Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 11;67(Pt 1):m62. doi: 10.1107/S1600536810050968

Dibromidobis[1-(2,4,6-trimethyl­phen­yl)-1,4,5,6-tetra­hydro­pyrimidine-κN 3]palladium(II)

Pu Mao a, Xiujun Liu b, Liangru Yang b, Jinwei Yuan b, Maoping Song a,*
PMCID: PMC3050419  PMID: 21522581

Abstract

In the title complex, [PdBr2(C13H18N2)2], the PdII atom is situated on an inversion center. The tetra­hydro­pyrimidine group of the N-(2,4,6-trimethyl­phen­yl)-1,4,5,6-tetra­hydro­pyrimidine ligand is twisted from the square (PdN2Br2) coordination plane with a C—N—Pd—Br torsion angle of 81.8 (4)°; this is different from the angle of 43.47 (14)°, reported in a closely related structure, dichloridobis(1-methyl-1,4,5,6-tetra­hydro­pyrimidine)­palladium(II).

Related literature

For the related structure, dichloro­bis­(1-methyl-1,4,5,6-tetra­hydro­pyrimidine)­palladium(II), see: Chang & Lee (2007).graphic file with name e-67-00m62-scheme1.jpg

Experimental

Crystal data

  • [PdBr2(C13H18N2)2]

  • M r = 670.81

  • Monoclinic, Inline graphic

  • a = 7.1348 (14) Å

  • b = 21.308 (4) Å

  • c = 8.9704 (18) Å

  • β = 94.60 (3)°

  • V = 1359.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.64 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Saturn 724 CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) T min = 0.530, T max = 0.530

  • 6809 measured reflections

  • 2393 independent reflections

  • 1931 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.114

  • S = 1.08

  • 2393 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050968/su2226sup1.cif

e-67-00m62-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050968/su2226Isup2.hkl

e-67-00m62-Isup2.hkl (117.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Mr H. Qian for technical assistance. This research was supported by the National Natural Science Foundation of the People’s Republic of China (grant No. 20902017).

supplementary crystallographic information

Comment

Our group is interested in the preparation of new N-heterocyclic carbene (NHC) ligands based on substituted 1,4,5,6-tetrahydropyrimidine and their palladium complexes. In the course of preparing the palladium complex of a bidentate NHC ligand, we observed that the reaction of the corresponding tetrahydropyrimidine salt and Pd(OAc)2, unexpectedly, under unoptimized reaction conditions, afforded the title compound.

In the title compound the Pd atom is situated on a center of inversion (Fig. 1). The organic ligands twist away from the square (PdN2Br2) coordination plane with a C1—N1—Pd1—Br1 torsion angle of 81.8 (4)°. The corresponding angle in the closely related structure, dichlorobis(1-methyl-1,4,5,6-tetrahydropyrimidine)palladium(II) [Chang & Lee, 2007], is 43.47 (14)°.

Experimental

Pd(OAc)2 (101 mg, 0.45 mmol) was added to a solution of N,N-methylene-N',N'-bis-2,4,6-trimethylphenyl-1,4,5,6-tetrahydropyrimidine (260 mg, 0.45 mmol) in DMSO (3 ml). The mixture was then heated at 333 K for 5 h. After cooling, the solvent was removed completely under vacuum. The residue was then dissolved in CHCl3, and filtered. Evaporation of the filtrate afforded an orange solid (yield 200 mg, 66%). Crystals of the title complex, suitable for structural analysis, were obtained by vapor diffusion of diethyl ether into an acetonitrile solution containing the solid.

Refinement

The hydrogen atoms were included in calculated positions and treated as riding: C-H = 0.93, 0.97 and 0.96 Å, for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, showing 30% probability displacement ellipsoids.

Crystal data

[PdBr2(C13H18N2)2] F(000) = 672
Mr = 670.81 Dx = 1.639 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3263 reflections
a = 7.1348 (14) Å θ = 2.5–27.9°
b = 21.308 (4) Å µ = 3.64 mm1
c = 8.9704 (18) Å T = 293 K
β = 94.60 (3)° Prismatic, colourless
V = 1359.4 (5) Å3 0.20 × 0.20 × 0.20 mm
Z = 2

Data collection

Rigaku CCD area-detector diffractometer 2393 independent reflections
Radiation source: fine-focus sealed tube 1931 reflections with I > 2σ(I)
graphite Rint = 0.034
ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) h = −8→5
Tmin = 0.530, Tmax = 0.530 k = −18→25
6809 measured reflections l = −9→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0553P)2] where P = (Fo2 + 2Fc2)/3
2393 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.76 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.5000 0.5000 0.0000 0.0445 (2)
Br1 0.27385 (9) 0.45987 (3) −0.19525 (7) 0.0700 (2)
N1 0.3804 (6) 0.44800 (17) 0.1532 (5) 0.0502 (11)
N2 0.4027 (6) 0.36304 (16) 0.3218 (5) 0.0513 (11)
C1 0.2139 (8) 0.4701 (2) 0.2167 (6) 0.0595 (16)
H1A 0.1044 0.4545 0.1570 0.071*
H1B 0.2111 0.5156 0.2118 0.071*
C2 0.2026 (10) 0.4506 (2) 0.3718 (7) 0.0722 (19)
H2A 0.0783 0.4607 0.4015 0.087*
H2B 0.2929 0.4747 0.4348 0.087*
C3 0.2385 (8) 0.3831 (2) 0.3997 (7) 0.0659 (17)
H3A 0.2622 0.3757 0.5062 0.079*
H3B 0.1290 0.3589 0.3638 0.079*
C4 0.4604 (8) 0.3983 (2) 0.2102 (6) 0.0534 (14)
H4 0.5700 0.3855 0.1695 0.064*
C5 0.5155 (7) 0.3102 (2) 0.3749 (6) 0.0461 (12)
C6 0.4605 (8) 0.2496 (2) 0.3291 (6) 0.0541 (14)
C7 0.5759 (8) 0.1998 (2) 0.3757 (6) 0.0586 (15)
H7 0.5389 0.1592 0.3491 0.070*
C8 0.7456 (8) 0.2088 (3) 0.4614 (7) 0.0631 (16)
C9 0.7929 (8) 0.2699 (2) 0.5081 (7) 0.0628 (15)
H9 0.9027 0.2766 0.5691 0.075*
C10 0.6784 (8) 0.3208 (2) 0.4650 (7) 0.0561 (14)
C11 0.2792 (9) 0.2376 (3) 0.2354 (7) 0.0757 (18)
H11A 0.1756 0.2527 0.2871 0.114*
H11B 0.2649 0.1933 0.2180 0.114*
H11C 0.2817 0.2590 0.1415 0.114*
C12 0.8751 (9) 0.1538 (3) 0.5026 (9) 0.087 (2)
H12A 0.9802 0.1548 0.4423 0.130*
H12B 0.8074 0.1152 0.4855 0.130*
H12C 0.9194 0.1567 0.6063 0.130*
C13 0.7335 (9) 0.3853 (3) 0.5220 (8) 0.081 (2)
H13A 0.7528 0.4123 0.4390 0.122*
H13B 0.8477 0.3826 0.5861 0.122*
H13C 0.6352 0.4021 0.5773 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0507 (4) 0.0410 (3) 0.0427 (4) 0.0089 (2) 0.0098 (3) 0.0122 (2)
Br1 0.0733 (5) 0.0738 (4) 0.0615 (5) −0.0017 (3) −0.0030 (3) 0.0054 (3)
N1 0.054 (3) 0.045 (2) 0.053 (3) 0.0112 (19) 0.012 (2) 0.0117 (19)
N2 0.066 (3) 0.038 (2) 0.052 (3) 0.0043 (19) 0.016 (2) 0.0131 (18)
C1 0.060 (4) 0.046 (3) 0.075 (4) 0.014 (2) 0.023 (3) 0.010 (3)
C2 0.084 (5) 0.061 (3) 0.076 (5) 0.027 (3) 0.034 (4) 0.016 (3)
C3 0.078 (4) 0.055 (3) 0.070 (4) 0.013 (3) 0.040 (4) 0.011 (3)
C4 0.056 (4) 0.052 (3) 0.054 (3) 0.005 (2) 0.020 (3) 0.005 (2)
C5 0.048 (3) 0.041 (3) 0.049 (3) 0.008 (2) 0.006 (2) 0.010 (2)
C6 0.068 (4) 0.042 (3) 0.053 (3) 0.004 (2) 0.005 (3) 0.004 (2)
C7 0.071 (4) 0.036 (3) 0.069 (4) 0.004 (2) 0.006 (3) 0.004 (2)
C8 0.058 (4) 0.056 (3) 0.077 (4) 0.011 (3) 0.017 (3) 0.019 (3)
C9 0.049 (4) 0.061 (3) 0.077 (4) 0.002 (3) −0.006 (3) 0.011 (3)
C10 0.057 (4) 0.039 (3) 0.073 (4) −0.002 (2) 0.005 (3) 0.006 (2)
C11 0.085 (5) 0.057 (3) 0.081 (5) 0.006 (3) −0.017 (4) −0.016 (3)
C12 0.070 (5) 0.070 (4) 0.121 (6) 0.023 (3) 0.014 (4) 0.031 (4)
C13 0.073 (4) 0.054 (3) 0.115 (6) −0.012 (3) −0.009 (4) −0.006 (3)

Geometric parameters (Å, °)

Pd1—N1i 2.008 (4) C5—C6 1.402 (7)
Pd1—N1 2.008 (4) C6—C7 1.386 (7)
Pd1—Br1i 2.4391 (9) C6—C11 1.507 (8)
Pd1—Br1 2.4391 (9) C7—C8 1.394 (8)
N1—C4 1.289 (6) C7—H7 0.9300
N1—C1 1.437 (6) C8—C9 1.401 (8)
N2—C4 1.343 (6) C8—C12 1.519 (7)
N2—C5 1.442 (6) C9—C10 1.394 (7)
N2—C3 1.474 (6) C9—H9 0.9300
C1—C2 1.461 (8) C10—C13 1.508 (7)
C1—H1A 0.9700 C11—H11A 0.9600
C1—H1B 0.9700 C11—H11B 0.9600
C2—C3 1.478 (7) C11—H11C 0.9600
C2—H2A 0.9700 C12—H12A 0.9600
C2—H2B 0.9700 C12—H12B 0.9600
C3—H3A 0.9700 C12—H12C 0.9600
C3—H3B 0.9700 C13—H13A 0.9600
C4—H4 0.9300 C13—H13B 0.9600
C5—C10 1.380 (7) C13—H13C 0.9600
N1i—Pd1—N1 180.000 (1) C6—C5—N2 119.1 (5)
N1i—Pd1—Br1i 90.30 (14) C7—C6—C5 118.1 (5)
N1—Pd1—Br1i 89.70 (14) C7—C6—C11 120.0 (5)
N1i—Pd1—Br1 89.70 (13) C5—C6—C11 121.8 (5)
N1—Pd1—Br1 90.30 (14) C6—C7—C8 122.0 (5)
Br1i—Pd1—Br1 180.0 C6—C7—H7 119.0
C4—N1—C1 117.8 (4) C8—C7—H7 119.0
C4—N1—Pd1 121.7 (3) C7—C8—C9 118.0 (5)
C1—N1—Pd1 120.0 (3) C7—C8—C12 120.9 (5)
C4—N2—C5 119.1 (4) C9—C8—C12 121.1 (6)
C4—N2—C3 119.6 (4) C10—C9—C8 121.2 (6)
C5—N2—C3 120.9 (4) C10—C9—H9 119.4
N1—C1—C2 113.2 (4) C8—C9—H9 119.4
N1—C1—H1A 108.9 C5—C10—C9 118.9 (4)
C2—C1—H1A 108.9 C5—C10—C13 122.1 (5)
N1—C1—H1B 108.9 C9—C10—C13 118.9 (5)
C2—C1—H1B 108.9 C6—C11—H11A 109.5
H1A—C1—H1B 107.7 C6—C11—H11B 109.5
C1—C2—C3 114.5 (5) H11A—C11—H11B 109.5
C1—C2—H2A 108.6 C6—C11—H11C 109.5
C3—C2—H2A 108.6 H11A—C11—H11C 109.5
C1—C2—H2B 108.6 H11B—C11—H11C 109.5
C3—C2—H2B 108.6 C8—C12—H12A 109.5
H2A—C2—H2B 107.6 C8—C12—H12B 109.5
N2—C3—C2 109.6 (4) H12A—C12—H12B 109.5
N2—C3—H3A 109.7 C8—C12—H12C 109.5
C2—C3—H3A 109.7 H12A—C12—H12C 109.5
N2—C3—H3B 109.7 H12B—C12—H12C 109.5
C2—C3—H3B 109.7 C10—C13—H13A 109.5
H3A—C3—H3B 108.2 C10—C13—H13B 109.5
N1—C4—N2 127.1 (5) H13A—C13—H13B 109.5
N1—C4—H4 116.5 C10—C13—H13C 109.5
N2—C4—H4 116.5 H13A—C13—H13C 109.5
C10—C5—C6 121.6 (4) H13B—C13—H13C 109.5
C10—C5—N2 119.2 (4)
Br1i—Pd1—N1—C4 −73.6 (4) C3—N2—C5—C6 85.6 (7)
Br1—Pd1—N1—C4 106.4 (4) C10—C5—C6—C7 −0.7 (8)
Br1i—Pd1—N1—C1 98.2 (4) N2—C5—C6—C7 177.0 (4)
Br1—Pd1—N1—C1 −81.8 (4) C10—C5—C6—C11 177.7 (5)
C4—N1—C1—C2 24.7 (8) N2—C5—C6—C11 −4.7 (8)
Pd1—N1—C1—C2 −147.4 (4) C5—C6—C7—C8 −2.2 (8)
N1—C1—C2—C3 −48.5 (8) C11—C6—C7—C8 179.4 (5)
C4—N2—C3—C2 −18.5 (8) C6—C7—C8—C9 3.9 (8)
C5—N2—C3—C2 154.1 (5) C6—C7—C8—C12 −176.1 (5)
C1—C2—C3—N2 44.1 (8) C7—C8—C9—C10 −2.9 (9)
C1—N1—C4—N2 1.8 (9) C12—C8—C9—C10 177.2 (5)
Pd1—N1—C4—N2 173.8 (4) C6—C5—C10—C9 1.7 (8)
C5—N2—C4—N1 −177.5 (5) N2—C5—C10—C9 −176.0 (5)
C3—N2—C4—N1 −4.7 (9) C6—C5—C10—C13 −176.5 (5)
C4—N2—C5—C10 75.9 (7) N2—C5—C10—C13 5.8 (8)
C3—N2—C5—C10 −96.7 (6) C8—C9—C10—C5 0.1 (8)
C4—N2—C5—C6 −101.8 (6) C8—C9—C10—C13 178.4 (6)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2226).

References

  1. Chang, C.-F. & Lee, H. M. (2007). Acta Cryst. E63, m167–m168.
  2. Rigaku/MSC (2006). CrystalClear Rigaku/MSC Inc., Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050968/su2226sup1.cif

e-67-00m62-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050968/su2226Isup2.hkl

e-67-00m62-Isup2.hkl (117.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES