (3) C44—O12—C31 109.9 (3)
C20—O4—C7 111.1 (3) C32—O14—H14B 110 (4)
C8—O6—H6B 99 (4) C47—O15—C33 118.9 (3)
C23—O7—C9 120.6 (3) C35—C25—C40 108.9 (3)
C11—C1—C16 108.6 (3) C35—C25—C34 109.5 (3)
C11—C1—C10 108.4 (3) C40—C25—C34 116.6 (3)
C16—C1—C10 115.3 (3) C35—C25—C26 101.8 (3)
C11—C1—C2 101.2 (3) C40—C25—C26 110.5 (3)
C16—C1—C2 111.1 (3) C34—C25—C26 108.4 (3)
C10—C1—C2 111.2 (3) O10—C26—C27 105.6 (3)
O2—C2—C3 105.8 (2) O10—C26—C25 106.3 (3)
O2—C2—C1 104.1 (2) C27—C26—C25 118.1 (3)
C3—C2—C1 119.4 (3) O10—C26—H26 108.8
O2—C2—H2 109.0 C27—C26—H26 108.8
C3—C2—H2 109.0 C25—C26—H26 108.8
C1—C2—H2 109.0 C28—C27—C26 125.8 (4)
C4—C3—C2 127.0 (3) C28—C27—H27 117.1
C4—C3—H3 116.5 C26—C27—H27 117.1
C2—C3—H3 116.5 C27—C28—C29 126.7 (3)
C3—C4—C5 126.7 (3) C27—C28—H28 116.7
C3—C4—H4 116.6 C29—C28—H28 116.7
C5—C4—H4 116.6 C43—C29—C28 124.7 (3)
C19—C5—C4 122.3 (3) C43—C29—C30 124.0 (3)
C19—C5—C6 125.2 (3) C28—C29—C30 111.0 (3)
C4—C5—C6 112.2 (3) C29—C30—C31 113.9 (3)
C7—C6—C5 116.1 (3) C29—C30—Cl2 112.7 (3)
C7—C6—Cl1 112.3 (2) C31—C30—Cl2 112.7 (2)
C5—C6—Cl1 112.0 (2) C29—C30—H30 105.5
C7—C6—H6 105.1 C31—C30—H30 105.5
C5—C6—H6 105.1 Cl2—C30—H30 105.5
Cl1—C6—H6 105.1 O12—C31—C30 105.3 (3)
O4—C7—C6 106.4 (3) O12—C31—C32 105.3 (3)
O4—C7—C8 104.3 (3) C30—C31—C32 124.5 (3)
C6—C7—C8 124.3 (3) O12—C31—H31 106.9
O4—C7—H7 106.9 C30—C31—H31 106.9
C6—C7—H7 106.9 C32—C31—H31 106.9
C8—C7—H7 106.9 O14—C32—C33 111.2 (3)
O6—C8—C21 112.1 (3) O14—C32—C45 106.6 (3)
O6—C8—C9 106.4 (2) C33—C32—C45 108.9 (3)
C21—C8—C9 109.9 (3) O14—C32—C31 112.7 (3)
O6—C8—C7 112.5 (3) C33—C32—C31 117.2 (3)
C21—C8—C7 99.0 (3) C45—C32—C31 99.0 (3)
C9—C8—C7 116.9 (3) O15—C33—C32 106.7 (3)
O7—C9—C10 112.6 (3) O15—C33—C34 114.1 (3)
O7—C9—C8 107.5 (2) C32—C33—C34 116.4 (3)
C10—C9—C8 114.5 (3) O15—C33—H33 106.3
O7—C9—H9 107.3 C32—C33—H33 106.3
C10—C9—H9 107.3 C34—C33—H33 106.3
C8—C9—H9 107.3 C33—C34—C38 105.9 (3)
C9—C10—C14 106.5 (3) C33—C34—C25 120.5 (3)
C9—C10—C1 118.4 (3) C38—C34—C25 112.1 (3)
C14—C10—C1 112.4 (2) C33—C34—H34 105.8
C9—C10—H10 106.3 C38—C34—H34 105.8
C14—C10—H10 106.3 C25—C34—H34 105.8
C1—C10—H10 106.3 C36—C35—C25 126.8 (4)
C12—C11—C1 127.6 (3) C36—C35—H35 116.6
C12—C11—H11 116.2 C25—C35—H35 116.6
C1—C11—H11 116.2 C35—C36—C37 121.6 (4)
C11—C12—C13 121.9 (3) C35—C36—H36 119.2
C11—C12—H12 119.1 C37—C36—H36 119.2
C13—C12—H12 119.1 O9—C37—C36 123.0 (4)
O1—C13—C12 123.1 (3) O9—C37—C38 122.4 (4)
O1—C13—C14 121.5 (3) C36—C37—C38 114.5 (3)
C12—C13—C14 115.1 (3) C37—C38—C39 106.7 (3)
C13—C14—C15 105.3 (3) C37—C38—C34 110.7 (3)
C13—C14—C10 111.3 (3) C39—C38—C34 116.3 (3)
C15—C14—C10 116.9 (3) C37—C38—H38 107.6
C13—C14—H14 107.6 C39—C38—H38 107.6
C15—C14—H14 107.6 C34—C38—H38 107.6
C10—C14—H14 107.6 C38—C39—H39A 109.5
C14—C15—H15A 109.5 C38—C39—H39B 109.5
C14—C15—H15B 109.5 H39A—C39—H39B 109.5
H15A—C15—H15B 109.5 C38—C39—H39C 109.5
C14—C15—H15C 109.5 H39A—C39—H39C 109.5
H15A—C15—H15C 109.5 H39B—C39—H39C 109.5
H15B—C15—H15C 109.5 C25—C40—H40A 109.5
C1—C16—H16A 109.5 C25—C40—H40B 109.5
C1—C16—H16B 109.5 H40A—C40—H40B 109.5
H16A—C16—H16B 109.5 C25—C40—H40C 109.5
C1—C16—H16C 109.5 H40A—C40—H40C 109.5
H16A—C16—H16C 109.5 H40B—C40—H40C 109.5
H16B—C16—H16C 109.5 O11—C41—O10 121.4 (5)
O3—C17—O2 124.3 (3) O11—C41—C42 125.4 (5)
O3—C17—C18 124.8 (4) O10—C41—C42 113.2 (5)
O2—C17—C18 110.9 (3) C41—C42—H42A 109.5
C17—C18—H18A 109.5 C41—C42—H42B 109.5
C17—C18—H18B 109.5 H42A—C42—H42B 109.5
H18A—C18—H18B 109.5 C41—C42—H42C 109.5
C17—C18—H18C 109.5 H42A—C42—H42C 109.5
H18A—C18—H18C 109.5 H42B—C42—H42C 109.5
H18B—C18—H18C 109.5 C29—C43—H43A 120.0
C5—C19—H19A 120.0 C29—C43—H43B 120.0
C5—C19—H19B 120.0 H43A—C43—H43B 120.0
H19A—C19—H19B 120.0 O13—C44—O12 121.4 (3)
O5—C20—O4 121.8 (4) O13—C44—C45 127.8 (4)
O5—C20—C21 129.1 (4) O12—C44—C45 110.8 (3)
O4—C20—C21 109.0 (3) C44—C45—C46 114.4 (3)
C20—C21—C22 113.9 (3) C44—C45—C32 103.6 (3)
C20—C21—C8 103.7 (3) C46—C45—C32 114.9 (3)
C22—C21—C8 116.8 (3) C44—C45—H45 107.8
C20—C21—H21 107.3 C46—C45—H45 107.8
C22—C21—H21 107.3 C32—C45—H45 107.8
C8—C21—H21 107.3 C45—C46—H46A 109.5
C21—C22—H22A 109.5 C45—C46—H46B 109.5
C21—C22—H22B 109.5 H46A—C46—H46B 109.5
H22A—C22—H22B 109.5 C45—C46—H46C 109.5
C21—C22—H22C 109.5 H46A—C46—H46C 109.5
H22A—C22—H22C 109.5 H46B—C46—H46C 109.5
H22B—C22—H22C 109.5 O16—C47—O15 123.9 (3)
O8—C23—O7 123.6 (3) O16—C47—C48 127.1 (4)
O8—C23—C24 126.5 (3) O15—C47—C48 109.0 (4)
O7—C23—C24 109.9 (3) C47—C48—H48A 109.5
C23—C24—H24A 109.5 C47—C48—H48B 109.5
C23—C24—H24B 109.5 H48A—C48—H48B 109.5
H24A—C24—H24B 109.5 C47—C48—H48C 109.5
C23—C24—H24C 109.5 H48A—C48—H48C 109.5
H24A—C24—H24C 109.5 H48B—C48—H48C 109.5
H24B—C24—H24C 109.5 H17A—O17—H17B 114 (7)
C41—O10—C26 116.8 (4)
C17—O2—C2—C3 80.7 (3) C40—C25—C26—C27 65.5 (4)
C17—O2—C2—C1 −152.6 (3) C34—C25—C26—C27 −63.5 (4)
C11—C1—C2—O2 67.0 (3) O10—C26—C27—C28 −139.8 (4)
C16—C1—C2—O2 −48.2 (3) C25—C26—C27—C28 101.5 (5)
C10—C1—C2—O2 −178.0 (2) C26—C27—C28—C29 −6.3 (6)
C11—C1—C2—C3 −175.4 (3) C27—C28—C29—C43 55.4 (6)
C16—C1—C2—C3 69.3 (4) C27—C28—C29—C30 −130.3 (4)
C10—C1—C2—C3 −60.5 (4) C43—C29—C30—C31 −139.7 (4)
O2—C2—C3—C4 −146.8 (3) C28—C29—C30—C31 45.9 (4)
C1—C2—C3—C4 96.5 (4) C43—C29—C30—Cl2 −9.7 (5)
C2—C3—C4—C5 −4.9 (6) C28—C29—C30—Cl2 176.0 (2)
C3—C4—C5—C19 56.2 (5) C44—O12—C31—C30 −155.7 (3)
C3—C4—C5—C6 −129.2 (4) C44—O12—C31—C32 −22.5 (3)
C19—C5—C6—C7 −140.5 (3) C29—C30—C31—O12 −170.5 (3)
C4—C5—C6—C7 45.1 (4) Cl2—C30—C31—O12 59.4 (3)
C19—C5—C6—Cl1 −9.7 (4) C29—C30—C31—C32 68.1 (4)
C4—C5—C6—Cl1 175.9 (2) Cl2—C30—C31—C32 −62.0 (4)
C20—O4—C7—C6 −153.6 (3) O12—C31—C32—O14 −80.2 (3)
C20—O4—C7—C8 −20.7 (4) C30—C31—C32—O14 41.2 (4)
C5—C6—C7—O4 −171.8 (3) O12—C31—C32—C33 148.9 (3)
Cl1—C6—C7—O4 57.6 (3) C30—C31—C32—C33 −89.7 (4)
C5—C6—C7—C8 67.4 (4) O12—C31—C32—C45 32.1 (3)
Cl1—C6—C7—C8 −63.3 (4) C30—C31—C32—C45 153.5 (3)
O4—C7—C8—O6 −85.7 (3) C47—O15—C33—C32 −109.6 (3)
C6—C7—C8—O6 36.1 (4) C47—O15—C33—C34 120.4 (3)
O4—C7—C8—C21 32.9 (3) O14—C32—C33—O15 −168.7 (3)
C6—C7—C8—C21 154.7 (3) C45—C32—C33—O15 74.0 (3)
O4—C7—C8—C9 150.8 (3) C31—C32—C33—O15 −37.1 (4)
C6—C7—C8—C9 −87.4 (4) O14—C32—C33—C34 −40.1 (4)
C23—O7—C9—C10 125.4 (3) C45—C32—C33—C34 −157.3 (3)
C23—O7—C9—C8 −107.6 (3) C31—C32—C33—C34 91.5 (4)
O6—C8—C9—O7 −158.7 (2) O15—C33—C34—C38 −145.7 (3)
C21—C8—C9—O7 79.7 (3) C32—C33—C34—C38 89.3 (3)
C7—C8—C9—O7 −32.1 (4) O15—C33—C34—C25 −17.4 (4)
O6—C8—C9—C10 −32.8 (3) C32—C33—C34—C25 −142.3 (3)
C21—C8—C9—C10 −154.4 (3) C35—C25—C34—C33 −162.0 (3)
C7—C8—C9—C10 93.8 (3) C40—C25—C34—C33 −37.7 (5)
O7—C9—C10—C14 −148.3 (3) C26—C25—C34—C33 87.7 (4)
C8—C9—C10—C14 88.6 (3) C35—C25—C34—C38 −36.5 (4)
O7—C9—C10—C1 −20.5 (4) C40—C25—C34—C38 87.8 (4)
C8—C9—C10—C1 −143.7 (3) C26—C25—C34—C38 −146.8 (3)
C11—C1—C10—C9 −164.1 (3) C40—C25—C35—C36 −125.7 (5)
C16—C1—C10—C9 −42.1 (4) C34—C25—C35—C36 3.0 (6)
C2—C1—C10—C9 85.5 (3) C26—C25—C35—C36 117.5 (5)
C11—C1—C10—C14 −39.2 (3) C25—C35—C36—C37 10.7 (7)
C16—C1—C10—C14 82.8 (3) C35—C36—C37—O9 −172.6 (4)
C2—C1—C10—C14 −149.6 (3) C35—C36—C37—C38 11.6 (6)
C16—C1—C11—C12 −119.1 (4) O9—C37—C38—C39 −93.2 (4)
C10—C1—C11—C12 6.8 (5) C36—C37—C38—C39 82.7 (4)
C2—C1—C11—C12 123.9 (4) O9—C37—C38—C34 139.4 (4)
C1—C11—C12—C13 10.3 (6) C36—C37—C38—C34 −44.8 (4)
C11—C12—C13—O1 −179.4 (3) C33—C34—C38—C37 −168.7 (3)
C11—C12—C13—C14 7.4 (5) C25—C34—C38—C37 58.1 (4)
O1—C13—C14—C15 −85.5 (4) C33—C34—C38—C39 69.3 (4)
C12—C13—C14—C15 87.9 (3) C25—C34—C38—C39 −63.8 (5)
O1—C13—C14—C10 146.9 (3) C26—O10—C41—O11 2.0 (8)
C12—C13—C14—C10 −39.8 (4) C26—O10—C41—C42 −177.9 (4)
C9—C10—C14—C13 −172.0 (3) C31—O12—C44—O13 −176.2 (3)
C1—C10—C14—C13 56.8 (3) C31—O12—C44—C45 1.8 (4)
C9—C10—C14—C15 67.0 (3) O13—C44—C45—C46 −36.8 (6)
C1—C10—C14—C15 −64.2 (4) O12—C44—C45—C46 145.4 (3)
C2—O2—C17—O3 5.2 (5) O13—C44—C45—C32 −162.6 (4)
C2—O2—C17—C18 −172.9 (3) O12—C44—C45—C32 19.6 (4)
C7—O4—C20—O5 −179.6 (4) O14—C32—C45—C44 86.7 (3)
C7—O4—C20—C21 −1.6 (4) C33—C32—C45—C44 −153.2 (3)
O5—C20—C21—C22 −30.5 (6) C31—C32—C45—C44 −30.3 (3)
O4—C20—C21—C22 151.8 (3) O14—C32—C45—C46 −38.8 (4)
O5—C20—C21—C8 −158.5 (4) C33—C32—C45—C46 81.2 (4)
O4—C20—C21—C8 23.7 (4) C31—C32—C45—C46 −155.9 (3)
O6—C8—C21—C20 85.5 (3) C33—O15—C47—O16 −6.2 (5)
C9—C8—C21—C20 −156.4 (3) C33—O15—C47—C48 175.6 (3)
C7—C8—C21—C20 −33.4 (3) O26—O21—O24—O27 −164.9 (12)
O6—C8—C21—C22 −40.8 (4) O24—O21—O26—O23 117.6 (13)
C9—C8—C21—C22 77.3 (4) O27—O21—O26—O23 101.3 (17)
C7—C8—C21—C22 −159.6 (3) O28—O23—O26—O21 −154.2 (12)
C9—O7—C23—O8 4.1 (5) O21—O24—O27—O22 −157 (2)
C9—O7—C23—C24 −174.6 (3) O24—O21—O27—O22 96 (6)
C41—O10—C26—C27 89.6 (5) O26—O21—O27—O22 120 (6)
C41—O10—C26—C25 −144.1 (4) O26—O21—O27—O24 23.9 (18)
C35—C25—C26—O10 62.8 (4) O18—O25—O28—O19 46.5 (16)
C40—C25—C26—O10 −52.8 (4) O18—O25—O28—O23 −162.2 (14)
C34—C25—C26—O10 178.2 (3) O26—O23—O28—O19 −85.1 (10)
C35—C25—C26—C27 −178.9 (3) O26—O23—O28—O25 122.3 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6B···O13 0.83 (2) 2.02 (3) 2.784 (4) 154 (6)
O14—H14B···O8i 0.85 (2) 2.13 (3) 2.932 (4) 156 (6)
O17—H17A···O3ii 0.81 (4) 2.04 (5) 2.834 (4) 167 (8)
O17—H17B···O16iii 0.80 (4) 2.31 (5) 3.082 (5) 161 (7)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5711).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burks, J. E., van der Helm, D., Chang, C. Y. & Ciereszko, L. S. (1977). Acta Cryst. B33, 704–709.
  3. Coval, S. J., Cross, S., Bernardinelli, G. & Jefford, C. W. (1988). J. Nat. Prod. 51, 981–984.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Gonzalez, N., Rodriguez, J., Kerr, R. G. & Jimenez, C. (2002). J. Org. Chem. 67, 5117–5123. [DOI] [PubMed]
  6. Grode, S. H., James, T. R., Cardellina, J. H. & Onan, K. D. (1983). J. Org. Chem. 48, 5203–5207.
  7. Hamann, M. T., Harrison, K. N., Carroll, A. R. & Scheuer, P. J. (1996). Heterocycles, 42, 325–331.
  8. Helm, D. van der, Loghry, R. A., Matson, J. A. & Weinheimer, A. J. (1986). J. Crystallogr. Spectrosc. Res. 16, 713–720.
  9. Hendrickson, R. L. (1990). PhD dissertation, Montana State University, USA.
  10. Hendrickson, R. L. & Cardellina, J. H. II (1986). Tetrahedron, 42, 6565–6570.
  11. Nurco, D. J. (2008). MSc thesis, University of California, Davis, USA.
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Smith, A. G. E. (2006). Personal communication. Underwater photographer, PADI Divemaster and member of the Juneau Dive Rescue Search and Recovery Team; e-mail: ages@gci.net.
  15. Sung, P.-J., Sheu, J.-H. & Xuc, J.-P. (2002). Heterocycles, 57, 535–579.
  16. Wekell, J. C. (1974). Marine Technology Society, Food-Drugs from the Sea, Proceedings, edited by H. H. Weber & G. D. Ruggierl, pp. 324–330.
  17. Wekell, J. C. (1978). PhD dissertation, University of Washington, USA.
  18. Williams, D. E. & Andersen, R. J. (1987). Can. J. Chem. 65, 2244–2247.
  19. Wratten, S. J., Fenical, W., Faulkner, J. & Wekell, J. C. (1977). Tetrahedron Lett. 18, 1559–1562.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050142/hb5711sup1.cif

e-67-0o181-sup1.cif (40.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050142/hb5711Isup2.hkl

e-67-0o181-Isup2.hkl (655.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES