Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 8;67(Pt 1):o51. doi: 10.1107/S1600536810050476

(RS)-1-[5-(2-Chloro­prop­yl)indolin-1-yl]ethanone

Xue-Mei Yang a,*
PMCID: PMC3050396  PMID: 21522761

Abstract

In the title compound, C13H16ClNO, the acetyl­indoline moiety is roughly planar (r.m.s. deviation = 0.0048 Å). The chloro­propyl group is out of the plane and is statistically disordered over two positions. Indeed, the Cl and CH3 groups located on the stereogenic carbon exchange with each other. The whole crystal is a racemate. Non-classical C—H⋯O hydrogen bonds between symmetry-related benzene rings stabilize the crystal structure.

Related literature

The title compound was synthesized as an inter­mediate in the search for a new synthetic route to silodosin, an adrenoceptor antagonist, see: Asselin et al. (2000); Bremner et al. (2000); Elworthy et al. (1997); Sorbera et al. (2001). For related structures, see: Moreno et al. (1998); Wang et al.(2007).graphic file with name e-67-00o51-scheme1.jpg

Experimental

Crystal data

  • C13H16ClNO

  • M r = 237.72

  • Triclinic, Inline graphic

  • a = 6.9041 (5) Å

  • b = 8.4887 (6) Å

  • c = 10.6463 (7) Å

  • α = 76.423 (1)°

  • β = 86.955 (1)°

  • γ = 89.969 (1)°

  • V = 605.61 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.46 × 0.41 × 0.22 mm

Data collection

  • Bruker AXS SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.877, T max = 0.938

  • 4719 measured reflections

  • 2343 independent reflections

  • 1915 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.113

  • S = 1.07

  • 2343 reflections

  • 163 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050476/dn2631sup1.cif

e-67-00o51-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050476/dn2631Isup2.hkl

e-67-00o51-Isup2.hkl (115.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.45 3.388 (2) 168
C12—H12A⋯O1i 0.96 2.44 3.388 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Mr Feng Xiaolong for his kind help.

supplementary crystallographic information

Comment

In searching for new synthetic route of silodosin, a adrenoceptor antagonist (Sorbera et al. 2001; Elworthy et al. 1997; Asselin et al. 2000; Bremner et al. 2000), we synthesized the title compound as racemic intermediate.

In the title compound, C13H16ClNO, the acetylindoline moiety is mainly planar with the largest deviation from the plane being 0.0076 (14)Å at C2. The chloropropane being out of the plane with the C12 atom located 1.0254 (0.0028)Å above the plane (Fig. 1). The chloropropane moiety is statistically disordered over two positions. Indeed, the Cl and CH3 located on the stereogenic carbon exchange each other. The geometry within the 1-acetylindoline fragment compares well with related structures as 1-acetylindoline (Moreno et al., 1998) or 1-(trifluoro)acetylindoline (Wang et al., 2007).

Non-classical C—H···O hydrogen bonds (Table 1) link the molecules forming layers parallel to the (1 0 0) plane (Figure 2).

Experimental

1 g of (R/S)-1-(1-acetylindolin-5-yl)-2-chloropropan-1-one was dissolved in 50 ml of trifluroacetic acid, and then 1.067 g of triethylsilane was added dropwise within 20 min in -5¯C. The system was stirred overnight in ambient temperature, then extra trifluroacetic acid was distilled out in reduced pressure. To the resulting oil was added 20 ml of water and 5 ml of n-hexane, and stirred for 10 min. The white precipitate was collected through filtration, washed by n-hexane and dried to get 1.24 g of the targeting product. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution. Spectroscopic analysis: 1H NMR (CDCl3,δ, p.p.m.): 1.519–1.542(d,3H), 2.236(s,3H), 2.882–3.093(t,2H), 3.171–3.227(t,2H), 4.037–4.124(t,2H), 4.147–4.213(t, 1H), 7.009–7.0977(s,2H), 8.111–8.140(d,1H).

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.95Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) and 0.96Å (methine) with Uiso(H) = 1.2Ueq(Caromatic, Cmethine, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).

The Cl and CH3 substituents on the stereogenic carbon are exchanging each other and such disorder induces two configurations. Two sets of positions were defined for the atoms of this group and the site occupation factor of each conformation were refined while restraining their sum to unity and using restraints on C—C and C—Cl distances with the help of SAME and PART instructions within SHELXL97 (Sheldrick, 2008). In the last stage of refinement, the disordered Cl and C atoms were anisotropically refined but the anistropic thermal parameters of the C atoms were restrained to have similar atomic displacement parameters within a tolerance s.u. of 0.01 Å2.

Figures

Fig. 1.

Fig. 1.

Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Only one component of the disorder is shown in the figure for the sake of clarity.

Fig. 2.

Fig. 2.

Partial packing view of compound ( I ), showing the formation of chains along [010] built from hydrogen bonds represented as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x, y-1, z]

Crystal data

C13H16ClNO Z = 2
Mr = 237.72 F(000) = 252
Triclinic, P1 Dx = 1.304 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9041 (5) Å Cell parameters from 2890 reflections
b = 8.4887 (6) Å θ = 2.5–27.0°
c = 10.6463 (7) Å µ = 0.29 mm1
α = 76.423 (1)° T = 173 K
β = 86.955 (1)° Block, colourless
γ = 89.969 (1)° 0.46 × 0.41 × 0.22 mm
V = 605.61 (7) Å3

Data collection

Bruker AXS SMART 1000 CCD diffractometer 2343 independent reflections
Radiation source: fine-focus sealed tube 1915 reflections with I > 2σ(I)
graphite Rint = 0.016
ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −8→8
Tmin = 0.877, Tmax = 0.938 k = −10→10
4719 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2707P] where P = (Fo2 + 2Fc2)/3
2343 reflections (Δ/σ)max = 0.002
163 parameters Δρmax = 0.35 e Å3
5 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.2493 (2) 0.69510 (15) 0.57618 (13) 0.0462 (4)
N1 0.25327 (19) 0.49053 (16) 0.47345 (13) 0.0306 (3)
C1 0.2670 (3) 0.4283 (2) 0.35441 (16) 0.0355 (4)
H1A 0.3925 0.4604 0.3057 0.043*
H1B 0.1605 0.4711 0.2977 0.043*
C2 0.2505 (3) 0.2437 (2) 0.40071 (17) 0.0371 (4)
H2A 0.1365 0.2019 0.3654 0.045*
H2B 0.3686 0.1912 0.3739 0.045*
C3 0.2275 (2) 0.21325 (19) 0.54586 (16) 0.0293 (4)
C4 0.2056 (2) 0.0682 (2) 0.63687 (17) 0.0328 (4)
H4 0.2030 −0.0309 0.6101 0.039*
C5 0.1872 (2) 0.0670 (2) 0.76852 (17) 0.0331 (4)
C6 0.1927 (2) 0.2141 (2) 0.80423 (16) 0.0340 (4)
H6 0.1817 0.2138 0.8936 0.041*
C7 0.2137 (2) 0.3621 (2) 0.71377 (16) 0.0320 (4)
H7 0.2165 0.4614 0.7403 0.038*
C8 0.2304 (2) 0.35962 (19) 0.58388 (15) 0.0278 (4)
C9 0.2613 (2) 0.6503 (2) 0.47457 (18) 0.0337 (4)
C10 0.2848 (3) 0.7693 (2) 0.34518 (19) 0.0404 (4)
H10A 0.2923 0.8797 0.3582 0.061*
H10B 0.1734 0.7598 0.2940 0.061*
H10C 0.4042 0.7460 0.2992 0.061*
C11 0.1537 (3) −0.0898 (2) 0.86977 (18) 0.0422 (5)
H11A 0.0257 −0.1352 0.8581 0.051*
H11B 0.1485 −0.0653 0.9563 0.051*
C12 0.3060 (3) −0.2180 (2) 0.86693 (18) 0.0400 (4)
H12A 0.3065 −0.2493 0.7859 0.048*
Cl1 0.5409 (4) −0.1512 (3) 0.8927 (2) 0.0525 (4) 0.50
C13 0.245 (2) −0.3659 (13) 0.9768 (12) 0.100 (5) 0.50
H13A 0.2548 −0.3380 1.0605 0.150* 0.50
H13B 0.3311 −0.4566 0.9725 0.150* 0.50
H13C 0.1111 −0.3970 0.9672 0.150* 0.50
Cl1B 0.2300 (4) −0.4048 (3) 0.97881 (18) 0.0532 (4) 0.50
C13B 0.4978 (16) −0.1668 (14) 0.9079 (13) 0.102 (5) 0.50
H13D 0.5386 −0.0621 0.8516 0.152* 0.50
H13E 0.5958 −0.2483 0.9009 0.152* 0.50
H13F 0.4834 −0.1567 0.9977 0.152* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0608 (9) 0.0299 (7) 0.0505 (8) 0.0026 (6) −0.0098 (6) −0.0135 (6)
N1 0.0303 (7) 0.0277 (7) 0.0333 (7) 0.0010 (5) −0.0030 (6) −0.0053 (6)
C1 0.0388 (9) 0.0357 (9) 0.0312 (9) 0.0025 (7) −0.0018 (7) −0.0063 (7)
C2 0.0447 (10) 0.0343 (9) 0.0334 (9) −0.0024 (7) 0.0009 (7) −0.0106 (7)
C3 0.0261 (8) 0.0299 (8) 0.0328 (9) 0.0017 (6) −0.0018 (6) −0.0092 (7)
C4 0.0309 (8) 0.0268 (8) 0.0409 (10) 0.0031 (6) −0.0008 (7) −0.0087 (7)
C5 0.0260 (8) 0.0341 (9) 0.0357 (9) 0.0046 (7) −0.0005 (7) −0.0016 (7)
C6 0.0304 (9) 0.0420 (10) 0.0293 (9) 0.0067 (7) −0.0021 (7) −0.0075 (7)
C7 0.0287 (8) 0.0330 (9) 0.0366 (9) 0.0045 (7) −0.0044 (7) −0.0122 (7)
C8 0.0218 (7) 0.0279 (8) 0.0335 (9) 0.0024 (6) −0.0033 (6) −0.0063 (6)
C9 0.0262 (8) 0.0279 (8) 0.0473 (10) 0.0011 (6) −0.0070 (7) −0.0081 (7)
C10 0.0332 (9) 0.0302 (9) 0.0534 (11) 0.0003 (7) −0.0039 (8) −0.0005 (8)
C11 0.0401 (10) 0.0401 (10) 0.0408 (10) 0.0038 (8) 0.0034 (8) 0.0006 (8)
C12 0.0495 (11) 0.0321 (9) 0.0361 (10) 0.0033 (8) −0.0037 (8) −0.0034 (7)
Cl1 0.0513 (8) 0.0619 (10) 0.0492 (7) 0.0144 (6) −0.0190 (6) −0.0190 (7)
C13 0.118 (9) 0.030 (6) 0.136 (8) 0.027 (5) 0.001 (5) 0.009 (4)
Cl1B 0.0777 (10) 0.0273 (10) 0.0482 (8) 0.0008 (7) −0.0027 (6) 0.0036 (5)
C13B 0.081 (7) 0.049 (5) 0.161 (10) 0.028 (4) −0.026 (6) 0.006 (5)

Geometric parameters (Å, °)

O1—C9 1.227 (2) C7—H7 0.9500
N1—C9 1.360 (2) C9—C10 1.506 (3)
N1—C8 1.417 (2) C10—H10A 0.9800
N1—C1 1.482 (2) C10—H10B 0.9800
C1—C2 1.531 (2) C10—H10C 0.9800
C1—H1A 0.9900 C11—C12 1.517 (3)
C1—H1B 0.9900 C11—H11A 0.9900
C2—C3 1.505 (2) C11—H11B 0.9900
C2—H2A 0.9900 C12—C13B 1.511 (10)
C2—H2B 0.9900 C12—C13 1.543 (10)
C3—C4 1.379 (2) C12—Cl1 1.774 (3)
C3—C8 1.395 (2) C12—Cl1B 1.804 (3)
C4—C5 1.398 (2) C12—H12A 0.9604
C4—H4 0.9500 C13—H13A 0.9800
C5—C6 1.389 (3) C13—H13B 0.9800
C5—C11 1.513 (2) C13—H13C 0.9800
C6—C7 1.395 (2) C13B—H13D 0.9800
C6—H6 0.9500 C13B—H13E 0.9800
C7—C8 1.387 (2) C13B—H13F 0.9800
C9—N1—C8 125.79 (15) H10A—C10—H10B 109.5
C9—N1—C1 124.26 (14) C9—C10—H10C 109.5
C8—N1—C1 109.95 (13) H10A—C10—H10C 109.5
N1—C1—C2 105.54 (13) H10B—C10—H10C 109.5
N1—C1—H1A 110.6 C5—C11—C12 114.95 (15)
C2—C1—H1A 110.6 C5—C11—H11A 108.5
N1—C1—H1B 110.6 C12—C11—H11A 108.5
C2—C1—H1B 110.6 C5—C11—H11B 108.5
H1A—C1—H1B 108.8 C12—C11—H11B 108.5
C3—C2—C1 104.39 (13) H11A—C11—H11B 107.5
C3—C2—H2A 110.9 C13B—C12—C11 110.8 (5)
C1—C2—H2A 110.9 C13B—C12—C13 103.1 (7)
C3—C2—H2B 110.9 C11—C12—C13 106.5 (6)
C1—C2—H2B 110.9 C13B—C12—Cl1 7.7 (6)
H2A—C2—H2B 108.9 C11—C12—Cl1 112.22 (16)
C4—C3—C8 120.53 (15) C13—C12—Cl1 109.3 (6)
C4—C3—C2 129.25 (15) C13B—C12—Cl1B 107.8 (5)
C8—C3—C2 110.22 (14) C11—C12—Cl1B 109.45 (16)
C3—C4—C5 120.04 (15) C13—C12—Cl1B 7.6 (6)
C3—C4—H4 120.0 Cl1—C12—Cl1B 113.43 (15)
C5—C4—H4 120.0 C13B—C12—H12A 117.2
C6—C5—C4 118.45 (15) C11—C12—H12A 109.8
C6—C5—C11 120.51 (16) C13—C12—H12A 108.8
C4—C5—C11 120.99 (16) Cl1—C12—H12A 110.2
C5—C6—C7 122.45 (16) Cl1B—C12—H12A 101.2
C5—C6—H6 118.8 C12—C13—H13A 109.5
C7—C6—H6 118.8 C12—C13—H13B 109.5
C8—C7—C6 117.80 (15) H13A—C13—H13B 109.5
C8—C7—H7 121.1 C12—C13—H13C 109.5
C6—C7—H7 121.1 H13A—C13—H13C 109.5
C7—C8—C3 120.73 (15) H13B—C13—H13C 109.5
C7—C8—N1 129.36 (15) C12—C13B—H13D 109.5
C3—C8—N1 109.90 (14) C12—C13B—H13E 109.5
O1—C9—N1 121.52 (16) H13D—C13B—H13E 109.5
O1—C9—C10 121.67 (16) C12—C13B—H13F 109.5
N1—C9—C10 116.80 (16) H13D—C13B—H13F 109.5
C9—C10—H10A 109.5 H13E—C13B—H13F 109.5
C9—C10—H10B 109.5
C9—N1—C1—C2 −179.87 (15) C4—C3—C8—N1 −179.69 (14)
C8—N1—C1—C2 −0.04 (18) C2—C3—C8—N1 0.25 (18)
N1—C1—C2—C3 0.17 (17) C9—N1—C8—C7 −0.8 (3)
C1—C2—C3—C4 179.67 (16) C1—N1—C8—C7 179.34 (16)
C1—C2—C3—C8 −0.26 (18) C9—N1—C8—C3 179.70 (14)
C8—C3—C4—C5 −0.4 (2) C1—N1—C8—C3 −0.13 (18)
C2—C3—C4—C5 179.70 (16) C8—N1—C9—O1 0.2 (3)
C3—C4—C5—C6 −0.4 (2) C1—N1—C9—O1 −179.96 (16)
C3—C4—C5—C11 177.16 (15) C8—N1—C9—C10 −179.55 (14)
C4—C5—C6—C7 0.7 (2) C1—N1—C9—C10 0.3 (2)
C11—C5—C6—C7 −176.83 (15) C6—C5—C11—C12 −125.81 (18)
C5—C6—C7—C8 −0.3 (2) C4—C5—C11—C12 56.7 (2)
C6—C7—C8—C3 −0.4 (2) C5—C11—C12—C13B 68.4 (6)
C6—C7—C8—N1 −179.86 (15) C5—C11—C12—C13 179.9 (6)
C4—C3—C8—C7 0.8 (2) C5—C11—C12—Cl1 60.3 (2)
C2—C3—C8—C7 −179.27 (14) C5—C11—C12—Cl1B −172.81 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.95 2.45 3.388 (2) 168.
C12—H12A···O1i 0.96 2.44 3.388 (2) 169.

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2631).

References

  1. Asselin, A. A., Humber, L. G., Crocilla, D., Oshiro, G., Wojdan, A., Grimes, D., Heaslip, R. J., Rimele, T. J. & Shaw, C. C. (2000). J. Med. Chem. 29, 1009–1015. [DOI] [PubMed]
  2. Bremner, J. B., Coban, B., Griffith, G., Groenewoud, K. M. & Yates, B. F. (2000). Bioorg. Med. Chem. 8, 201–214. [DOI] [PubMed]
  3. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  6. Elworthy, T. R., Ford, A. P., Bantle, G. W. & Morgans, D. J. (1997). J. Med. Chem. 40, 2674–2687. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Moreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365–373.
  9. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany
  10. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sorbera, L. A., Caster, J. & Silvestre, J. S. (2001). Drugs Fut. 26, 553–555.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Wang, Z., Wan, W., Jiang, H. & Hao, J. (2007). J. Org. Chem. 72, 9364–9367. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050476/dn2631sup1.cif

e-67-00o51-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050476/dn2631Isup2.hkl

e-67-00o51-Isup2.hkl (115.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES