Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jun;84(12):4234–4238. doi: 10.1073/pnas.84.12.4234

Interleukin 5, a T-cell-derived B-cell differentiation factor also induces cytotoxic T lymphocytes.

K Takatsu, Y Kikuchi, T Takahashi, T Honjo, M Matsumoto, N Harada, N Yamaguchi, A Tominaga
PMCID: PMC305059  PMID: 3495803

Abstract

We describe an interleukin, termed interleukin 5, that is the recombinant product previously referred to as T-cell-replacing factor (TRF), B-cell growth factor II (BCGF II), or killer-helper factor (KHF). TRF has been defined as a T-cell-derived lymphokine that acts on activated B cells as a B-cell differentiation factor. We have previously demonstrated that TRF is identical to BCGF II and induces expression of receptors for interleukin 2 (IL-2) on activated B cells. We also have reported that KHF can induce not only expression of IL-2 receptors on peanut agglutinin-binding (PNA+) thymocytes but also generation of cytotoxic T lymphocytes (CTL) in PNA+ thymocytes in the presence of IL-2. We show here that culture supernatants of T-cell hybridomas that produce TRF as well as TRF purified by high-pressure liquid chromatography (HPLC-TRF) have KHF activity and generate CTL in PNA+ thymocytes in the presence of stimulator cells and IL-2. Moreover, translation products (recombinant TRF) of Xenopus oocytes injected with cDNA encoding for murine TRF (BCGF II) also exert KHF activity. A rat monoclonal anti-TRF antibody TB13 can block generation of CTL by HPLC-TRF or recombinant TRF. These results indicate that TRF acts not only on B cells as BCGF II but also on PNA+ thymocytes as KHF. In view of the diverse activities and targets of TRF, we propose that TRF refers to a different interleukin, interleukin 5.

Full text

PDF
4234

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  2. Erard F., Corthesy P., Smith K. A., Fiers W., Conzelmann A., Nabholz M. Characterization of soluble factors that induce the cytolytic activity and the expression of T cell growth factor receptors of a T cell hybrid. J Exp Med. 1984 Aug 1;160(2):584–599. doi: 10.1084/jem.160.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Falk W., Männel D. N., Katzer B., Kaltmann B., Krammer P. H., Diamantstein T., Dröge W. Induction of IL 2 receptor expression and cytotoxicity of thymocytes by stimulation with TCF1. J Immunol. 1985 Aug;135(2):1160–1164. [PubMed] [Google Scholar]
  4. Finke J. H., Orosz C. G., Battisto J. R. Splenic T-killer cells can be generated by allogeneic thymic cells in conjunction with assisting factor. Nature. 1977 May 26;267(5609):353–354. doi: 10.1038/267353a0. [DOI] [PubMed] [Google Scholar]
  5. Finke J. H., Scott J., Gillis S., Hilfiker M. L. Generation of alloreactive cytotoxic T lymphocytes: evidence for a differentiation factor distinct from IL 2. J Immunol. 1983 Feb;130(2):763–767. [PubMed] [Google Scholar]
  6. Hamaoka T., Takatsu K., Okuno K., Tsuchida T. Functional characterization of the killer-helper factor responsible for the induction of cytotoxic T lymphocytes from thymocytes, and evidence for the nature of this factor as distinct from T cell-replacing factor (TRF) in regard to B cell triggering. J Immunol. 1981 Feb;126(2):659–665. [PubMed] [Google Scholar]
  7. Harada N., Kikuchi Y., Tominaga A., Takaki S., Takatsu K. BCGFII activity on activated B cells of a purified murine T cell-replacing factor (TRF) from a T cell hybridoma (B151K12). J Immunol. 1985 Jun;134(6):3944–3951. [PubMed] [Google Scholar]
  8. Hardt C., Diamantstein T., Wagner H. Signal requirements for the in vitro differentiation of cytotoxic T lymphocytes (CTL): distinct soluble mediators promote preactivation of CTL-precursors, clonal growth and differentiation into cytotoxic effector cells. Eur J Immunol. 1985 May;15(5):472–478. doi: 10.1002/eji.1830150511. [DOI] [PubMed] [Google Scholar]
  9. Howard M., Nakanishi K., Paul W. E. B cell growth and differentiation factors. Immunol Rev. 1984 Apr;78:185–210. doi: 10.1111/j.1600-065x.1984.tb00482.x. [DOI] [PubMed] [Google Scholar]
  10. Kanagawa O. Three different signals are required for the induction of cytolytic T lymphocytes from resting precursors. J Immunol. 1983 Aug;131(2):606–610. [PubMed] [Google Scholar]
  11. Kikuchi Y., Kato R., Sano Y., Takahashi H., Kanatani T., Takatsu K. Generation of cytotoxic T lymphocytes from thymocyte precursors to trinitrophenyl-modified self antigens. II. Establishment of a T cell hybrid clone constitutively producing killer-helper factor(s) (KHF) and functional analysis of released KHF. J Immunol. 1986 May 15;136(10):3553–3560. [PubMed] [Google Scholar]
  12. Kinashi T., Harada N., Severinson E., Tanabe T., Sideras P., Konishi M., Azuma C., Tominaga A., Bergstedt-Lindqvist S., Takahashi M. Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature. 1986 Nov 6;324(6092):70–73. doi: 10.1038/324070a0. [DOI] [PubMed] [Google Scholar]
  13. Kishimoto T. Factors affecting B-cell growth and differentiation. Annu Rev Immunol. 1985;3:133–157. doi: 10.1146/annurev.iy.03.040185.001025. [DOI] [PubMed] [Google Scholar]
  14. O'Garra A., Warren D. J., Holman M., Popham A. M., Sanderson C. J., Klaus G. G. Interleukin 4 (B-cell growth factor II/eosinophil differentiation factor) is a mitogen and differentiation factor for preactivated murine B lymphocytes. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5228–5232. doi: 10.1073/pnas.83.14.5228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okada M., Klimpel G. R., Kuppers R. C., Henney C. S. The differentiation of cytotoxic T cells in vitro. I. Amplifying factor(s) in the primary response is Lyt 1 + cell dependent. J Immunol. 1979 Jun;122(6):2527–2533. [PubMed] [Google Scholar]
  16. Okuno K., Kikuchi Y., Tsuchida T., Hamaoka T., Igarashi T., Kato R., Takatsu K. The role of I-region associated antigen (Ia)-bearing accessory cells in the generation of cytotoxic T cells in a subpopulation of thymocytes. Jpn J Cancer Res. 1986 Jul;77(7):711–721. [PubMed] [Google Scholar]
  17. Raulet D. H., Bevan M. J. A differentiation factor required for the expression of cytotoxic T-cell function. Nature. 1982 Apr 22;296(5859):754–757. doi: 10.1038/296754a0. [DOI] [PubMed] [Google Scholar]
  18. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  19. Sanderson C. J., O'Garra A., Warren D. J., Klaus G. G. Eosinophil differentiation factor also has B-cell growth factor activity: proposed name interleukin 4. Proc Natl Acad Sci U S A. 1986 Jan;83(2):437–440. doi: 10.1073/pnas.83.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schimpl A., Wecker E. Replacement of T-cell function by a T-cell product. Nat New Biol. 1972 May 3;237(70):15–17. doi: 10.1038/newbio237015a0. [DOI] [PubMed] [Google Scholar]
  21. Shimuzu A., Kondo S., Takeda S., Yodoi J., Ishida N., Sabe H., Osawa H., Diamantstein T., Nikaido T., Honjo T. Nucleotide sequence of mouse IL-2 receptor cDNA and its comparison with the human IL-2 receptor sequence. Nucleic Acids Res. 1985 Mar 11;13(5):1505–1516. doi: 10.1093/nar/13.5.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swain S. L., Howard M., Kappler J., Marrack P., Watson J., Booth R., Wetzel G. D., Dutton R. W. Evidence for two distinct classes of murine B cell growth factors with activities in different functional assays. J Exp Med. 1983 Sep 1;158(3):822–835. doi: 10.1084/jem.158.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Swain S. L. Role of BCGFII in the differentiation to antibody secretion normal and tumor B cells. J Immunol. 1985 Jun;134(6):3934–3943. [PubMed] [Google Scholar]
  24. Takatsu K., Harada N., Hara Y., Takahama Y., Yamada G., Dobashi K., Hamaoka T. Purification and physicochemical characterization of murine T cell replacing factor (TRF). J Immunol. 1985 Jan;134(1):382–389. [PubMed] [Google Scholar]
  25. Takatsu K., Ishizaka T., Ishizaka K. Biologic significance of disulfide bonds in human IgE molecules. J Immunol. 1975 Jun;114(6):1838–1845. [PubMed] [Google Scholar]
  26. Takatsu K., Kikuchi Y., Kanatani T., Okuno K., Hamaoka T., Tominaga A., Sano Y. Generation of cytotoxic T lymphocytes from thymocyte precursors to trinitrophenyl-modified self antigens. I. Requirement of both killer-helper factor(s) and interleukin 2 for CTL generation from a subpopulation of thymocytes. J Immunol. 1986 Feb 15;136(4):1161–1170. [PubMed] [Google Scholar]
  27. Takatsu K., Tanaka K., Tominaga A., Kumahara Y., Hamaoka T. Antigen-induced T cell-replacing factor (TRF). III. Establishment of T cell hybrid clone continuously producing TRF and functional analysis of released TRF. J Immunol. 1980 Dec;125(6):2646–2653. [PubMed] [Google Scholar]
  28. Taniguchi T., Matsui H., Fujita T., Takaoka C., Kashima N., Yoshimoto R., Hamuro J. Structure and expression of a cloned cDNA for human interleukin-2. Nature. 1983 Mar 24;302(5906):305–310. doi: 10.1038/302305a0. [DOI] [PubMed] [Google Scholar]
  29. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES