Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jul;84(13):4418–4422. doi: 10.1073/pnas.84.13.4418

Purification and characterization of three types of protein kinase C from rabbit brain cytosol.

S Jaken, S C Kiley
PMCID: PMC305100  PMID: 3474610

Abstract

Three types of protein kinase C were purified from rabbit brain cytosol. Each type has a molecular mass of approximately 80 kDa and serves as a receptor for phorbol esters. Polyclonal antibodies produced to two protein kinase C types were relatively type-specific, indicating that these proteins have unique antigenic determinants. We, therefore, characterized the enzymatic activities to determine if these proteins also had distinct biochemical properties. Type 1 protein kinase C was relatively less Ca2+-dependent than types 2 and 3. The addition of Ca2+ increased Vmax approximately 40% for type 1,600% for type 2, and 1400% for type 3 as compared to the Vmax measured at lower Ca2+ conditions. These results suggest that differences in primary structure can confer type-specific biochemical properties, and this in turn may provide the basis for protein kinase C type-specific stimulus-response coupling.

Full text

PDF
4418

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Burgess G. M., McKinney J. S., Fabiato A., Leslie B. A., Putney J. W., Jr Calcium pools in saponin-permeabilized guinea pig hepatocytes. J Biol Chem. 1983 Dec 25;258(24):15336–15345. [PubMed] [Google Scholar]
  3. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  4. Coussens L., Parker P. J., Rhee L., Yang-Feng T. L., Chen E., Waterfield M. D., Francke U., Ullrich A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science. 1986 Aug 22;233(4766):859–866. doi: 10.1126/science.3755548. [DOI] [PubMed] [Google Scholar]
  5. Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
  6. Drust D. S., Martin T. F. Protein kinase C translocates from cytosol to membrane upon hormone activation: effects of thyrotropin-releasing hormone in GH3 cells. Biochem Biophys Res Commun. 1985 Apr 30;128(2):531–537. doi: 10.1016/0006-291x(85)90079-8. [DOI] [PubMed] [Google Scholar]
  7. Huang K. P., Nakabayashi H., Huang F. L. Isozymic forms of rat brain Ca2+-activated and phospholipid-dependent protein kinase. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8535–8539. doi: 10.1073/pnas.83.22.8535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Inoue M., Kishimoto A., Takai Y., Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem. 1977 Nov 10;252(21):7610–7616. [PubMed] [Google Scholar]
  9. Jaken S. Initial events in phorbol ester binding to GH4C1 rat pituitary cells. Endocrinology. 1985 Dec;117(6):2293–2300. doi: 10.1210/endo-117-6-2293. [DOI] [PubMed] [Google Scholar]
  10. Jaken S. Measurement of phorbol ester receptors in intact cells and subcellular fractions. Methods Enzymol. 1987;141:275–287. doi: 10.1016/0076-6879(87)41075-6. [DOI] [PubMed] [Google Scholar]
  11. Knopf J. L., Lee M. H., Sultzman L. A., Kriz R. W., Loomis C. R., Hewick R. M., Bell R. M. Cloning and expression of multiple protein kinase C cDNAs. Cell. 1986 Aug 15;46(4):491–502. doi: 10.1016/0092-8674(86)90874-3. [DOI] [PubMed] [Google Scholar]
  12. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  13. Ono Y., Kurokawa T., Kawahara K., Nishimura O., Marumoto R., Igarashi K., Sugino Y., Kikkawa U., Ogita K., Nishizuka Y. Cloning of rat brain protein kinase C complementary DNA. FEBS Lett. 1986 Jul 28;203(2):111–115. doi: 10.1016/0014-5793(86)80724-4. [DOI] [PubMed] [Google Scholar]
  14. Parker P. J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M. D., Ullrich A. The complete primary structure of protein kinase C--the major phorbol ester receptor. Science. 1986 Aug 22;233(4766):853–859. doi: 10.1126/science.3755547. [DOI] [PubMed] [Google Scholar]
  15. Uchida T., Filburn C. R. Affinity chromatography of protein kinase C-phorbol ester receptor on polyacrylamide-immobilized phosphatidylserine. J Biol Chem. 1984 Oct 25;259(20):12311–12314. [PubMed] [Google Scholar]
  16. Wolf M., Cuatrecasas P., Sahyoun N. Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters, and ATP. J Biol Chem. 1985 Dec 15;260(29):15718–15722. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES