Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 15;67(Pt 1):o122. doi: 10.1107/S1600536810050129

4-Carbamoylpiperidinium 5-nitro­salicylate

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC3050397  PMID: 21522633

Abstract

In the crystal structure of the title compound, C6H13N2O+·C7H4NO5 , the isonipecotamide cations and the 5-nitro­salicylate anions form hydrogen-bonded chain substructures through head-to-tail piperidinium–carboxyl­ate N—H⋯O hydrogen bonds and through centrosymmetric cyclic head-to-head amide–amide hydrogen-bonding associations [graph set R 2 2(8)]. These chains are cross-linked by amide–carboxyl­ate N—H⋯O and piperidinium–nitro N—H⋯O associations, giving a sheet structure.

Related literature

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith & Wermuth (2010a ,b ,c ,d ). For structures of 5-nitro­salicylates, see: Smith et al. (2005). For hydrogen-bonding graph-set and motif classification, see: Etter et al. (1990); Allen et al. (1998).graphic file with name e-67-0o122-scheme1.jpg

Experimental

Crystal data

  • C6H13N2O+·C7H4NO5

  • M r = 311.30

  • Monoclinic, Inline graphic

  • a = 15.0442 (10) Å

  • b = 5.5851 (3) Å

  • c = 17.1939 (10) Å

  • β = 91.466 (6)°

  • V = 1444.22 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.40 × 0.25 × 0.16 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.912, T max = 0.980

  • 9191 measured reflections

  • 2833 independent reflections

  • 1850 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.092

  • S = 0.95

  • 2833 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050129/bt5426sup1.cif

e-67-0o122-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050129/bt5426Isup2.hkl

e-67-0o122-Isup2.hkl (136.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O12i 1.00 (2) 1.71 (2) 2.688 (2) 164.2 (18)
N1A—H12A⋯O11 0.95 (2) 1.80 (2) 2.747 (2) 173.9 (17)
N41A—H41A⋯O52ii 0.83 (2) 2.39 (2) 3.216 (2) 170.8 (19)
N41A—H42A⋯O41Aiii 0.99 (2) 1.91 (2) 2.873 (2) 164.8 (18)
O2—H2⋯O12 0.96 (2) 1.58 (2) 2.4897 (18) 156 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The structures of a number of salts of the amide piperidine-4-carboxamide (isonipecotamide, INIPA) with a range of carboxylic acids, mainly aromatic, are now known (Smith & Wermuth, 2010a, 2010b, 2010c, Smith & Wermuth, 2010d,; Smith et al., 2010). The title compound C6H13N2O+ C7H4NO5- (I) was obtained from the 1:1 stoichiometric reaction of 5-nitrosalicylic acid with INIPA in methanol and the structure is reported here.

In (I) (Fig. 1) the cations and anions form hydrogn-bonded chain substructures through head-to-tail piperidinium NH···Ocarboxyl hydrogen bonds and through centrosymmetric cyclic head-to-head amide–amide hydrogen-bonding associations [graph set R22(8) (Etter et al., 1990)]. These chains are cross linked by amide NH···Ocarboxyl and piperidinium NH···Onitro associations to giving a two-dimensional sheet structure (Fig. 2). The amide-amide dimer association [the 'amide motif' (Allen et al., 1998)] is relatively common among the INIPA salts (Smith & Wermuth, 2010b; Smith et al., 2010).

The 5-nitrosalicylate anions are essentially planar [torsion angles for the carboxyl group (C2–C1–C11–O11), 178.30 (16)° and the nitro group (C4–C5–N5–O52), -175.57 (16)°], which is the usual conformation for this anion in its proton-transfer compounds (Smith et al., 2005).

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of piperidine-4-carboxamide (isonipecotamide) and 5-nitrosalicylic acid in 50 ml of methanol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale yellow prisms of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions using a riding-model approximation [C—H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom naming scheme for the INIPA cation and the 5-nitrosalicylate anion in (I). The inter-species hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

The hydrogen-bonded chain substructures in (I) showing the cyclic R22(8) amide–amide and cation–anion associations. Non-associative H atoms are omitted and hydrogen bonds are shown as dashed lines. For symmetry codes, see Table 1.

Crystal data

C6H13N2O+·C7H4NO5 F(000) = 656
Mr = 311.30 Dx = 1.432 Mg m3
Monoclinic, P21/n Melting point: 463 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 15.0442 (10) Å Cell parameters from 3270 reflections
b = 5.5851 (3) Å θ = 3.6–28.7°
c = 17.1939 (10) Å µ = 0.12 mm1
β = 91.466 (6)° T = 200 K
V = 1444.22 (15) Å3 Prism, pale yellow
Z = 4 0.40 × 0.25 × 0.16 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2833 independent reflections
Radiation source: Enhance (Mo)X-ray source 1850 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.6°
ω scans h = −18→18
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −6→6
Tmin = 0.912, Tmax = 0.980 l = −12→21
9191 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0486P)2] where P = (Fo2 + 2Fc2)/3
2833 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O41A 0.44900 (9) 0.0250 (2) 0.90133 (7) 0.0575 (5)
N1A 0.39663 (10) 0.5656 (3) 0.69549 (9) 0.0452 (6)
N41A 0.54984 (11) 0.2658 (4) 0.96084 (10) 0.0480 (6)
C2A 0.49383 (12) 0.5253 (3) 0.70538 (12) 0.0545 (7)
C3A 0.51390 (12) 0.3391 (3) 0.76686 (10) 0.0516 (7)
C4A 0.47324 (11) 0.4101 (3) 0.84420 (9) 0.0423 (6)
C5A 0.37359 (11) 0.4529 (3) 0.83207 (10) 0.0451 (6)
C6A 0.35478 (11) 0.6369 (3) 0.76956 (10) 0.0463 (6)
C41A 0.48930 (12) 0.2177 (3) 0.90488 (10) 0.0435 (6)
O2 0.40541 (10) −0.1530 (2) 0.42604 (8) 0.0605 (5)
O11 0.32739 (8) 0.1529 (2) 0.63160 (7) 0.0507 (4)
O12 0.39253 (9) −0.1469 (3) 0.57010 (7) 0.0600 (5)
O51 0.16400 (10) 0.7176 (3) 0.34253 (8) 0.0729 (6)
O52 0.17024 (9) 0.7584 (2) 0.46713 (8) 0.0562 (5)
N5 0.19077 (10) 0.6528 (3) 0.40756 (9) 0.0510 (6)
C1 0.32654 (11) 0.1565 (3) 0.49283 (9) 0.0388 (6)
C2 0.35489 (12) 0.0445 (3) 0.42422 (10) 0.0460 (6)
C3 0.32936 (13) 0.1368 (4) 0.35198 (10) 0.0550 (7)
C4 0.27649 (13) 0.3354 (4) 0.34625 (10) 0.0529 (7)
C5 0.24816 (11) 0.4452 (3) 0.41392 (9) 0.0423 (6)
C6 0.27300 (11) 0.3580 (3) 0.48665 (9) 0.0396 (6)
C11 0.35061 (12) 0.0510 (3) 0.57113 (10) 0.0443 (6)
H4A 0.50110 0.55900 0.86250 0.0510*
H11A 0.3874 (12) 0.689 (4) 0.6540 (12) 0.065 (6)*
H12A 0.3699 (12) 0.422 (4) 0.6763 (11) 0.063 (6)*
H21A 0.52260 0.67460 0.72000 0.0650*
H22A 0.51770 0.47330 0.65630 0.0650*
H31A 0.57780 0.32230 0.77390 0.0620*
H32A 0.49000 0.18580 0.75010 0.0620*
H41A 0.5753 (13) 0.398 (4) 0.9620 (11) 0.054 (7)*
H42A 0.5568 (13) 0.147 (4) 1.0029 (12) 0.075 (7)*
H51A 0.34480 0.30340 0.81770 0.0540*
H52A 0.34870 0.50710 0.88050 0.0540*
H61A 0.29100 0.65250 0.76110 0.0560*
H62A 0.37790 0.79110 0.78630 0.0560*
H2 0.4119 (15) −0.184 (4) 0.4809 (14) 0.109 (9)*
H3 0.34850 0.06260 0.30700 0.0660*
H4 0.25970 0.39640 0.29770 0.0630*
H6 0.25380 0.43450 0.53130 0.0470*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O41A 0.0736 (9) 0.0473 (8) 0.0500 (8) 0.0056 (7) −0.0280 (7) −0.0127 (6)
N1A 0.0518 (10) 0.0467 (10) 0.0368 (9) −0.0015 (8) −0.0070 (7) −0.0078 (8)
N41A 0.0472 (10) 0.0463 (10) 0.0495 (10) 0.0124 (9) −0.0208 (8) −0.0123 (9)
C2A 0.0482 (12) 0.0624 (13) 0.0531 (12) 0.0009 (10) 0.0056 (9) −0.0120 (10)
C3A 0.0439 (11) 0.0576 (12) 0.0530 (12) 0.0122 (9) −0.0014 (9) −0.0134 (10)
C4A 0.0421 (10) 0.0420 (10) 0.0420 (10) 0.0090 (8) −0.0125 (8) −0.0149 (8)
C5A 0.0422 (10) 0.0580 (11) 0.0348 (10) 0.0155 (9) −0.0066 (8) −0.0066 (9)
C6A 0.0429 (10) 0.0561 (11) 0.0396 (10) 0.0127 (9) −0.0066 (8) −0.0080 (9)
C41A 0.0418 (10) 0.0454 (11) 0.0426 (10) 0.0189 (9) −0.0139 (8) −0.0195 (9)
O2 0.0834 (10) 0.0489 (8) 0.0501 (8) −0.0077 (8) 0.0216 (8) −0.0104 (7)
O11 0.0597 (8) 0.0621 (8) 0.0303 (7) −0.0163 (7) −0.0002 (6) −0.0097 (6)
O12 0.0762 (10) 0.0563 (8) 0.0474 (8) 0.0017 (8) 0.0024 (7) −0.0007 (7)
O51 0.0929 (11) 0.0800 (11) 0.0455 (8) −0.0009 (8) −0.0025 (8) 0.0174 (7)
O52 0.0630 (9) 0.0544 (8) 0.0516 (9) −0.0081 (7) 0.0075 (7) −0.0025 (7)
N5 0.0580 (10) 0.0546 (10) 0.0406 (10) −0.0209 (9) 0.0067 (8) 0.0033 (8)
C1 0.0423 (10) 0.0414 (10) 0.0331 (10) −0.0211 (9) 0.0064 (7) −0.0067 (8)
C2 0.0590 (12) 0.0407 (10) 0.0390 (11) −0.0221 (9) 0.0148 (9) −0.0066 (9)
C3 0.0810 (15) 0.0528 (12) 0.0322 (11) −0.0223 (11) 0.0224 (10) −0.0069 (9)
C4 0.0715 (14) 0.0585 (12) 0.0291 (10) −0.0264 (11) 0.0099 (9) 0.0020 (9)
C5 0.0483 (11) 0.0438 (11) 0.0352 (10) −0.0184 (9) 0.0073 (8) 0.0017 (8)
C6 0.0430 (10) 0.0457 (10) 0.0302 (9) −0.0230 (9) 0.0056 (7) −0.0079 (8)
C11 0.0453 (11) 0.0505 (11) 0.0369 (11) −0.0208 (9) 0.0001 (8) −0.0070 (9)

Geometric parameters (Å, °)

O41A—C41A 1.236 (2) C2A—H22A 0.9700
O2—C2 1.340 (2) C2A—H21A 0.9700
O11—C11 1.243 (2) C3A—H31A 0.9700
O12—C11 1.273 (2) C3A—H32A 0.9700
O51—N5 1.233 (2) C4A—H4A 0.9800
O52—N5 1.228 (2) C5A—H51A 0.9700
O2—H2 0.96 (2) C5A—H52A 0.9700
N1A—C6A 1.489 (2) C6A—H62A 0.9700
N1A—C2A 1.485 (2) C6A—H61A 0.9700
N41A—C41A 1.335 (2) C1—C6 1.386 (2)
N1A—H12A 0.95 (2) C1—C11 1.505 (2)
N1A—H11A 1.00 (2) C1—C2 1.411 (2)
N41A—H41A 0.83 (2) C2—C3 1.390 (3)
N41A—H42A 0.99 (2) C3—C4 1.367 (3)
N5—C5 1.448 (2) C4—C5 1.392 (2)
C2A—C3A 1.508 (3) C5—C6 1.385 (2)
C3A—C4A 1.530 (2) C3—H3 0.9300
C4A—C5A 1.527 (2) C4—H4 0.9300
C4A—C41A 1.513 (2) C6—H6 0.9300
C5A—C6A 1.509 (2)
C2—O2—H2 102.4 (13) C5A—C4A—H4A 109.00
C2A—N1A—C6A 112.29 (14) C3A—C4A—H4A 109.00
C2A—N1A—H12A 108.5 (12) C4A—C5A—H52A 109.00
C6A—N1A—H11A 111.8 (12) C6A—C5A—H51A 109.00
H11A—N1A—H12A 106.5 (17) C4A—C5A—H51A 109.00
C6A—N1A—H12A 109.7 (11) C6A—C5A—H52A 109.00
C2A—N1A—H11A 107.8 (11) H51A—C5A—H52A 108.00
H41A—N41A—H42A 122.7 (18) H61A—C6A—H62A 108.00
C41A—N41A—H42A 116.8 (12) C5A—C6A—H61A 110.00
C41A—N41A—H41A 120.1 (13) C5A—C6A—H62A 110.00
O51—N5—O52 122.14 (16) N1A—C6A—H61A 109.00
O51—N5—C5 118.93 (15) N1A—C6A—H62A 110.00
O52—N5—C5 118.93 (14) C2—C1—C11 120.22 (15)
N1A—C2A—C3A 111.33 (15) C6—C1—C11 120.82 (14)
C2A—C3A—C4A 110.68 (14) C2—C1—C6 118.90 (15)
C3A—C4A—C41A 110.79 (14) O2—C2—C1 121.94 (15)
C5A—C4A—C41A 110.14 (14) O2—C2—C3 118.03 (16)
C3A—C4A—C5A 109.56 (13) C1—C2—C3 120.02 (16)
C4A—C5A—C6A 111.69 (14) C2—C3—C4 120.82 (17)
N1A—C6A—C5A 110.57 (14) C3—C4—C5 119.17 (16)
O41A—C41A—N41A 122.38 (17) N5—C5—C6 119.77 (14)
N41A—C41A—C4A 116.62 (16) C4—C5—C6 121.25 (16)
O41A—C41A—C4A 120.99 (15) N5—C5—C4 118.98 (15)
N1A—C2A—H21A 109.00 C1—C6—C5 119.84 (15)
N1A—C2A—H22A 109.00 O11—C11—C1 120.16 (15)
C3A—C2A—H21A 109.00 O12—C11—C1 115.81 (15)
C3A—C2A—H22A 109.00 O11—C11—O12 123.99 (16)
H21A—C2A—H22A 108.00 C2—C3—H3 120.00
C2A—C3A—H32A 110.00 C4—C3—H3 120.00
C4A—C3A—H31A 109.00 C3—C4—H4 120.00
C2A—C3A—H31A 110.00 C5—C4—H4 120.00
C4A—C3A—H32A 109.00 C1—C6—H6 120.00
H31A—C3A—H32A 108.00 C5—C6—H6 120.00
C41A—C4A—H4A 109.00
C6A—N1A—C2A—C3A 56.83 (19) C6—C1—C2—C3 0.2 (3)
C2A—N1A—C6A—C5A −56.01 (18) C11—C1—C2—O2 −1.8 (3)
O51—N5—C5—C4 4.5 (2) C11—C1—C2—C3 177.28 (17)
O51—N5—C5—C6 −174.74 (16) C2—C1—C6—C5 0.2 (2)
O52—N5—C5—C4 −175.57 (16) C11—C1—C6—C5 −176.88 (16)
O52—N5—C5—C6 5.2 (2) C2—C1—C11—O11 178.30 (16)
N1A—C2A—C3A—C4A −56.37 (19) C2—C1—C11—O12 −3.8 (2)
C2A—C3A—C4A—C5A 55.43 (18) C6—C1—C11—O11 −4.7 (3)
C2A—C3A—C4A—C41A 177.15 (14) C6—C1—C11—O12 173.26 (16)
C5A—C4A—C41A—O41A 49.2 (2) O2—C2—C3—C4 178.81 (18)
C5A—C4A—C41A—N41A −132.02 (17) C1—C2—C3—C4 −0.3 (3)
C3A—C4A—C41A—O41A −72.2 (2) C2—C3—C4—C5 0.0 (3)
C3A—C4A—C5A—C6A −55.62 (18) C3—C4—C5—N5 −178.83 (17)
C41A—C4A—C5A—C6A −177.72 (14) C3—C4—C5—C6 0.4 (3)
C3A—C4A—C41A—N41A 106.61 (18) N5—C5—C6—C1 178.76 (15)
C4A—C5A—C6A—N1A 55.72 (18) C4—C5—C6—C1 −0.5 (3)
C6—C1—C2—O2 −178.84 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H11A···O12i 1.00 (2) 1.71 (2) 2.688 (2) 164.2 (18)
N1A—H12A···O11 0.95 (2) 1.80 (2) 2.747 (2) 173.9 (17)
N41A—H41A···O52ii 0.83 (2) 2.39 (2) 3.216 (2) 170.8 (19)
N41A—H42A···O41Aiii 0.99 (2) 1.91 (2) 2.873 (2) 164.8 (18)
O2—H2···O12 0.96 (2) 1.58 (2) 2.4897 (18) 156 (2)
C2A—H22A···O2iv 0.97 2.57 3.450 (2) 150
C6A—H61A···O11v 0.97 2.60 3.263 (2) 126
C6A—H62A···O41Ai 0.97 2.58 3.417 (2) 145

Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1, −y, −z+2; (iv) −x+1, −y, −z+1; (v) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5426).

References

  1. Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun., pp. 1043–1044.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Smith, G., Hartono, A. W., Wermuth, U. D., Healy, P. C., White, J. M. & Rae, A. D. (2005). Aust. J. Chem. 58, 47–52.
  8. Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o609–o613. [DOI] [PubMed]
  9. Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o614–o618. [DOI] [PubMed]
  10. Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o3162. [DOI] [PMC free article] [PubMed]
  11. Smith, G. & Wermuth, U. D. (2010d). Acta Cryst. E66, o3260. [DOI] [PMC free article] [PubMed]
  12. Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160–o3161. [DOI] [PMC free article] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050129/bt5426sup1.cif

e-67-0o122-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050129/bt5426Isup2.hkl

e-67-0o122-Isup2.hkl (136.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES