Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 15;67(Pt 1):o136. doi: 10.1107/S1600536810051652

6-Meth­oxy-4-methyl-2H-chromen-2-one

Hoong-Kun Fun a,*,, Jia Hao Goh a,§, Dongdong Wu b, Yan Zhang b
PMCID: PMC3050409  PMID: 21522646

Abstract

The whole mol­ecule of the title coumarin derivative, C11H10O3, is approximately planar, with a maximum deviation of 0.116 (3) Å from the least-squares plane defined by all non-H atoms. In the crystal, adjacent mol­ecules are linked into chains along [011] via inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to and applications of the title coumarin derivative, see: Grimm & Girard (2006); Maresca et al. (2010); Parvez & Hadda (2010); Raj & Wenge (1998); Yao & Deng (2000). For related coumarin structures, see: Asad et al. (2010); Saidi et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o136-scheme1.jpg

Experimental

Crystal data

  • C11H10O3

  • M r = 190.19

  • Triclinic, Inline graphic

  • a = 7.2554 (2) Å

  • b = 8.0880 (2) Å

  • c = 8.5450 (2) Å

  • α = 112.988 (1)°

  • β = 90.234 (1)°

  • γ = 93.873 (1)°

  • V = 460.31 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.962, T max = 0.994

  • 10271 measured reflections

  • 2793 independent reflections

  • 1675 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.218

  • S = 1.09

  • 2793 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051652/is2642sup1.cif

e-67-0o136-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051652/is2642Isup2.hkl

e-67-0o136-Isup2.hkl (137.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.93 2.56 3.471 (2) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Fok Ying Tung Education Foundation (114012) is also acknowledged.

supplementary crystallographic information

Comment

Coumarin is the mother-nuclear structure of many natural products and the importance of coumarin and its analogous compounds which exhibit useful pharmaceutical activities are well-known. Some substituted coumarin and their derivatives have been reported as food constituents, anti-oxidants, stabilizers, immunomodulatory substances, inhibitors of some enzymes, fluorescent markers in analysis, lasers, and in clinical use (Parvez & Hadda, 2010; Maresca et al., 2010; Grimm & Girard, 2006). In addition, 4-substituted coumarins have shown many pharmaceutical activities such as anti-bacterial, anti-fungal, anthelmintic, insecticidal, hypnotic and other biological activities, and most precisely 4-methyl-coumarins have been correlated to several beneficial pharmacological effects too (Yao & Deng, 2000; Raj & Wenge, 1998). In view of the importance of the coumarin derivatives, the crystal structure of the title compound is reported in this paper.

The title coumarin derivative (Fig. 1) has an approximately planar molecular structure, with the methoxy-O atom (C10) deviating -0.116 (3) Å from the least-squares plane defined by all non-hydrogen atoms. All bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those related coumarin structures (Asad et al., 2010; Saidi et al., 2007). In the crystal packing (Fig. 2), adjacent molecules are linked into one-dimensional chains propagating along the [011] direction via intermolecular C8—H8A···O2 hydrogen bonds.

Experimental

The title compound was obtained in the photoreaction of 4-(chloromethyl)-6-methoxy-2H-chromen-2-one in visible light. The compound was purified by flash column chromatography. Good quality single crystals suitable for X-ray analysis were obtained from slow evaporation of a 1:1 solution of acetone and petroleum ether.

Refinement

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title coumarin derivative, showing the atomic numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50 % probability level.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis, showing one-dimensional chains propagating along the [011] direction. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C11H10O3 Z = 2
Mr = 190.19 F(000) = 200
Triclinic, P1 Dx = 1.372 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2554 (2) Å Cell parameters from 3241 reflections
b = 8.0880 (2) Å θ = 2.6–30.0°
c = 8.5450 (2) Å µ = 0.10 mm1
α = 112.988 (1)° T = 293 K
β = 90.234 (1)° Plate, yellow
γ = 93.873 (1)° 0.40 × 0.35 × 0.06 mm
V = 460.31 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2793 independent reflections
Radiation source: fine-focus sealed tube 1675 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 30.6°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.962, Tmax = 0.994 k = −11→11
10271 measured reflections l = −11→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0991P)2 + 0.086P] where P = (Fo2 + 2Fc2)/3
2793 reflections (Δ/σ)max < 0.001
129 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.19469 (16) 0.53037 (17) 0.87871 (16) 0.0508 (4)
O2 0.6197 (2) 1.09931 (18) 1.34611 (17) 0.0638 (4)
O3 0.1468 (2) 0.2933 (2) 0.63843 (19) 0.0679 (5)
C1 0.3087 (2) 0.6718 (2) 0.9894 (2) 0.0417 (4)
C2 0.2327 (3) 0.7819 (3) 1.1396 (2) 0.0512 (5)
H2A 0.1101 0.7603 1.1617 0.061*
C3 0.3402 (3) 0.9229 (3) 1.2551 (2) 0.0527 (5)
H3A 0.2901 0.9974 1.3559 0.063*
C4 0.5250 (3) 0.9555 (2) 1.2222 (2) 0.0472 (4)
C5 0.5999 (2) 0.8469 (2) 1.0726 (2) 0.0438 (4)
H5A 0.7225 0.8696 1.0510 0.053*
C6 0.4917 (2) 0.7016 (2) 0.9521 (2) 0.0384 (4)
C7 0.5603 (2) 0.5807 (2) 0.7919 (2) 0.0414 (4)
C8 0.4450 (2) 0.4441 (2) 0.6875 (2) 0.0463 (4)
H8A 0.4895 0.3663 0.5851 0.056*
C9 0.2564 (3) 0.4127 (2) 0.7264 (2) 0.0475 (4)
C10 0.8119 (3) 1.1270 (3) 1.3272 (3) 0.0695 (6)
H10C 0.8624 1.2287 1.4242 0.104*
H10D 0.8317 1.1495 1.2260 0.104*
H10A 0.8718 1.0217 1.3187 0.104*
C11 0.7558 (3) 0.6091 (3) 0.7459 (3) 0.0573 (5)
H11D 0.7824 0.5119 0.6419 0.086*
H11A 0.8387 0.6128 0.8352 0.086*
H11B 0.7713 0.7209 0.7311 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0352 (6) 0.0577 (8) 0.0514 (8) 0.0001 (5) 0.0021 (5) 0.0132 (6)
O2 0.0694 (10) 0.0531 (8) 0.0488 (8) 0.0036 (7) −0.0011 (7) −0.0017 (6)
O3 0.0523 (8) 0.0717 (9) 0.0622 (9) −0.0130 (7) −0.0092 (7) 0.0103 (8)
C1 0.0368 (8) 0.0467 (9) 0.0413 (9) 0.0056 (7) 0.0016 (7) 0.0164 (7)
C2 0.0411 (9) 0.0600 (11) 0.0516 (11) 0.0141 (8) 0.0130 (8) 0.0193 (9)
C3 0.0579 (11) 0.0553 (11) 0.0413 (10) 0.0187 (9) 0.0120 (8) 0.0125 (8)
C4 0.0541 (11) 0.0434 (9) 0.0394 (9) 0.0087 (8) −0.0003 (8) 0.0104 (7)
C5 0.0400 (9) 0.0467 (9) 0.0416 (9) 0.0039 (7) 0.0031 (7) 0.0139 (7)
C6 0.0362 (8) 0.0418 (8) 0.0367 (8) 0.0073 (6) 0.0023 (6) 0.0141 (7)
C7 0.0384 (9) 0.0457 (9) 0.0387 (9) 0.0068 (7) 0.0042 (7) 0.0145 (7)
C8 0.0461 (10) 0.0480 (9) 0.0388 (9) 0.0059 (7) 0.0031 (7) 0.0102 (7)
C9 0.0429 (9) 0.0511 (10) 0.0440 (10) 0.0006 (8) −0.0033 (7) 0.0144 (8)
C10 0.0654 (14) 0.0596 (12) 0.0646 (14) −0.0073 (10) −0.0111 (11) 0.0060 (10)
C11 0.0466 (10) 0.0633 (12) 0.0508 (11) 0.0045 (9) 0.0119 (8) 0.0100 (9)

Geometric parameters (Å, °)

O1—C9 1.377 (2) C5—H5A 0.9300
O1—C1 1.381 (2) C6—C7 1.450 (2)
O2—C4 1.367 (2) C7—C8 1.348 (2)
O2—C10 1.417 (3) C7—C11 1.500 (2)
O3—C9 1.206 (2) C8—C9 1.438 (3)
C1—C2 1.387 (2) C8—H8A 0.9300
C1—C6 1.394 (2) C10—H10C 0.9600
C2—C3 1.370 (3) C10—H10D 0.9600
C2—H2A 0.9300 C10—H10A 0.9600
C3—C4 1.400 (3) C11—H11D 0.9600
C3—H3A 0.9300 C11—H11A 0.9600
C4—C5 1.376 (2) C11—H11B 0.9600
C5—C6 1.407 (2)
C9—O1—C1 121.54 (14) C8—C7—C11 121.52 (15)
C4—O2—C10 117.77 (15) C6—C7—C11 119.97 (15)
O1—C1—C2 116.85 (15) C7—C8—C9 123.28 (16)
O1—C1—C6 121.51 (15) C7—C8—H8A 118.4
C2—C1—C6 121.65 (16) C9—C8—H8A 118.4
C3—C2—C1 119.36 (17) O3—C9—O1 116.69 (17)
C3—C2—H2A 120.3 O3—C9—C8 126.37 (18)
C1—C2—H2A 120.3 O1—C9—C8 116.95 (15)
C2—C3—C4 120.41 (16) O2—C10—H10C 109.5
C2—C3—H3A 119.8 O2—C10—H10D 109.5
C4—C3—H3A 119.8 H10C—C10—H10D 109.5
O2—C4—C5 124.24 (17) O2—C10—H10A 109.5
O2—C4—C3 115.58 (16) H10C—C10—H10A 109.5
C5—C4—C3 120.18 (17) H10D—C10—H10A 109.5
C4—C5—C6 120.30 (16) C7—C11—H11D 109.5
C4—C5—H5A 119.8 C7—C11—H11A 109.5
C6—C5—H5A 119.8 H11D—C11—H11A 109.5
C1—C6—C5 118.10 (15) C7—C11—H11B 109.5
C1—C6—C7 118.22 (15) H11D—C11—H11B 109.5
C5—C6—C7 123.68 (15) H11A—C11—H11B 109.5
C8—C7—C6 118.51 (15)
C9—O1—C1—C2 −179.81 (14) C2—C1—C6—C7 −179.76 (15)
C9—O1—C1—C6 −0.2 (3) C4—C5—C6—C1 −0.1 (3)
O1—C1—C2—C3 179.14 (15) C4—C5—C6—C7 −179.79 (14)
C6—C1—C2—C3 −0.4 (3) C1—C6—C7—C8 −0.8 (2)
C1—C2—C3—C4 −0.1 (3) C5—C6—C7—C8 178.89 (15)
C10—O2—C4—C5 −6.8 (3) C1—C6—C7—C11 179.31 (16)
C10—O2—C4—C3 173.65 (17) C5—C6—C7—C11 −1.0 (3)
C2—C3—C4—O2 −179.84 (16) C6—C7—C8—C9 0.4 (3)
C2—C3—C4—C5 0.6 (3) C11—C7—C8—C9 −179.67 (17)
O2—C4—C5—C6 −179.97 (15) C1—O1—C9—O3 179.91 (15)
C3—C4—C5—C6 −0.4 (3) C1—O1—C9—C8 −0.2 (3)
O1—C1—C6—C5 −178.98 (14) C7—C8—C9—O3 179.99 (18)
C2—C1—C6—C5 0.6 (3) C7—C8—C9—O1 0.1 (3)
O1—C1—C6—C7 0.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O2i 0.93 2.56 3.471 (2) 165

Symmetry codes: (i) x, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2642).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Asad, M., Oo, C.-W., Osman, H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o3129–o3130. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Grimm, E. L. & Girard, Y. (2006). Bioorg. Med. Chem. Lett. 16, 2528–2531. [DOI] [PubMed]
  5. Maresca, A., Scozzafava, A. & Supuran, C. T. (2010). Bioorg. Med. Chem. Lett. 20, 7255–7258. [DOI] [PubMed]
  6. Parvez, A. & Hadda, T. B. (2010). Eur. J. Med. Chem. 18, 4370–4378.
  7. Raj, H. G. & Wenge, J. (1998). Bioorg. Med. Chem. Lett. 6, 833–839. [DOI] [PubMed]
  8. Saidi, N., Mukhtar, M. R., Awang, K., Hadi, A. H. A. & Ng, S. W. (2007). Acta Cryst. E63, o3692–o3693.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Yao, M.-L. & Deng, M.-Z. (2000). Heteroat. Chem. 11, 380–382.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051652/is2642sup1.cif

e-67-0o136-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051652/is2642Isup2.hkl

e-67-0o136-Isup2.hkl (137.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES