Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):i4. doi: 10.1107/S1600536810052724

Cs0.49NbPS6

Eunsil Lee a, Yonghee Lee a, Hoseop Yun a,*
PMCID: PMC3050425  PMID: 21522512

Abstract

The quaternary thio­phosphate, Cs0.49NbPS6, caesium hexa­thio­niobiophosphate(V), has been synthesized by the reactive halide flux method. The title compound is isotypic with Rb0.46TaPS6 and is made up of a bicapped trigonal–biprismatic [Nb2S12] unit and a tetra­hedral [PS4] group. The [Nb2S12] units linked by the [PS4] tetra­hedra form infinite chains, yielding a three-dimensional network with rather large van der Waals gaps along the c axis in which the disordered Cs+ ions reside. The electrons released by the Cs atoms are transferred to the pairwise niobium metal site and there are substantial inter­metallic Nb—Nb bonding inter­actions. This leads to a significant decrease of the inter­metallic distance in the title compound compared to that in TaPS6. The classical charge balance of the title compound may be represented as [Cs+]0.49[Nb4.51+][P5+][S2−]4[S2 2−].

Related literature

For the synthesis and structural characterization of TaPS6, see: Fiechter et al. (1980). For the related quaternary alkali metal thio­phosphates, see: K0.38TaPS6 and Rb0.46TaPS6 (Gutzmann et al., 2004a ) and A 2Nb2P2S12 (A = K, Rb, Cs; Gieck et al., 2004). Quite a few quaternary alkali metal thio­phosphates having similar composition but with different structures have been reported. For compounds with layered structures, see: Gutzmann & Bensch (2003) for Rb4Ta4P4S24; Gutzmann et al. (2004b ) for Cs4Ta4P4S24 and Cs2Ta2P2S12 and Gutzmann et al. (2005) for K4Ta4P4S24. For Rb2Ta2P2S11 with a one-dimensional structure, see: Gutzmann & Bensch (2002).

Experimental

Crystal data

  • Cs0.49NbPS6

  • M r = 380.95

  • Tetragonal, Inline graphic

  • a = 15.9477 (3) Å

  • c = 13.2461 (3) Å

  • V = 3368.88 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 5.08 mm−1

  • T = 290 K

  • 0.30 × 0.08 × 0.06 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.751, T max = 1.000

  • 16125 measured reflections

  • 1929 independent reflections

  • 1843 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.047

  • S = 1.06

  • 1929 reflections

  • 81 parameters

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983), 851 Friedel pairs

  • Flack parameter: 0.452 (18)

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052724/si2311sup1.cif

e-67-000i4-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052724/si2311Isup2.hkl

e-67-000i4-Isup2.hkl (93.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Nb—S1i 2.5016 (9)
Nb—S6ii 2.5221 (9)
Nb—S1iii 2.5238 (8)
Nb—S6iv 2.5457 (9)
Nb—S2 2.5457 (9)
Nb—S3 2.5730 (9)
Nb—S5v 2.5971 (9)
Nb—S4 2.6266 (9)
Nb—Nbvi 3.1236 (5)
P1—S2i 2.0300 (11)
P1—S2 2.0300 (11)
P1—S5vii 2.0413 (10)
P1—S5v 2.0413 (10)
P2—S3viii 2.0353 (10)
P2—S3ix 2.0353 (10)
P2—S4ix 2.0519 (11)
P2—S4viii 2.0519 (11)
S1—S1x 2.0302 (17)
S6—S6xi 2.0264 (17)
S2i—P1—S2 109.11 (7)
S2i—P1—S5vii 102.92 (3)
S2—P1—S5vii 113.21 (4)
S2i—P1—S5v 113.21 (4)
S2—P1—S5v 102.92 (3)
S5vii—P1—S5v 115.63 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2010–0029617). Use was made of the X-ray facilities supported by the Ajou University.

supplementary crystallographic information

Comment

During an effort to find a new phase in the AxMPS6 family (A=alkali metals; M=Ta, Nb), a new compound was isolated. Here we report the synthesis and structure of the new quaternary thiophosphates, Cs0.49NbPS6.

The title compound is isostructural with the previously reported Rb0.46TaPS6 (Gutzmann et al., 2004a). The structure of Cs0.49NbPS6 is also very similar to that of ANb2P2S12 (A=K, Rb, and Cs, Gieck et al., 2004) prepared from alkali metal sulfide fluxes. The only difference between them lies in the distribution of the alkali metals. There are two crystallographically independent sites for Cs atoms in ANb2P2S12, while we were able to find only one in Cs0.49NbPS6.

The structure of Cs0.49NbPS6 is made up of the bicapped trigonal biprismatic [Nb2S12] unit and the tetrahedral [PS4] group. The niobium atom is coordinated by eight sulfur atoms in a distorted bicapped trigonal prismatic arrangement. Two NbS8 prisms share a rectangular face to form the [Nb2S12] dimeric core. Four sulfur atoms sharing rectangular prism faces are in pairs with two disulfide ions, (S—S)2-. Each one of the capping sulfur atoms and one of the sulfur atoms at the corner of the [Nb2S12] unit are bound to a phosphorous atom (Fig. 1). Additional two sulfur atoms from the neighboring [Nb2S12] units are connected to the phosphorous atoms to complete the [PS4] tetrahedral coordination. Each [Nb2S12] unit connects four phosphorous atoms to build up left- and right-handed helices. These helices interwind to each other forming infinite channels along the [001] direction (Fig. 2). The structural array yields rather large channels, where the Cs+ ions reside. The size of the cations is small compared to the diameter of the large channels and the cations can therefore rattle within the channels as indicated by the high anisotropic displacement parameters.

The Nb—S and P—S distances are in good agreement with those found in other related phases (Gutzmann et al., 2004b). The interatomic Nb—Nb distance is 3.124 (1) Å which is similar to those in K0.38TaPS6 (3.142 (2) Å) and Rb0.46TaPS6 (3.1011 (5) Å). These distances are considerably shorter compared to that in TaPS6 (3.361 (1) Å, Fiechter et al., 1980). The electrons released by the Cs atoms are transferred to pair-wise niobium metal sites and there are substantial intermetallic Nb—Nb bonding interactions. Consequently, the classical charge balance of the title compound may be represented as [Cs+]0.49[M4.51+][P5+][S2-]4[S22-].

Experimental

Cs0.49NbPS6 was prepared by the reaction of elements Nb, P, and S by the reactive halide-flux technique. A combination of the pure elements, Nb powder (CERAC 99.999%), P powder (CERAC 99.5%) and S powder (Aldrich 99.999%) were mixed in a fused silica tube in molar ratio of Nb:P:S=1:1:6 in the presence of CsCl as flux. The mass ratio of the reactants and the alkali halide flux was 1:2. The tube was evacuated to 0.133 Pa, sealed, and heated gradually (60 K/h) to 973 K, where it was kept for 72 h. The tube was cooled to room temperature at the rate 4 K/h. The excess halide was removed with distilled water and shiny black needle-shaped crystals were obtained. The crystals are stable in air and water. Qualitative analysis of the crystals with an EDAX-equipped SEM indicated the presence of Cs, Nb, P, and S. The composition of the compound was determined by single-crystal X-ray diffraction.

Refinement

(type here to add refinement details)

Figures

Fig. 1.

Fig. 1.

A perspective view of the bicapped trigonal biprismatic [Nb2S12] unit and its neighboring tetrahedral [PS4] groups. The Nb—S bonds have been omitted for clarity, except for the capping S atoms. Displacement ellipsoids are drawn at the 60% probability level. [Symmetry code: (vi) -x, -y, z]

Fig. 2.

Fig. 2.

View of Cs0.49NbPS6 along the c axis. Atoms are as marked in Fig. 1.

Crystal data

Cs0.49NbPS6 Dx = 3.004 Mg m3
Mr = 380.95 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42d Cell parameters from 14367 reflections
Hall symbol: I -4 2bw θ = 3.3–27.5°
a = 15.9477 (3) Å µ = 5.08 mm1
c = 13.2461 (3) Å T = 290 K
V = 3368.88 (11) Å3 Needle, black
Z = 16 0.30 × 0.08 × 0.06 mm
F(000) = 2860

Data collection

Rigaku R-AXIS RAPID diffractometer 1843 reflections with I > 2σ(I)
ω scans Rint = 0.032
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) θmax = 27.5°, θmin = 3.2°
Tmin = 0.751, Tmax = 1.000 h = −20→20
16125 measured reflections k = −20→20
1929 independent reflections l = −16→17

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0309P)2 + 0.1672P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020 (Δ/σ)max = 0.001
wR(F2) = 0.047 Δρmax = 0.84 e Å3
S = 1.06 Δρmin = −0.42 e Å3
1929 reflections Absolute structure: Flack (1983), 851 Friedel pairs
81 parameters Flack parameter: 0.452 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cs 0.31826 (2) 0.25 0.125 0.04486 (17) 0.974 (2)
Nb 0.066145 (17) 0.072220 (17) 0.24995 (2) 0.01403 (8)
P1 0.05549 (7) 0.25 0.125 0.0163 (2)
P2 0.58291 (7) 0.25 0.125 0.0161 (2)
S1 0.04769 (5) 0.54216 (5) 0.12737 (6) 0.01871 (18)
S2 0.12931 (6) 0.14853 (5) 0.09924 (7) 0.02128 (18)
S3 0.14510 (5) 0.15492 (6) 0.38699 (7) 0.0232 (2)
S4 0.22010 (5) 0.01370 (5) 0.24947 (7) 0.02042 (18)
S5 0.28529 (5) 0.48732 (5) 0.25169 (7) 0.02144 (19)
S6 0.45621 (5) 0.04603 (5) 0.12972 (6) 0.01928 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cs 0.0218 (2) 0.0690 (3) 0.0438 (2) 0 0 0.0247 (2)
Nb 0.01411 (14) 0.01527 (14) 0.01272 (13) −0.00014 (9) −0.00042 (12) −0.00043 (12)
P1 0.0171 (5) 0.0137 (5) 0.0181 (5) 0 0 0.0005 (5)
P2 0.0191 (5) 0.0140 (5) 0.0153 (5) 0 0 −0.0011 (5)
S1 0.0200 (4) 0.0213 (4) 0.0148 (3) 0.0027 (3) −0.0025 (4) −0.0031 (3)
S2 0.0219 (4) 0.0167 (4) 0.0252 (4) 0.0008 (3) 0.0066 (3) 0.0008 (3)
S3 0.0187 (4) 0.0246 (4) 0.0262 (5) 0.0045 (4) −0.0045 (3) −0.0115 (4)
S4 0.0200 (4) 0.0236 (4) 0.0177 (4) 0.0059 (3) −0.0015 (4) −0.0051 (4)
S5 0.0221 (4) 0.0227 (4) 0.0196 (4) −0.0066 (3) 0.0028 (4) −0.0059 (4)
S6 0.0216 (4) 0.0201 (4) 0.0161 (4) 0.0017 (4) 0.0013 (4) −0.0020 (3)

Geometric parameters (Å, °)

Cs—S2 3.4374 (10) P1—S2i 2.0300 (11)
Cs—S2i 3.4373 (10) P1—S2 2.0300 (11)
Cs—S3ii 3.5468 (9) P1—S5xi 2.0413 (10)
Cs—S3iii 3.5468 (9) P1—S5ix 2.0413 (10)
Cs—S4iv 3.5646 (9) P2—S3iv 2.0353 (10)
Cs—S4v 3.5646 (9) P2—S3v 2.0353 (10)
Cs—S6i 3.9274 (9) P2—S4v 2.0519 (11)
Cs—S6 3.9274 (9) P2—S4iv 2.0519 (11)
Cs—S5i 4.1733 (8) S1—S1xii 2.0302 (17)
Cs—S5 4.1733 (8) S1—Nbi 2.5016 (9)
Cs—P1 4.1906 (12) S1—Nbxiii 2.5238 (8)
Cs—P2 4.2206 (13) S3—P2xiv 2.0353 (10)
Nb—S1i 2.5016 (9) S3—Csxv 3.5468 (9)
Nb—S6vi 2.5221 (9) S4—P2xiv 2.0519 (11)
Nb—S1vii 2.5238 (8) S4—Csxiv 3.5646 (9)
Nb—S6viii 2.5457 (9) S5—P1xvi 2.0413 (10)
Nb—S2 2.5457 (9) S5—Nbxvi 2.5971 (9)
Nb—S3 2.5730 (9) S6—S6xvii 2.0264 (17)
Nb—S5ix 2.5971 (9) S6—Nbxviii 2.5221 (9)
Nb—S4 2.6266 (9) S6—Nbv 2.5457 (9)
Nb—Nbx 3.1236 (5)
S2—Cs—S2i 57.52 (3) S1i—Nb—S2 82.33 (3)
S2—Cs—S3ii 104.92 (2) S6vi—Nb—S2 154.30 (3)
S2i—Cs—S3ii 91.80 (2) S1vii—Nb—S2 81.46 (3)
S2—Cs—S3iii 91.80 (2) S6viii—Nb—S2 157.94 (3)
S2i—Cs—S3iii 104.92 (2) S1i—Nb—S3 155.09 (3)
S3ii—Cs—S3iii 161.04 (3) S6vi—Nb—S3 87.62 (3)
S2—Cs—S4iv 151.14 (2) S1vii—Nb—S3 157.05 (3)
S2i—Cs—S4iv 131.09 (2) S6viii—Nb—S3 87.58 (3)
S3ii—Cs—S4iv 102.32 (2) S2—Nb—S3 96.58 (3)
S3iii—Cs—S4iv 59.903 (19) S1i—Nb—S5ix 125.13 (3)
S2—Cs—S4v 131.09 (2) S6vi—Nb—S5ix 79.61 (3)
S2i—Cs—S4v 151.14 (2) S1vii—Nb—S5ix 79.19 (3)
S3ii—Cs—S4v 59.903 (19) S6viii—Nb—S5ix 125.49 (3)
S3iii—Cs—S4v 102.32 (2) S2—Nb—S5ix 76.51 (3)
S4iv—Cs—S4v 58.06 (3) S3—Nb—S5ix 78.13 (3)
S2—Cs—S6i 151.57 (2) S1i—Nb—S4 81.33 (3)
S2i—Cs—S6i 95.896 (19) S6vi—Nb—S4 126.93 (3)
S3ii—Cs—S6i 62.58 (2) S1vii—Nb—S4 127.11 (3)
S3iii—Cs—S6i 106.020 (19) S6viii—Nb—S4 82.02 (3)
S4iv—Cs—S6i 53.620 (18) S2—Nb—S4 78.35 (3)
S4v—Cs—S6i 67.27 (2) S3—Nb—S4 74.12 (3)
S2—Cs—S6 95.896 (19) S5ix—Nb—S4 139.76 (3)
S2i—Cs—S6 151.57 (2) S1i—Nb—Nbx 51.888 (19)
S3ii—Cs—S6 106.020 (19) S6vi—Nb—Nbx 52.29 (2)
S3iii—Cs—S6 62.58 (2) S1vii—Nb—Nbx 51.25 (2)
S4iv—Cs—S6 67.27 (2) S6viii—Nb—Nbx 51.61 (2)
S4v—Cs—S6 53.620 (18) S2—Nb—Nbx 128.30 (2)
S6i—Cs—S6 111.87 (3) S3—Nb—Nbx 135.12 (2)
S2—Cs—S5i 54.738 (19) S5ix—Nb—Nbx 108.56 (2)
S2i—Cs—S5i 110.88 (2) S4—Nb—Nbx 111.67 (2)
S3ii—Cs—S5i 92.93 (2) S2i—P1—S2 109.11 (7)
S3iii—Cs—S5i 89.45 (2) S2i—P1—S5xi 102.92 (3)
S4iv—Cs—S5i 114.78 (2) S2—P1—S5xi 113.21 (4)
S4v—Cs—S5i 78.539 (18) S2i—P1—S5ix 113.21 (4)
S6i—Cs—S5i 144.617 (19) S2—P1—S5ix 102.92 (3)
S6—Cs—S5i 47.615 (17) S5xi—P1—S5ix 115.63 (7)
S2—Cs—S5 110.88 (2) S2i—P1—Cs 54.56 (4)
S2i—Cs—S5 54.738 (19) S2—P1—Cs 54.56 (4)
S3ii—Cs—S5 89.45 (2) S5xi—P1—Cs 122.18 (4)
S3iii—Cs—S5 92.93 (2) S5ix—P1—Cs 122.18 (4)
S4iv—Cs—S5 78.539 (18) S3iv—P2—S3v 111.30 (8)
S4v—Cs—S5 114.78 (2) S3iv—P2—S4v 115.55 (4)
S6i—Cs—S5 47.615 (17) S3v—P2—S4v 100.12 (3)
S6—Cs—S5 144.616 (19) S3iv—P2—S4iv 100.12 (3)
S5i—Cs—S5 165.52 (3) S3v—P2—S4iv 115.55 (4)
S2—Cs—P1 28.759 (15) S4v—P2—S4iv 114.91 (8)
S2i—Cs—P1 28.759 (15) S3iv—P2—Cs 124.35 (4)
S3ii—Cs—P1 99.482 (14) S3v—P2—Cs 124.35 (4)
S3iii—Cs—P1 99.482 (14) S4v—P2—Cs 57.46 (4)
S4iv—Cs—P1 150.970 (14) S4iv—P2—Cs 57.46 (4)
S4v—Cs—P1 150.970 (14) S1xii—S1—Nbi 66.74 (3)
S6i—Cs—P1 124.066 (13) S1xii—S1—Nbxiii 65.60 (3)
S6—Cs—P1 124.066 (13) Nbi—S1—Nbxiii 76.86 (3)
S5i—Cs—P1 82.760 (13) P1—S2—Nb 91.14 (3)
S5—Cs—P1 82.760 (13) P1—S2—Cs 96.69 (4)
S2—Cs—P2 151.241 (15) Nb—S2—Cs 119.61 (3)
S2i—Cs—P2 151.241 (15) P2xiv—S3—Nb 93.32 (4)
S3ii—Cs—P2 80.518 (14) P2xiv—S3—Csxv 100.09 (3)
S3iii—Cs—P2 80.518 (14) Nb—S3—Csxv 157.95 (4)
S4iv—Cs—P2 29.030 (14) P2xiv—S4—Nb 91.38 (3)
S4v—Cs—P2 29.030 (14) P2xiv—S4—Csxiv 93.51 (4)
S6i—Cs—P2 55.934 (13) Nb—S4—Csxiv 115.76 (3)
S6—Cs—P2 55.934 (13) P1xvi—S5—Nbxvi 89.43 (3)
S5i—Cs—P2 97.240 (13) P1xvi—S5—Cs 147.09 (5)
S5—Cs—P2 97.240 (13) Nbxvi—S5—Cs 108.99 (3)
P1—Cs—P2 180 S6xvii—S6—Nbxviii 67.04 (3)
S1i—Nb—S6vi 104.18 (3) S6xvii—S6—Nbv 65.82 (3)
S1i—Nb—S1vii 47.65 (4) Nbxviii—S6—Nbv 76.10 (3)
S6vi—Nb—S1vii 84.90 (3) S6xvii—S6—Cs 170.46 (6)
S1i—Nb—S6viii 84.86 (3) Nbxviii—S6—Cs 118.42 (3)
S6vi—Nb—S6viii 47.14 (4) Nbv—S6—Cs 106.98 (3)
S1vii—Nb—S6viii 102.86 (3)

Symmetry codes: (i) x, −y+1/2, −z+1/4; (ii) −x+1/2, −y+1/2, z−1/2; (iii) −x+1/2, y, −z+3/4; (iv) y+1/2, −x+1/2, −z+1/2; (v) y+1/2, x, z−1/4; (vi) −y, −x+1/2, z+1/4; (vii) −x, y−1/2, −z+1/4; (viii) y, x−1/2, z+1/4; (ix) y−1/2, −x+1/2, −z+1/2; (x) −x, −y, z; (xi) y−1/2, x, z−1/4; (xii) −x, −y+1, z; (xiii) −x, y+1/2, −z+1/4; (xiv) −y+1/2, x−1/2, −z+1/2; (xv) −x+1/2, −y+1/2, z+1/2; (xvi) −y+1/2, x+1/2, −z+1/2; (xvii) −x+1, −y, z; (xviii) −y+1/2, −x, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2311).

References

  1. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  2. Fiechter, S., Kuhs, W. F. & Nitsche, R. (1980). Acta Cryst. B36, 2217–2220.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Gieck, C., Derstroff, V., Block, T., Felser, C., Regelsky, G., Jepsen, O., Ksenofontov, V., Gütlich, P., Eckert, H. & Tremel, W. (2004). Chem. Eur. J. 10, 382–391. [DOI] [PubMed]
  5. Gutzmann, A. & Bensch, W. (2002). Solid State Sci. 4, 835–840.
  6. Gutzmann, A. & Bensch, W. (2003). Solid State Sci. 5, 1271–1276.
  7. Gutzmann, A., Näther, C. & Bensch, W. (2004a). Solid State Sci. 6, 1155–1162.
  8. Gutzmann, A., Näther, C. & Bensch, W. (2004b). Inorg. Chem. 43, 2998–3004. [DOI] [PubMed]
  9. Gutzmann, A., Näther, C. & Bensch, W. (2005). Acta Cryst. E61, i20–i22.
  10. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  11. Johnson, C. K. (1965). ORTEP Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
  12. Rigaku (2006). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810052724/si2311sup1.cif

e-67-000i4-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052724/si2311Isup2.hkl

e-67-000i4-Isup2.hkl (93.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES