Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 4;67(Pt 1):o16. doi: 10.1107/S1600536810049895

5-(4-Hy­droxy-3-meth­oxy­benz­yl)-1,3-thia­zolidine-2,4-dione monohydrate

Li-Yan Xiong a, Ting-Fang Wang b, Li-Ping Zheng b, Chuan Zhang a,*, Feng-Chun Wang c
PMCID: PMC3050404  PMID: 21522666

Abstract

In the title compound, C11H11NO4S·H2O, the five-membered thia­zolidine ring is nearly planar, with a maximum deviation of 0.010 (2) Å. The dihedral angle between the thia­zolidine and benzene rings is 49.16 (9)°. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the therapeutic and pharmacological properties of thia­zolidinediones, see: Day (1999); Spiegelman (1998). For the synthesis of the title compound, see: Madhavan et al. (2002); Shoda et al. (1983). For related structures, see: Divjaković et al. (1991); Yathirajan et al. (2005).graphic file with name e-67-00o16-scheme1.jpg

Experimental

Crystal data

  • C11H11NO4S·H2O

  • M r = 271.28

  • Monoclinic, Inline graphic

  • a = 10.684 (4) Å

  • b = 8.151 (3) Å

  • c = 14.747 (5) Å

  • β = 99.657 (4)°

  • V = 1266.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.960, T max = 0.974

  • 4985 measured reflections

  • 2226 independent reflections

  • 1902 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.119

  • S = 1.05

  • 2226 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049895/xu5102sup1.cif

e-67-00o16-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049895/xu5102Isup2.hkl

e-67-00o16-Isup2.hkl (109.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 2.03 2.886 (2) 174
O4—H4A⋯O5ii 0.82 1.87 2.685 (2) 171
O5—H5A⋯O3 0.82 (5) 2.19 (5) 2.962 (2) 156 (4)
O5—H5A⋯O4 0.82 (5) 2.37 (4) 2.947 (2) 127 (4)
O5—H5B⋯O1iii 0.85 (3) 1.97 (3) 2.795 (3) 163 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This study was supported by the Science and Technology Commission of Shanghai special purpose for modernization of traditional Chinese medicine in 2008 (No 08DZ1970802) and the National Basic Research Program of China (No 2006CB504100 and 2009CB521907).

supplementary crystallographic information

Comment

Thiazolidinediones (TZDs), which are known to sensitize tissues to insulin, have been developed and clinically used as antidiabetic agents. They have been shown to reduce plasma glucose, lipid, and insulin levels, and used for the treatment of type 2 diabetes (Day, 1999; Spiegelman, 1998). Prompted by the activity of TZDs, we have synthesized the title compound to study its crystal structure.

The asymmetric unit contains a 5-(4-hydroxy-3-methoxybenzyl)thiazolidine-2,4-dione molecule and a solvate water molecule (Fig. 1). The geometric parameter of the title compoundare to its related structures (Divjakovic et al., 1991; Yathirajan et al., 2005). The dihedral angle between the thiazolidinedione ring [S1/C2/N3/C4/C5] and the benzene ring [C7–C12] is 49.16 (9)°. In the crystal packing (Fig. 2), the molecules are linked via intermolecular N1—H1···O2 hydrogen bonds. In addition, the molecule is connected to the water molecule by O5—H5···O1, O5—H5···O4, O5—H5···O3 and O4—H4···O5 hydrogen bonds which generate a three dimensional network (Table 1).

Experimental

A mixture of 2,4-tThiazolidinedione (3.51 g, 0.03 mol), 4-hydroxy-3-methoxybenzaldehyde (4.56 g, 0.03 mol), acetic acid (0.18 g, 0.003 mol) and piperidine (0.26 g, 0.003 mol) in toluene (60 ml) was refluxed for 5 h with continuous removal of water. The reaction mixture was cooled to room temperature and the resultant crystalline compound was filtered and washed with water and dried to afford the (Z)-5-(4-hydroxy-3-methoxybenzylidene)thiazolidine-2,4-dione. Yield=7.33 g, 97.3%. To a solution of (Z)-5-(4-hydroxy-3-methoxybenzylidene) thiazolidine-2,4-dione (4 g, 0.016 mol) in 1,4-dioxane (400 ml), hydrogenated in the presence of 10% Pd/C (1.0 g) at 60 psi for 24 h. The mixture was filtered through a bed of Celite. The filtrate was evaporated under reduced pressure and purified by column chromatography using 50:1 CH2Cl2/MeOH to afford the title compound as yellowish solid. Yield = 1.96 g, 48.6% (Madhavan et al., 2002; Shoda et al., 1983). Crystallization of the product was carried out by dissolving the product in 10 ml a solvent mixture of MeOH and water (4:1) at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined using the riding-model approximation with C—H = 0.93–0.97, O—H = 0.82 and N—H = 0.86 Å, and Uiso(H) = 1.5Ueq(C,O) for methyl H and hydroxy H atoms and 1.2Ueq(C,N) for the others.

Figures

Fig. 1.

Fig. 1.

View of the asymmetric unit of the compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C11H11NO4S·H2O F(000) = 568
Mr = 271.28 Dx = 1.423 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 889 reflections
a = 10.684 (4) Å θ = 2.8–27.5°
b = 8.151 (3) Å µ = 0.27 mm1
c = 14.747 (5) Å T = 293 K
β = 99.657 (4)° Block, yellow
V = 1266.0 (8) Å3 0.15 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2226 independent reflections
Radiation source: fine-focus sealed tube 1902 reflections with I > 2σ(I)
graphite Rint = 0.047
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 2.2°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −9→6
Tmin = 0.960, Tmax = 0.974 l = −16→17
4985 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.2943P] where P = (Fo2 + 2Fc2)/3
2226 reflections (Δ/σ)max = 0.001
171 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. 1H NMR (300 MHz, CDCl3): δ 8.72(bar, 1H, N—H), 6.87–6.71 (m, 3H, 8-H, 11-H, 12-H), 5.46 (bar, 1H, 10-OH), 4.47–4.51 (m, 1H, 5-H), 3.83 (s, 3H, 9-OCH3), 3.46 (dd, 1H, j=14.4, 4.2, 3-H), 3.06 (dd, 1H, j=14.1, 9.6, 3-H). 13C NMR (300 MHz, CDCl3): δ 174.5, 167.5, 147.8, 145.7, 132.7, 123.1, 116.7, 114.9, 57.2, 56.1, 36.2. MS(ESI) m/z calc. for C11H11NO4S 253.27, found [M–1]+ 252.15. m.p. 109-110°C
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.49420 (5) 1.06186 (7) 0.70922 (3) 0.0523 (2)
N3 0.51317 (16) 1.07172 (19) 0.88568 (11) 0.0430 (4)
H3 0.5303 1.1072 0.9413 0.052*
C2 0.5427 (2) 1.1623 (3) 0.81421 (15) 0.0529 (5)
C4 0.45618 (17) 0.9243 (2) 0.86643 (12) 0.0383 (4)
C5 0.43481 (18) 0.8857 (2) 0.76418 (12) 0.0403 (4)
H5 0.4868 0.7902 0.7545 0.048*
C6 0.29661 (18) 0.8453 (3) 0.72695 (13) 0.0448 (5)
H6A 0.2706 0.7526 0.7606 0.054*
H6B 0.2440 0.9383 0.7370 0.054*
C7 0.27553 (18) 0.8048 (2) 0.62553 (13) 0.0407 (4)
C8 0.31489 (17) 0.6537 (2) 0.59516 (12) 0.0386 (4)
H8 0.3523 0.5768 0.6378 0.046*
C9 0.29866 (16) 0.6178 (2) 0.50237 (12) 0.0360 (4)
C10 0.24649 (18) 0.7353 (2) 0.43822 (12) 0.0408 (4)
C11 0.2075 (2) 0.8830 (2) 0.46857 (14) 0.0512 (5)
H11 0.1718 0.9613 0.4261 0.061*
C12 0.2206 (2) 0.9167 (2) 0.56175 (14) 0.0504 (5)
H12 0.1918 1.0163 0.5812 0.061*
C13 0.3765 (2) 0.3430 (3) 0.52648 (16) 0.0541 (5)
H13A 0.3955 0.2494 0.4917 0.081*
H13B 0.3128 0.3141 0.5625 0.081*
H13C 0.4520 0.3781 0.5665 0.081*
O1 0.5944 (2) 1.2929 (2) 0.82373 (12) 0.0877 (7)
O2 0.42480 (14) 0.83322 (17) 0.92352 (9) 0.0483 (4)
O3 0.33054 (14) 0.47280 (16) 0.46520 (9) 0.0485 (4)
O4 0.23570 (15) 0.69314 (17) 0.34819 (9) 0.0537 (4)
H4A 0.2034 0.7691 0.3160 0.080*
O5 0.36833 (18) 0.4211 (2) 0.27286 (12) 0.0558 (4)
H5A 0.336 (4) 0.444 (5) 0.318 (3) 0.134 (16)*
H5B 0.376 (3) 0.518 (4) 0.253 (2) 0.085 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0699 (4) 0.0527 (4) 0.0342 (3) −0.0171 (2) 0.0079 (2) 0.0023 (2)
N3 0.0578 (10) 0.0384 (9) 0.0326 (8) −0.0079 (7) 0.0065 (7) −0.0046 (6)
C2 0.0715 (14) 0.0423 (11) 0.0453 (11) −0.0124 (10) 0.0112 (10) −0.0012 (9)
C4 0.0432 (9) 0.0353 (10) 0.0352 (9) −0.0008 (7) 0.0033 (7) −0.0011 (7)
C5 0.0510 (10) 0.0365 (10) 0.0332 (9) −0.0018 (8) 0.0060 (8) −0.0021 (8)
C6 0.0518 (11) 0.0454 (11) 0.0374 (10) −0.0063 (9) 0.0079 (8) −0.0067 (8)
C7 0.0465 (10) 0.0381 (10) 0.0369 (10) −0.0074 (8) 0.0050 (8) −0.0055 (8)
C8 0.0441 (9) 0.0368 (10) 0.0337 (9) −0.0031 (8) 0.0029 (7) 0.0046 (7)
C9 0.0409 (9) 0.0300 (9) 0.0367 (9) −0.0029 (7) 0.0051 (7) −0.0018 (7)
C10 0.0509 (10) 0.0363 (10) 0.0328 (9) −0.0020 (8) 0.0006 (8) −0.0018 (7)
C11 0.0727 (14) 0.0357 (10) 0.0405 (10) 0.0059 (10) −0.0042 (9) 0.0021 (8)
C12 0.0679 (13) 0.0344 (10) 0.0466 (11) 0.0016 (9) 0.0028 (10) −0.0078 (8)
C13 0.0650 (13) 0.0390 (11) 0.0599 (13) 0.0097 (10) 0.0149 (10) 0.0102 (10)
O1 0.1467 (19) 0.0578 (11) 0.0617 (11) −0.0545 (12) 0.0262 (11) −0.0083 (8)
O2 0.0667 (9) 0.0429 (7) 0.0340 (7) −0.0108 (7) 0.0047 (6) 0.0033 (6)
O3 0.0718 (9) 0.0344 (7) 0.0391 (7) 0.0089 (7) 0.0084 (6) 0.0019 (6)
O4 0.0836 (10) 0.0421 (8) 0.0312 (7) 0.0092 (7) −0.0022 (7) −0.0009 (6)
O5 0.0797 (11) 0.0438 (9) 0.0440 (8) 0.0040 (8) 0.0106 (8) −0.0066 (7)

Geometric parameters (Å, °)

S1—C2 1.751 (2) C8—H8 0.9300
S1—C5 1.815 (2) C9—O3 1.370 (2)
N3—C4 1.356 (2) C9—C10 1.395 (3)
N3—C2 1.366 (3) C10—O4 1.358 (2)
N3—H3 0.8600 C10—C11 1.373 (3)
C2—O1 1.197 (3) C11—C12 1.385 (3)
C4—O2 1.211 (2) C11—H11 0.9300
C4—C5 1.520 (2) C12—H12 0.9300
C5—C6 1.523 (3) C13—O3 1.424 (2)
C5—H5 0.9800 C13—H13A 0.9600
C6—C7 1.511 (3) C13—H13B 0.9600
C6—H6A 0.9700 C13—H13C 0.9600
C6—H6B 0.9700 O4—H4A 0.8200
C7—C12 1.370 (3) O5—H5A 0.82 (5)
C7—C8 1.399 (3) O5—H5B 0.85 (3)
C8—C9 1.382 (3)
C2—S1—C5 92.79 (9) C9—C8—C7 120.60 (17)
C4—N3—C2 118.11 (16) C9—C8—H8 119.7
C4—N3—H3 120.9 C7—C8—H8 119.7
C2—N3—H3 120.9 O3—C9—C8 125.52 (16)
O1—C2—N3 123.5 (2) O3—C9—C10 114.77 (15)
O1—C2—S1 125.58 (18) C8—C9—C10 119.71 (17)
N3—C2—S1 110.93 (15) O4—C10—C11 124.07 (17)
O2—C4—N3 124.38 (17) O4—C10—C9 116.61 (16)
O2—C4—C5 123.37 (17) C11—C10—C9 119.31 (17)
N3—C4—C5 112.25 (16) C10—C11—C12 120.76 (18)
C4—C5—C6 112.19 (15) C10—C11—H11 119.6
C4—C5—S1 105.90 (13) C12—C11—H11 119.6
C6—C5—S1 113.61 (13) C7—C12—C11 120.64 (19)
C4—C5—H5 108.3 C7—C12—H12 119.7
C6—C5—H5 108.3 C11—C12—H12 119.7
S1—C5—H5 108.3 O3—C13—H13A 109.5
C7—C6—C5 112.25 (15) O3—C13—H13B 109.5
C7—C6—H6A 109.2 H13A—C13—H13B 109.5
C5—C6—H6A 109.2 O3—C13—H13C 109.5
C7—C6—H6B 109.2 H13A—C13—H13C 109.5
C5—C6—H6B 109.2 H13B—C13—H13C 109.5
H6A—C6—H6B 107.9 C9—O3—C13 118.00 (15)
C12—C7—C8 118.92 (18) C10—O4—H4A 109.5
C12—C7—C6 120.66 (18) H5A—O5—H5B 98 (3)
C8—C7—C6 120.40 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O2i 0.86 2.03 2.886 (2) 174.
O4—H4A···O5ii 0.82 1.87 2.685 (2) 171.
O5—H5A···O3 0.82 (5) 2.19 (5) 2.962 (2) 156 (4)
O5—H5A···O4 0.82 (5) 2.37 (4) 2.947 (2) 127 (4)
O5—H5B···O1iii 0.85 (3) 1.97 (3) 2.795 (3) 163 (3)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5102).

References

  1. Bruker (2003). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Day, C. (1999). Diabet. Med. 16, 179–192. [DOI] [PubMed]
  3. Divjaković, V., Popov-Pergal, K., Pergal, M. & Klement, U. (1991). Acta Cryst. C47, 1760–1761.
  4. Madhavan, G. R., Chakrabarti, R., Vikramadithyan, R. K., Mamidi, R. N. V. S., Balraju, V., Rajesh, B. M., Misra, P., Kumar, S. K. B., Lohray, B. B., Lohraya, V. B. & Rajagopalan, R. (2002). Bioorg. Med. Chem. 10, 2671–2680. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shoda, T., Mizuno, K., Hirata, T., Maki, Y. & Kawamatsu, Y. (1983). Chem. Pharm. Bull. 31, 560–569. [DOI] [PubMed]
  8. Spiegelman, B. M. (1998). Diabetes, 47, 507–514. [DOI] [PubMed]
  9. Yathirajan, H. S., Rai, K. M. L., Gaonkar, S. L., Narasegowda, R. S., Prabhuswamy, B. & Bolte, M. (2005). Acta Cryst. E61, o245–o246.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049895/xu5102sup1.cif

e-67-00o16-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049895/xu5102Isup2.hkl

e-67-00o16-Isup2.hkl (109.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES