Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 18;67(Pt 1):o163. doi: 10.1107/S1600536810051858

5-[(4-Meth­oxy­benz­yl)sulfan­yl]-2-methyl-1,3,4-thia­diazole

Hoong-Kun Fun a,*,, Suchada Chantrapromma b,§, B Chandrakantha c, Arun M Isloor d, Prakash Shetty e
PMCID: PMC3050388  PMID: 21522670

Abstract

The title mol­ecule, C11H12N2OS2, is twisted with a dihedral angle of 83.63 (12)° between the 1,3,4-thia­diazole and benzene rings. The meth­oxy group deviates slightly from the attached benzene ring, with a C—C—O—C torsion angle of 4.2 (4)°. In the crystal, mol­ecules are linked by weak C—H⋯N inter­actions and stacked along the c axis.

Related literature

For bond-length data, see: Allen et al. (1987). For a related structure, see: Wang et al. (2010). For background to and applications of thia­diazole derivatives, see: Bernard et al. (1985); Chandrakantha et al. (2010); El-Sabbagh et al. (2009); Isloor et al. (2010); Kalluraya et al. (2004). For the stability of the temperature controller, see: Cosier & Glazer (1986).graphic file with name e-67-0o163-scheme1.jpg

Experimental

Crystal data

  • C11H12N2OS2

  • M r = 252.35

  • Monoclinic, Inline graphic

  • a = 14.7765 (4) Å

  • b = 8.6916 (3) Å

  • c = 9.7339 (3) Å

  • β = 96.477 (1)°

  • V = 1242.16 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.03 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.907, T max = 0.987

  • 11429 measured reflections

  • 2828 independent reflections

  • 1660 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.118

  • S = 1.02

  • 2828 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051858/is2640sup1.cif

e-67-0o163-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051858/is2640Isup2.hkl

e-67-0o163-Isup2.hkl (138.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N1i 0.96 2.59 3.532 (4) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award. SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Thiadiazole are a class of heterocyclic compounds having a five membered ring. They occur in nature and are predominant among all types of pharmaceuticals, agrochemicals and veterinary products (El-Sabbagh et al., 2009). The amino and mercapto groups in thiadiazole are readily-accessible nucleophilic centers. 1,3,4-Thiadiazole exhibit a wide spectrum of biological activities (Bernard et al., 1985). Due to the presence of the –N—C—S moiety (Kalluraya et al., 2004), they are found to be used as antibacterial, antimicrobial and anti-inflammatory agents (Chandrakantha et al., 2010). Antibacterial and antifungal (Isloor et al., 2010) activities of the azoles are most widely studied and azoles are also used as antimicrobial agents. Herein we report the crystal structure of the title 1,3,4-thiadiazole derivative, (I).

The molecule of (I) (Fig. 1) is twisted with a dihedral angle between the 1,3,4-thiadiazole and benzene rings being 83.63 (12)°. Atoms C3, S2, C4 and C5 lie nearly on the same plane with r.m.s. 0.0517 (5) Å and the torsion angle C3–S2–C4–C5 = 172.25 (18)°. The mean plane through C3/S2/C4/C5 makes the dihedral angles of 9.02 (15) and 75.92 (16)° with the 1,3,4-thiadiazole and benzene rings, respectively. The methoxy group is slightly deviated with respect to the attached benzene ring with the torsion angle C11–O1–C8–C9 = 4.2 (4)°. The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structure (Wang et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked by C1—H1B···N1 weak interactions (Table 1) and stacked along the c axis. S···N [3.340 (2) Å] short contacts (symmetry codes: x, 1/2 - y, 1/2 + z and x, 1/2 - y, -1/2 + z) are presented in the crystal.

Experimental

The title compound was synthesized by adding 4-methoxybenzylbromide (3.02 g, 0.0151 mol) dropwise to a stirred solution of 5-methyl-1,3,4-thiadiazole-2-thiol (2.00 g, 0.0151 mol) and anhydrous potassiumcarbonate (4.16 g, 0.03 mol) in dry acetonitrile (50 ml) at room temperature and the reaction mixture was stirred at room temperature for 5 h. After the completion of reaction, the reaction mixture was filtered and the filtrate was concentrated. The crude product was recrystallized with hot ethanol to afford the title compound as yellow solid (2.00 g, yield 57%). Yellow plate-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after several days (m.p. 413–415 K).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis. C—H···N weak interactions are shown as dashed lines.

Crystal data

C11H12N2OS2 F(000) = 528
Mr = 252.35 Dx = 1.349 Mg m3
Monoclinic, P21/c Melting point = 413–415 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 14.7765 (4) Å Cell parameters from 2828 reflections
b = 8.6916 (3) Å θ = 2.7–27.5°
c = 9.7339 (3) Å µ = 0.41 mm1
β = 96.477 (1)° T = 296 K
V = 1242.16 (7) Å3 Plate, yellow
Z = 4 0.25 × 0.19 × 0.03 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2828 independent reflections
Radiation source: sealed tube 1660 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −19→19
Tmin = 0.907, Tmax = 0.987 k = −11→11
11429 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2899P] where P = (Fo2 + 2Fc2)/3
2828 reflections (Δ/σ)max = 0.001
147 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.43447 (5) 0.19481 (8) 0.95596 (7) 0.0631 (2)
S2 0.56474 (5) 0.40517 (9) 0.81756 (8) 0.0805 (3)
O1 0.99330 (14) 0.4254 (2) 0.7932 (2) 0.0899 (7)
N1 0.30610 (16) 0.3239 (3) 0.8041 (2) 0.0770 (7)
N2 0.38487 (18) 0.3952 (3) 0.7726 (2) 0.0795 (7)
C1 0.24763 (19) 0.1218 (4) 0.9455 (3) 0.0849 (9)
H1A 0.1893 0.1624 0.9098 0.127*
H1B 0.2534 0.1234 1.0447 0.127*
H1C 0.2529 0.0178 0.9141 0.127*
C2 0.32087 (18) 0.2174 (3) 0.8958 (2) 0.0616 (7)
C3 0.45726 (18) 0.3383 (3) 0.8427 (2) 0.0609 (7)
C4 0.63995 (18) 0.2718 (3) 0.9180 (3) 0.0672 (7)
H4A 0.6353 0.2848 1.0159 0.081*
H4B 0.6239 0.1665 0.8925 0.081*
C5 0.73488 (17) 0.3071 (3) 0.8867 (2) 0.0581 (7)
C6 0.7820 (2) 0.4335 (3) 0.9444 (3) 0.0697 (8)
H6A 0.7551 0.4956 1.0062 0.084*
C7 0.8673 (2) 0.4688 (3) 0.9122 (3) 0.0738 (8)
H7A 0.8977 0.5539 0.9528 0.089*
C8 0.90874 (18) 0.3794 (3) 0.8200 (3) 0.0624 (7)
C9 0.86360 (19) 0.2522 (3) 0.7635 (3) 0.0678 (7)
H9A 0.8909 0.1892 0.7029 0.081*
C10 0.77752 (18) 0.2183 (3) 0.7970 (3) 0.0653 (7)
H10A 0.7475 0.1324 0.7573 0.078*
C11 1.0358 (2) 0.3427 (5) 0.6936 (4) 0.1167 (14)
H11A 1.0964 0.3813 0.6905 0.175*
H11B 1.0014 0.3548 0.6046 0.175*
H11C 1.0385 0.2356 0.7180 0.175*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0756 (5) 0.0557 (4) 0.0557 (4) 0.0085 (3) −0.0024 (3) 0.0090 (3)
S2 0.0880 (6) 0.0761 (6) 0.0793 (5) 0.0158 (4) 0.0181 (4) 0.0313 (4)
O1 0.0779 (14) 0.0861 (16) 0.1076 (16) −0.0229 (11) 0.0186 (12) −0.0254 (12)
N1 0.0787 (17) 0.0942 (19) 0.0594 (14) 0.0339 (14) 0.0139 (12) 0.0159 (14)
N2 0.0849 (17) 0.0896 (18) 0.0665 (15) 0.0385 (15) 0.0200 (13) 0.0277 (14)
C1 0.079 (2) 0.094 (2) 0.079 (2) −0.0025 (18) −0.0034 (16) 0.0020 (18)
C2 0.0744 (18) 0.0651 (18) 0.0449 (14) 0.0152 (14) 0.0056 (13) −0.0067 (13)
C3 0.0806 (18) 0.0570 (17) 0.0466 (14) 0.0229 (14) 0.0137 (13) 0.0045 (12)
C4 0.0779 (19) 0.0640 (18) 0.0595 (16) 0.0065 (14) 0.0061 (14) 0.0151 (14)
C5 0.0708 (17) 0.0520 (16) 0.0507 (14) 0.0007 (13) 0.0035 (13) 0.0073 (13)
C6 0.099 (2) 0.0566 (18) 0.0563 (16) −0.0032 (16) 0.0208 (15) −0.0093 (14)
C7 0.099 (2) 0.0593 (18) 0.0631 (17) −0.0209 (16) 0.0091 (16) −0.0141 (15)
C8 0.0659 (17) 0.0571 (17) 0.0626 (17) −0.0049 (14) 0.0002 (13) −0.0044 (14)
C9 0.0701 (18) 0.0569 (17) 0.0758 (18) 0.0007 (14) 0.0062 (14) −0.0168 (15)
C10 0.0701 (18) 0.0512 (17) 0.0726 (18) −0.0057 (13) −0.0011 (14) −0.0122 (14)
C11 0.092 (2) 0.105 (3) 0.162 (4) −0.014 (2) 0.051 (3) −0.037 (3)

Geometric parameters (Å, °)

S1—C3 1.723 (3) C4—H4B 0.9700
S1—C2 1.725 (3) C5—C10 1.371 (3)
S2—C3 1.734 (3) C5—C6 1.386 (4)
S2—C4 1.814 (3) C6—C7 1.367 (4)
O1—C8 1.365 (3) C6—H6A 0.9300
O1—C11 1.410 (3) C7—C8 1.382 (4)
N1—C2 1.288 (3) C7—H7A 0.9300
N1—N2 1.383 (3) C8—C9 1.373 (4)
N2—C3 1.300 (3) C9—C10 1.380 (3)
C1—C2 1.488 (4) C9—H9A 0.9300
C1—H1A 0.9600 C10—H10A 0.9300
C1—H1B 0.9600 C11—H11A 0.9600
C1—H1C 0.9600 C11—H11B 0.9600
C4—C5 1.500 (3) C11—H11C 0.9600
C4—H4A 0.9700
C3—S1—C2 87.33 (13) C10—C5—C4 121.5 (2)
C3—S2—C4 102.99 (12) C6—C5—C4 121.2 (2)
C8—O1—C11 118.1 (2) C7—C6—C5 121.3 (2)
C2—N1—N2 113.2 (2) C7—C6—H6A 119.4
C3—N2—N1 112.1 (2) C5—C6—H6A 119.4
C2—C1—H1A 109.5 C6—C7—C8 120.7 (3)
C2—C1—H1B 109.5 C6—C7—H7A 119.7
H1A—C1—H1B 109.5 C8—C7—H7A 119.7
C2—C1—H1C 109.5 O1—C8—C9 125.0 (2)
H1A—C1—H1C 109.5 O1—C8—C7 116.2 (2)
H1B—C1—H1C 109.5 C9—C8—C7 118.8 (3)
N1—C2—C1 123.7 (3) C8—C9—C10 119.8 (3)
N1—C2—S1 113.5 (2) C8—C9—H9A 120.1
C1—C2—S1 122.8 (2) C10—C9—H9A 120.1
N2—C3—S1 113.7 (2) C5—C10—C9 122.2 (2)
N2—C3—S2 120.7 (2) C5—C10—H10A 118.9
S1—C3—S2 125.53 (16) C9—C10—H10A 118.9
C5—C4—S2 106.83 (17) O1—C11—H11A 109.5
C5—C4—H4A 110.4 O1—C11—H11B 109.5
S2—C4—H4A 110.4 H11A—C11—H11B 109.5
C5—C4—H4B 110.4 O1—C11—H11C 109.5
S2—C4—H4B 110.4 H11A—C11—H11C 109.5
H4A—C4—H4B 108.6 H11B—C11—H11C 109.5
C10—C5—C6 117.3 (2)
C2—N1—N2—C3 0.2 (3) S2—C4—C5—C6 76.6 (3)
N2—N1—C2—C1 −178.9 (2) C10—C5—C6—C7 0.5 (4)
N2—N1—C2—S1 0.9 (3) C4—C5—C6—C7 −177.7 (2)
C3—S1—C2—N1 −1.3 (2) C5—C6—C7—C8 0.4 (4)
C3—S1—C2—C1 178.5 (2) C11—O1—C8—C9 4.2 (4)
N1—N2—C3—S1 −1.3 (3) C11—O1—C8—C7 −176.3 (3)
N1—N2—C3—S2 178.12 (18) C6—C7—C8—O1 179.1 (2)
C2—S1—C3—N2 1.5 (2) C6—C7—C8—C9 −1.4 (4)
C2—S1—C3—S2 −177.88 (18) O1—C8—C9—C10 −179.1 (3)
C4—S2—C3—N2 −171.8 (2) C7—C8—C9—C10 1.5 (4)
C4—S2—C3—S1 7.5 (2) C6—C5—C10—C9 −0.4 (4)
C3—S2—C4—C5 172.25 (18) C4—C5—C10—C9 177.8 (2)
S2—C4—C5—C10 −101.5 (3) C8—C9—C10—C5 −0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1B···N1i 0.96 2.59 3.532 (4) 164

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2640).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernard, A. M., Cocco, M. T., Maccioni, A. & Plumitallo, A. (1985). Farmaco, 40, 259–271.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210. [DOI] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753. [DOI] [PubMed]
  7. Isloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825–830. [DOI] [PubMed]
  8. Kalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Heterocycl. Chem 13, 245–248.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051858/is2640sup1.cif

e-67-0o163-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051858/is2640Isup2.hkl

e-67-0o163-Isup2.hkl (138.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES