Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):m124. doi: 10.1107/S1600536810053006

Azido­[1,2-bis­(diphenyl­phosphan­yl)ethane-κ2 P,P′](η5-inden­yl)ruthenium(II)

Hui-Ling Sung a,*, Hsiu-Ling Hsu b, Ting-Shen Kuo c
PMCID: PMC3050413  PMID: 21522535

Abstract

Facile ligand substitution is observed when the ruthenium chloride complex [Ru(η5-C9H7)Cl(dppe)] (dppe is diphenylphosphanyl ethane) is treated with NaN3 in refluxing ethanol, yielding the title compound, [Ru(η5-C9H7)(N3)(dppe)] or [Ru(C9H7)(N3)(C26H24P2)]. The Ru(II) atom has a typical piano-stool coordination. The Ru—P bond lengths are 2.284 (2) and 2.235 (2) Å. NMR and MS analyses are in agreement with the structure of the title compound.

Related literature

For the synthesis of the title compound, see: Singh et al. (2005). For the chemistry of organic azides, see: Labbe (1969); Patai (1971). For metal–azido complexes, see: Dori & Ziolo (1973); Frühauf (1997). Organic azides are particularly important for the synthesis of heterocyclic compounds by reaction with 1,3-dipole compounds, see: Padwa (1976). Metal–azido complexes have been reported to produce tetra­zolates by reaction with nitrile and isonitriles, see: Beck & Schropp (1975); Ellis & Purcell (1982); Fehlhammer & Dahl (1972); Paul & Nag (1987); Treichel et al. (1971).graphic file with name e-67-0m124-scheme1.jpg

Experimental

Crystal data

  • [Ru(C9H7)(N3)(C26H24P2)]

  • M r = 656.64

  • Monoclinic, Inline graphic

  • a = 11.331 (6) Å

  • b = 14.567 (9) Å

  • c = 17.873 (11) Å

  • β = 96.015 (19)°

  • V = 2934 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 200 K

  • 0.22 × 0.10 × 0.04 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.866, T max = 0.974

  • 20374 measured reflections

  • 5167 independent reflections

  • 2438 reflections with I > 2σ(I)

  • R int = 0.155

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.096

  • S = 0.75

  • 5167 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810053006/rn2075sup1.cif

e-67-0m124-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053006/rn2075Isup2.hkl

e-67-0m124-Isup2.hkl (247.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support of this work by the National Science Council of the Republic of China (NSC Grant No. 97–2113-M-003–007-MY2) and the National Taiwan Normal University (99031012).

supplementary crystallographic information

Comment

Organic azides are particularly important for synthesizing heterocyclic compounds by reaction with 1,3-dipole compounds (Padwa, 1976). Metal azido complexes have been reported to produce tetrazolates by reaction with nitrile (Paul & Nag, 1987; Ellis & Purcell, 1982) and isonitriles (Treichel et al., 1971; Beck & Schropp, 1975; Fehlhammer & Dahl, 1972).

Treatment of the complex [Ru(η5-C9H7)Cl(dppe)] with sodium azide in ethanol afforded the title compound [Ru(η5-C9H7)N3(dppe)] (Figure 1). In the crystal structure of the title compound, the azide groups are almost linear [N(3)—N(2)—N(1)=175.5 (8)°] and are coordinated to Ru with an Ru—N—N angle of 119.0 (5)°.

Experimental

To a solution of [Ru(η5-C9H7)Cl(dppe)] (0.1 g, 0.154 mmol) in ethanol (30 ml), an excess of NaN3 (0.05 g, 0.769 mmol) was added. The mixture was heated to reflux for 4 h and cooled to room temperature. The solvent was dried under vacuum and 10 ml of CH2Cl2 was added to the residue. The product was dissolved in CH2Cl2 and other salts such as NaN3 and NaCl precipitated. After filtration, the solvent of the mixture was concentrated to about 5 ml. The residue was then slowly added to 40 ml of vigorously stirred diethyl ether. The orange precipitate thus formed was filtered off, washed with diethyl ether and hexane and dried under vacuum to give the title compound [Ru(η5-C9H7)N3(dppe)] (0.08 g, 0.122 mmol) in 79% yield. The orange crystals of the title compound for X-ray structure analysis were obtained by slow diffusion of diethyl ether into a CH2Cl2 solution at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): 7.44—7.20 (m, 24H, 20H of Ph group, 4H of indenyl ring), 4.91 (t, 1H, 3JH—H= 1.30 Hz, H of indenyl ring), 5.51 (d, 2H, 3JH—H= 2.15 Hz, H of indenyl ring), 2.38, 2.29 (m, 4H, 2CH2 of dppe). 31P{1H} NMR (CDCl3, 298 K, δ, p.p.m.): 85.3. 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): 141—108 (Ph and indenyl group), 29.2 (t, JC—P= 22.64 Hz, CH2 of dppe). HRMS (ESI, m/z): 657.1 (M+), 615.3 (M+—N3). Anal. Calcd for C35H31N3P2Ru: C, 64.02; H, 4.76; N, 6.40. Found: C, 64.16; H, 4.82; N, 6.28.

Refinement

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, and C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for methylene.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are omitted for clarity.

Crystal data

[Ru(C9H7)(N3)(C26H24P2)] F(000) = 1344
Mr = 656.64 Dx = 1.487 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.331 (6) Å Cell parameters from 1167 reflections
b = 14.567 (9) Å θ = 2.6–19.4°
c = 17.873 (11) Å µ = 0.67 mm1
β = 96.015 (19)° T = 200 K
V = 2934 (3) Å3 Prism, orange-brown
Z = 4 0.22 × 0.10 × 0.04 mm

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 5167 independent reflections
Radiation source: fine-focus sealed tube 2438 reflections with I > 2σ(I)
graphite Rint = 0.155
Detector resolution: 9 pixels mm-1 θmax = 25.0°, θmin = 1.8°
CCD rotation images, thick slices scans h = −13→10
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −16→17
Tmin = 0.866, Tmax = 0.974 l = −21→20
20374 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 0.75 w = 1/[σ2(Fo2) + (0.0072P)2] where P = (Fo2 + 2Fc2)/3
5167 reflections (Δ/σ)max = 0.001
370 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2833 (6) −0.0987 (4) 0.6432 (4) 0.0325 (18)
C2 0.2129 (7) −0.1041 (5) 0.7006 (5) 0.049 (2)
H2 0.2220 −0.0601 0.7401 0.059*
C3 0.1277 (7) −0.1734 (6) 0.7021 (5) 0.059 (3)
H3 0.0776 −0.1764 0.7415 0.071*
C4 0.1185 (8) −0.2362 (6) 0.6459 (6) 0.068 (3)
H4 0.0606 −0.2834 0.6457 0.082*
C5 0.1902 (8) −0.2329 (5) 0.5900 (5) 0.064 (3)
H5 0.1836 −0.2790 0.5522 0.077*
C6 0.2728 (6) −0.1636 (4) 0.5869 (4) 0.043 (2)
H6 0.3214 −0.1608 0.5467 0.052*
C7 0.3040 (6) 0.0764 (4) 0.5736 (3) 0.0283 (17)
C8 0.1933 (6) 0.0576 (5) 0.5384 (4) 0.0391 (18)
H8 0.1545 0.0022 0.5497 0.047*
C9 0.1373 (7) 0.1183 (5) 0.4863 (4) 0.051 (2)
H9 0.0611 0.1040 0.4616 0.062*
C10 0.1919 (7) 0.1986 (5) 0.4707 (4) 0.042 (2)
H10 0.1531 0.2403 0.4354 0.050*
C11 0.3001 (7) 0.2193 (4) 0.5050 (4) 0.042 (2)
H11 0.3376 0.2751 0.4932 0.050*
C12 0.3570 (6) 0.1599 (4) 0.5572 (4) 0.040 (2)
H12 0.4324 0.1758 0.5822 0.048*
C13 0.5126 (5) −0.0399 (4) 0.5971 (4) 0.0340 (18)
H13A 0.4876 −0.0918 0.5633 0.041*
H13B 0.5410 0.0103 0.5663 0.041*
C14 0.6120 (5) −0.0706 (4) 0.6553 (4) 0.0317 (17)
H14A 0.6859 −0.0807 0.6315 0.038*
H14B 0.5904 −0.1286 0.6794 0.038*
C15 0.7216 (6) 0.1045 (4) 0.6777 (4) 0.0324 (18)
C16 0.6805 (7) 0.1910 (4) 0.6570 (4) 0.039 (2)
H16 0.6040 0.2091 0.6688 0.047*
C17 0.7460 (7) 0.2512 (5) 0.6202 (4) 0.055 (2)
H17 0.7153 0.3103 0.6069 0.066*
C18 0.8549 (8) 0.2266 (6) 0.6024 (4) 0.057 (3)
H18 0.9004 0.2688 0.5768 0.069*
C19 0.9000 (7) 0.1414 (6) 0.6211 (4) 0.058 (2)
H19 0.9761 0.1244 0.6079 0.070*
C20 0.8349 (6) 0.0805 (5) 0.6592 (4) 0.045 (2)
H20 0.8669 0.0219 0.6730 0.053*
C21 0.7412 (6) −0.0228 (4) 0.7992 (4) 0.0316 (18)
C22 0.7937 (6) −0.1062 (4) 0.7984 (5) 0.046 (2)
H22 0.7785 −0.1444 0.7554 0.055*
C23 0.8685 (7) −0.1366 (5) 0.8588 (5) 0.062 (3)
H23 0.9070 −0.1943 0.8565 0.075*
C24 0.8876 (6) −0.0838 (5) 0.9224 (4) 0.050 (2)
H24 0.9376 −0.1055 0.9647 0.060*
C25 0.8347 (6) −0.0003 (5) 0.9246 (4) 0.043 (2)
H25 0.8478 0.0368 0.9684 0.052*
C26 0.7628 (6) 0.0299 (4) 0.8635 (4) 0.041 (2)
H26 0.7266 0.0886 0.8653 0.049*
C27 0.3015 (7) 0.1547 (4) 0.7838 (4) 0.0366 (19)
C28 0.1798 (7) 0.1421 (4) 0.7569 (4) 0.043 (2)
H28 0.1481 0.1675 0.7101 0.051*
C29 0.1103 (7) 0.0932 (5) 0.7995 (5) 0.050 (2)
H29 0.0285 0.0858 0.7826 0.060*
C30 0.1562 (6) 0.0527 (5) 0.8687 (4) 0.045 (2)
H30 0.1052 0.0183 0.8970 0.054*
C31 0.2735 (6) 0.0626 (5) 0.8951 (4) 0.0415 (18)
H31 0.3040 0.0346 0.9411 0.050*
C32 0.3488 (6) 0.1149 (4) 0.8534 (4) 0.0294 (17)
C33 0.4714 (6) 0.1389 (4) 0.8655 (4) 0.0319 (18)
H33 0.5261 0.1246 0.9116 0.038*
C34 0.4981 (6) 0.1950 (4) 0.8056 (4) 0.035 (2)
H34 0.5756 0.2270 0.8028 0.042*
C35 0.4014 (7) 0.2019 (4) 0.7521 (4) 0.038 (2)
H35 0.3957 0.2409 0.7058 0.046*
N1 0.4613 (5) −0.0796 (3) 0.8004 (3) 0.0340 (16)
N2 0.4855 (6) −0.0931 (4) 0.8660 (4) 0.0495 (19)
N3 0.5048 (7) −0.1117 (5) 0.9303 (4) 0.082 (3)
P1 0.38539 (16) 0.00036 (11) 0.64504 (10) 0.0282 (5)
P2 0.63247 (16) 0.02162 (11) 0.72512 (11) 0.0288 (5)
Ru1 0.45473 (5) 0.05865 (3) 0.75994 (3) 0.02632 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.027 (5) 0.030 (4) 0.037 (5) −0.005 (3) −0.011 (4) 0.006 (3)
C2 0.043 (6) 0.047 (5) 0.058 (6) −0.004 (4) 0.001 (5) −0.003 (4)
C3 0.044 (6) 0.069 (6) 0.062 (7) −0.017 (5) −0.007 (5) 0.029 (5)
C4 0.065 (7) 0.052 (6) 0.082 (9) −0.038 (5) −0.024 (6) 0.029 (5)
C5 0.082 (8) 0.045 (5) 0.061 (7) −0.022 (5) −0.018 (6) 0.005 (5)
C6 0.057 (6) 0.029 (4) 0.041 (6) −0.003 (4) −0.009 (4) −0.001 (4)
C7 0.037 (5) 0.028 (4) 0.021 (4) 0.002 (3) 0.006 (4) −0.002 (3)
C8 0.031 (5) 0.035 (4) 0.049 (5) −0.004 (4) −0.009 (4) 0.008 (4)
C9 0.045 (6) 0.051 (5) 0.057 (6) −0.001 (4) 0.001 (5) 0.001 (4)
C10 0.047 (6) 0.042 (5) 0.034 (5) 0.017 (4) −0.003 (4) 0.007 (4)
C11 0.061 (6) 0.024 (4) 0.038 (5) 0.001 (4) 0.001 (5) 0.008 (3)
C12 0.044 (5) 0.030 (4) 0.043 (5) −0.003 (4) −0.004 (4) 0.004 (4)
C13 0.032 (5) 0.031 (4) 0.040 (5) −0.003 (3) 0.007 (4) −0.006 (3)
C14 0.024 (4) 0.032 (4) 0.038 (5) 0.001 (3) 0.001 (4) −0.007 (4)
C15 0.025 (5) 0.045 (4) 0.027 (5) −0.012 (3) 0.006 (4) −0.006 (3)
C16 0.048 (6) 0.039 (4) 0.030 (5) −0.014 (4) 0.004 (4) 0.005 (4)
C17 0.049 (6) 0.062 (5) 0.053 (6) −0.021 (5) 0.001 (5) 0.008 (4)
C18 0.045 (6) 0.079 (6) 0.045 (6) −0.036 (5) −0.009 (5) 0.020 (5)
C19 0.020 (5) 0.105 (7) 0.049 (6) −0.018 (5) 0.006 (4) −0.003 (5)
C20 0.032 (5) 0.055 (5) 0.048 (5) −0.004 (4) 0.013 (4) −0.007 (4)
C21 0.017 (4) 0.035 (4) 0.043 (5) 0.000 (3) 0.004 (4) 0.000 (3)
C22 0.034 (5) 0.032 (4) 0.066 (7) 0.004 (4) −0.020 (5) −0.012 (4)
C23 0.054 (6) 0.034 (5) 0.091 (8) 0.020 (4) −0.027 (6) −0.008 (5)
C24 0.040 (5) 0.058 (6) 0.048 (6) −0.011 (4) −0.010 (4) −0.002 (4)
C25 0.033 (5) 0.043 (5) 0.051 (6) 0.004 (4) −0.005 (4) −0.005 (4)
C26 0.044 (5) 0.036 (4) 0.041 (5) 0.017 (4) −0.001 (4) 0.001 (4)
C27 0.034 (5) 0.031 (4) 0.046 (6) 0.013 (4) 0.010 (4) −0.007 (4)
C28 0.040 (6) 0.044 (5) 0.043 (6) 0.008 (4) −0.001 (5) −0.004 (4)
C29 0.021 (5) 0.065 (6) 0.062 (7) 0.000 (4) 0.000 (5) −0.023 (5)
C30 0.035 (5) 0.054 (5) 0.050 (6) −0.002 (4) 0.020 (4) −0.012 (5)
C31 0.037 (5) 0.055 (4) 0.033 (5) −0.001 (4) 0.006 (4) −0.012 (4)
C32 0.031 (5) 0.037 (4) 0.019 (4) 0.005 (3) −0.005 (4) −0.003 (3)
C33 0.030 (5) 0.042 (4) 0.022 (5) 0.000 (3) −0.006 (4) −0.009 (3)
C34 0.026 (5) 0.029 (4) 0.050 (6) −0.004 (3) 0.006 (4) −0.018 (4)
C35 0.046 (5) 0.018 (4) 0.053 (6) 0.005 (3) 0.017 (5) −0.002 (3)
N1 0.035 (4) 0.037 (4) 0.028 (4) −0.001 (3) −0.006 (3) 0.005 (3)
N2 0.056 (5) 0.036 (4) 0.056 (6) 0.003 (3) 0.003 (5) 0.013 (4)
N3 0.103 (7) 0.076 (5) 0.065 (6) 0.007 (4) −0.004 (6) 0.023 (5)
P1 0.0299 (12) 0.0245 (10) 0.0298 (12) 0.0000 (8) 0.0008 (10) 0.0009 (8)
P2 0.0272 (12) 0.0289 (9) 0.0303 (13) −0.0012 (8) 0.0024 (10) −0.0014 (9)
Ru1 0.0255 (3) 0.0245 (3) 0.0284 (3) −0.0003 (3) 0.0004 (2) −0.0020 (3)

Geometric parameters (Å, °)

C1—C2 1.367 (8) C19—H19 0.9500
C1—C6 1.376 (8) C20—H20 0.9500
C1—P1 1.847 (6) C21—C22 1.354 (8)
C2—C3 1.400 (9) C21—C26 1.383 (8)
C2—H2 0.9500 C21—P2 1.830 (7)
C3—C4 1.354 (10) C22—C23 1.374 (9)
C3—H3 0.9500 C22—H22 0.9500
C4—C5 1.354 (10) C23—C24 1.371 (9)
C4—H4 0.9500 C23—H23 0.9500
C5—C6 1.382 (9) C24—C25 1.358 (8)
C5—H5 0.9500 C24—H24 0.9500
C6—H6 0.9500 C25—C26 1.365 (9)
C7—C8 1.371 (8) C25—H25 0.9500
C7—C12 1.400 (8) C26—H26 0.9500
C7—P1 1.861 (7) C27—C28 1.423 (9)
C8—C9 1.388 (9) C27—C32 1.425 (9)
C8—H8 0.9500 C27—C35 1.487 (9)
C9—C10 1.366 (9) C27—Ru1 2.304 (6)
C9—H9 0.9500 C28—C29 1.354 (9)
C10—C11 1.346 (9) C28—H28 0.9500
C10—H10 0.9500 C29—C30 1.419 (9)
C11—C12 1.382 (8) C29—H29 0.9500
C11—H11 0.9500 C30—C31 1.370 (9)
C12—H12 0.9500 C30—H30 0.9500
C13—C14 1.517 (8) C31—C32 1.412 (8)
C13—P1 1.848 (6) C31—H31 0.9500
C13—H13A 0.9900 C32—C33 1.426 (8)
C13—H13B 0.9900 C32—Ru1 2.307 (6)
C14—P2 1.832 (6) C33—C34 1.406 (8)
C14—H14A 0.9900 C33—Ru1 2.210 (6)
C14—H14B 0.9900 C33—H33 1.0000
C15—C16 1.380 (8) C34—C35 1.380 (9)
C15—C20 1.403 (8) C34—Ru1 2.184 (6)
C15—P2 1.837 (6) C34—H34 1.0000
C16—C17 1.362 (8) C35—Ru1 2.173 (6)
C16—H16 0.9500 C35—H35 1.0000
C17—C18 1.354 (9) N1—N2 1.192 (8)
C17—H17 0.9500 N1—Ru1 2.139 (5)
C18—C19 1.369 (9) N2—N3 1.178 (8)
C18—H18 0.9500 P1—Ru1 2.284 (2)
C19—C20 1.379 (8) P2—Ru1 2.235 (2)
C2—C1—C6 119.8 (7) C28—C27—C32 120.3 (7)
C2—C1—P1 116.4 (5) C28—C27—C35 132.9 (7)
C6—C1—P1 123.7 (6) C32—C27—C35 106.8 (7)
C1—C2—C3 120.9 (8) C28—C27—Ru1 125.5 (5)
C1—C2—H2 119.5 C32—C27—Ru1 72.1 (4)
C3—C2—H2 119.5 C35—C27—Ru1 65.9 (3)
C4—C3—C2 118.2 (8) C29—C28—C27 118.6 (7)
C4—C3—H3 120.9 C29—C28—H28 120.7
C2—C3—H3 120.9 C27—C28—H28 120.7
C5—C4—C3 121.3 (8) C28—C29—C30 121.8 (7)
C5—C4—H4 119.4 C28—C29—H29 119.1
C3—C4—H4 119.4 C30—C29—H29 119.1
C4—C5—C6 121.1 (8) C31—C30—C29 120.7 (7)
C4—C5—H5 119.5 C31—C30—H30 119.7
C6—C5—H5 119.5 C29—C30—H30 119.7
C1—C6—C5 118.7 (7) C30—C31—C32 119.5 (7)
C1—C6—H6 120.7 C30—C31—H31 120.2
C5—C6—H6 120.7 C32—C31—H31 120.2
C8—C7—C12 118.0 (6) C31—C32—C27 119.2 (7)
C8—C7—P1 124.0 (5) C31—C32—C33 133.2 (7)
C12—C7—P1 117.9 (5) C27—C32—C33 107.6 (6)
C7—C8—C9 120.8 (7) C31—C32—Ru1 125.4 (4)
C7—C8—H8 119.6 C27—C32—Ru1 71.9 (4)
C9—C8—H8 119.6 C33—C32—Ru1 67.9 (4)
C10—C9—C8 119.8 (8) C34—C33—C32 108.2 (6)
C10—C9—H9 120.1 C34—C33—Ru1 70.4 (4)
C8—C9—H9 120.1 C32—C33—Ru1 75.4 (4)
C11—C10—C9 120.6 (7) C34—C33—H33 125.7
C11—C10—H10 119.7 C32—C33—H33 125.7
C9—C10—H10 119.7 Ru1—C33—H33 125.7
C10—C11—C12 120.3 (7) C35—C34—C33 110.5 (7)
C10—C11—H11 119.8 C35—C34—Ru1 71.1 (4)
C12—C11—H11 119.8 C33—C34—Ru1 72.3 (4)
C11—C12—C7 120.3 (7) C35—C34—H34 124.7
C11—C12—H12 119.8 C33—C34—H34 124.7
C7—C12—H12 119.8 Ru1—C34—H34 124.7
C14—C13—P1 109.6 (4) C34—C35—C27 106.5 (7)
C14—C13—H13A 109.8 C34—C35—Ru1 72.0 (4)
P1—C13—H13A 109.8 C27—C35—Ru1 75.5 (3)
C14—C13—H13B 109.8 C34—C35—H35 126.3
P1—C13—H13B 109.8 C27—C35—H35 126.3
H13A—C13—H13B 108.2 Ru1—C35—H35 126.3
C13—C14—P2 106.4 (4) N2—N1—Ru1 119.0 (5)
C13—C14—H14A 110.4 N3—N2—N1 175.5 (8)
P2—C14—H14A 110.4 C13—P1—C1 105.1 (3)
C13—C14—H14B 110.4 C13—P1—C7 103.0 (3)
P2—C14—H14B 110.4 C1—P1—C7 100.8 (3)
H14A—C14—H14B 108.6 C13—P1—Ru1 108.8 (2)
C16—C15—C20 117.1 (6) C1—P1—Ru1 117.5 (2)
C16—C15—P2 122.5 (5) C7—P1—Ru1 119.7 (2)
C20—C15—P2 120.4 (5) C21—P2—C14 105.1 (3)
C17—C16—C15 122.1 (7) C21—P2—C15 101.8 (3)
C17—C16—H16 119.0 C14—P2—C15 101.8 (3)
C15—C16—H16 119.0 C21—P2—Ru1 116.2 (2)
C18—C17—C16 119.9 (8) C14—P2—Ru1 108.2 (2)
C18—C17—H17 120.0 C15—P2—Ru1 121.7 (2)
C16—C17—H17 120.0 N1—Ru1—C35 157.8 (2)
C17—C18—C19 120.6 (7) N1—Ru1—C34 137.1 (3)
C17—C18—H18 119.7 C35—Ru1—C34 36.9 (2)
C19—C18—H18 119.7 N1—Ru1—C33 102.3 (2)
C18—C19—C20 119.8 (7) C35—Ru1—C33 63.0 (3)
C18—C19—H19 120.1 C34—Ru1—C33 37.3 (2)
C20—C19—H19 120.1 N1—Ru1—P2 82.33 (15)
C19—C20—C15 120.4 (7) C35—Ru1—P2 117.78 (19)
C19—C20—H20 119.8 C34—Ru1—P2 98.59 (19)
C15—C20—H20 119.8 C33—Ru1—P2 111.50 (18)
C22—C21—C26 117.9 (7) N1—Ru1—P1 87.17 (16)
C22—C21—P2 125.0 (6) C35—Ru1—P1 103.4 (2)
C26—C21—P2 116.9 (5) C34—Ru1—P1 135.8 (2)
C21—C22—C23 121.1 (7) C33—Ru1—P1 162.63 (18)
C21—C22—H22 119.4 P2—Ru1—P1 83.97 (7)
C23—C22—H22 119.4 N1—Ru1—C27 120.6 (2)
C22—C23—C24 120.1 (7) C35—Ru1—C27 38.6 (2)
C22—C23—H23 119.9 C34—Ru1—C27 61.5 (2)
C24—C23—H23 119.9 C33—Ru1—C27 61.3 (3)
C25—C24—C23 119.6 (8) P2—Ru1—C27 156.39 (18)
C25—C24—H24 120.2 P1—Ru1—C27 101.4 (2)
C23—C24—H24 120.2 N1—Ru1—C32 95.3 (2)
C24—C25—C26 119.7 (7) C35—Ru1—C32 62.8 (2)
C24—C25—H25 120.2 C34—Ru1—C32 61.3 (2)
C26—C25—H25 120.2 C33—Ru1—C32 36.7 (2)
C25—C26—C21 121.6 (6) P2—Ru1—C32 147.10 (19)
C25—C26—H26 119.2 P1—Ru1—C32 128.82 (19)
C21—C26—H26 119.2 C27—Ru1—C32 36.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2075).

References

  1. Beck, W. & Schropp, K. (1975). Chem. Ber. 108, 3317–3325.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254.
  5. Ellis, W. R. Jr & Purcell, W. L. (1982). Inorg. Chem. 21, 834–837.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Fehlhammer, W. P. & Dahl, L. F. (1972). J. Am. Chem. Soc. 94, 3370–3377.
  9. Frühauf, H. W. (1997). Chem. Rev. 97, 523–596. [DOI] [PubMed]
  10. Labbe, G. (1969). Chem. Rev. 69, 345–363.
  11. Padwa, A. (1976). Angew. Chem. Int. Ed. Engl. 15, 123–136.
  12. Patai, S. (1971). The Chemistry of the Azido group. New York: Interscience.
  13. Paul, P. & Nag, K. (1987). Inorg. Chem. 26, 2969–2974.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Singh, K. S., Thöne, C. & Kollipara, M. R. (2005). J. Organomet. Chem. 690, 4222–4231.
  16. Treichel, P. M., Knebel, W. J. & Hess, R. W. (1971). J. Am. Chem. Soc. 93, 5424–5433.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810053006/rn2075sup1.cif

e-67-0m124-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810053006/rn2075Isup2.hkl

e-67-0m124-Isup2.hkl (247.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES