Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jul;84(13):4616–4620. doi: 10.1073/pnas.84.13.4616

Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis.

R Pacifici, L Rifas, S Teitelbaum, E Slatopolsky, R McCracken, M Bergfeld, W Lee, L V Avioli, W A Peck
PMCID: PMC305141  PMID: 3496597

Abstract

Osteoporosis is a state of reduced skeletal mass characterized by various rates of bone remodeling. Multiple locally elaborated factors have been identified that appear to influence the cellular events in bone remodeling. The possible role(s) of these factors in the pathogenesis of osteoporosis is unknown. One such factor, interleukin 1 (IL-1), is of particular interest, as this protein is known to stimulate bone resorption and perhaps formation. Consequently, we have measured the spontaneous secretion of IL-1 activity by cultured peripheral blood monocytes obtained from 22 osteoporotic patients and 14 age-matched control subjects. Monocytes from osteoporotic patients produced more IL-1 than did monocytes from control subjects. When patients were grouped according to monocyte-produced IL-1 activity, dynamic parameters of bone formation, as judged by quantitative histomorphometric analysis of iliac crest bone biopsies and by circulating levels of bone 4-carboxyglutamic acid protein (BGP)--a marker of bone formation--were higher in subjects with elevated IL-1 activity; whereas, indices of bone resorption and static indices of bone formation were similar in subjects with either high or normal IL-1 activity. IL-1 activity released by peripheral blood monocytes appears to reflect bone formation rate in osteoporotic patients and may be of pathogenetic significance in a subset of individuals with osteoporosis.

Full text

PDF
4616

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORDIER P., MATRAJT H., MIRAVET L., HIOCO D. MESURE HISTOLOGIQUE DE LA MASSE ET DE LA R'ESORPTION DES TRAV'EES OSSEUSES. Pathol Biol. 1964 Dec;12:1238–1243. [PubMed] [Google Scholar]
  2. Bennett A. E., Wahner H. W., Riggs B. L., Hintz R. L. Insulin-like growth factors I and II: aging and bone density in women. J Clin Endocrinol Metab. 1984 Oct;59(4):701–704. doi: 10.1210/jcem-59-4-701. [DOI] [PubMed] [Google Scholar]
  3. Bitterman P. B., Rennard S. I., Hunninghake G. W., Crystal R. G. Human alveolar macrophage growth factor for fibroblasts. Regulation and partial characterization. J Clin Invest. 1982 Oct;70(4):806–822. doi: 10.1172/JCI110677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. P., Delmas P. D., Malaval L., Edouard C., Chapuy M. C., Meunier P. J. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet. 1984 May 19;1(8386):1091–1093. doi: 10.1016/s0140-6736(84)92506-6. [DOI] [PubMed] [Google Scholar]
  5. Canalis E. Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology. 1986 Jan;118(1):74–81. doi: 10.1210/endo-118-1-74. [DOI] [PubMed] [Google Scholar]
  6. Cann C. E., Genant H. K. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980 Aug;4(4):493–500. doi: 10.1097/00004728-198008000-00018. [DOI] [PubMed] [Google Scholar]
  7. Cannon J. G., Dinarello C. A. Increased plasma interleukin-1 activity in women after ovulation. Science. 1985 Mar 8;227(4691):1247–1249. doi: 10.1126/science.3871966. [DOI] [PubMed] [Google Scholar]
  8. Delmas P. D., Stenner D., Wahner H. W., Mann K. G., Riggs B. L. Increase in serum bone gamma-carboxyglutamic acid protein with aging in women. Implications for the mechanism of age-related bone loss. J Clin Invest. 1983 May;71(5):1316–1321. doi: 10.1172/JCI110882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dinarello C. A. Interleukin-1. Rev Infect Dis. 1984 Jan-Feb;6(1):51–95. doi: 10.1093/clinids/6.1.51. [DOI] [PubMed] [Google Scholar]
  10. Gillis S., Mizel S. B. T-Cell lymphoma model for the analysis of interleukin 1-mediated T-cell activation. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1133–1137. doi: 10.1073/pnas.78.2.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gowen M., Wood D. D., Ihrie E. J., McGuire M. K., Russell R. G. An interleukin 1 like factor stimulates bone resorption in vitro. Nature. 1983 Nov 24;306(5941):378–380. doi: 10.1038/306378a0. [DOI] [PubMed] [Google Scholar]
  12. Gowen M., Wood D. D., Russell R. G. Stimulation of the proliferation of human bone cells in vitro by human monocyte products with interleukin-1 activity. J Clin Invest. 1985 Apr;75(4):1223–1229. doi: 10.1172/JCI111819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haddad J. G., Chyu K. J. Competitive protein-binding radioassay for 25-hydroxycholecalciferol. J Clin Endocrinol Metab. 1971 Dec;33(6):992–995. doi: 10.1210/jcem-33-6-992. [DOI] [PubMed] [Google Scholar]
  14. Hruska K. A., Kopelman R., Rutherford W. E., Klahr S., Slatopolsky E., Greenwalt A., Bascom T., Markham J. Metabolism in immunoreactive parathyroid hormone in the dog. The role of the kidney and the effects of chronic renal disease. J Clin Invest. 1975 Jul;56(1):39–48. doi: 10.1172/JCI108077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaye J., Porcelli S., Tite J., Jones B., Janeway C. A., Jr Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. 1983 Sep 1;158(3):836–856. doi: 10.1084/jem.158.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurt-Jones E. A., Beller D. I., Mizel S. B., Unanue E. R. Identification of a membrane-associated interleukin 1 in macrophages. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1204–1208. doi: 10.1073/pnas.82.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kurt-Jones E. A., Virgin H. W., 4th, Unanue E. R. In vivo and in vitro expression of macrophage membrane interleukin 1 in response to soluble and particulate stimuli. J Immunol. 1986 Jul 1;137(1):10–14. [PubMed] [Google Scholar]
  18. Lachman L. B., Page S. O., Metzgar R. S. Purification of human interleukin 1. J Supramol Struct. 1980;13(4):457–466. doi: 10.1002/jss.400130405. [DOI] [PubMed] [Google Scholar]
  19. Lepe-Zuniga J. L., Gery I. Production of intra- and extracellular interleukin-1 (IL-1) by human monocytes. Clin Immunol Immunopathol. 1984 May;31(2):222–230. doi: 10.1016/0090-1229(84)90242-3. [DOI] [PubMed] [Google Scholar]
  20. Malluche H. H., Meyer W., Sherman D., Massry S. G. Quantitative bone histology in 84 normal American subjects. Micromorphometric analysis and evaluation of variance in iliac bone. Calcif Tissue Int. 1982 Sep;34(5):449–455. doi: 10.1007/BF02411283. [DOI] [PubMed] [Google Scholar]
  21. Malluche H. H., Sherman D., Meyer W., Massry S. G. A new semiautomatic method for quantitative static and dynamic bone histology. Calcif Tissue Int. 1982 Sep;34(5):439–448. doi: 10.1007/BF02411282. [DOI] [PubMed] [Google Scholar]
  22. Ng K. C., Revell P. A., Beer M., Boucher B. J., Cohen R. D., Currey H. L. Incidence of metabolic bone disease in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis. 1984 Jun;43(3):370–377. doi: 10.1136/ard.43.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Price P. A., Nishimoto S. K. Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2234–2238. doi: 10.1073/pnas.77.4.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raisz L. G. Osteoporosis. J Am Geriatr Soc. 1982 Feb;30(2):127–138. doi: 10.1111/j.1532-5415.1982.tb01288.x. [DOI] [PubMed] [Google Scholar]
  25. Shore A., Jaglal S., Keystone E. C. Enhanced interleukin 1 generation by monocytes in vitro is temporally linked to an early event in the onset or exacerbation of rheumatoid arthritis. Clin Exp Immunol. 1986 Aug;65(2):293–302. [PMC free article] [PubMed] [Google Scholar]
  26. Smith K. A., Lachman L. B., Oppenheim J. J., Favata M. F. The functional relationship of the interleukins. J Exp Med. 1980 Jun 1;151(6):1551–1556. doi: 10.1084/jem.151.6.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Teitelbaum S. L. Renal osteodystrophy. Hum Pathol. 1984 Apr;15(4):306–323. doi: 10.1016/s0046-8177(84)80028-3. [DOI] [PubMed] [Google Scholar]
  28. Tiegs R. D., Body J. J., Wahner H. W., Barta J., Riggs B. L., Heath H., 3rd Calcitonin secretion in postmenopausal osteoporosis. N Engl J Med. 1985 Apr 25;312(17):1097–1100. doi: 10.1056/NEJM198504253121705. [DOI] [PubMed] [Google Scholar]
  29. Tran Van P., Vignery A., Baron R. An electron-microscopic study of the bone-remodeling sequence in the rat. Cell Tissue Res. 1982;225(2):283–292. doi: 10.1007/BF00214682. [DOI] [PubMed] [Google Scholar]
  30. Vedi S., Compston J. E., Webb A., Tighe J. R. Histomorphometric analysis of dynamic parameters of trabecular bone formation in the iliac crest of normal British subjects. Metab Bone Dis Relat Res. 1983;5(2):69–74. doi: 10.1016/0221-8747(83)90004-8. [DOI] [PubMed] [Google Scholar]
  31. Whyte M. P., Bergfeld M. A., Murphy W. A., Avioli L. V., Teitelbaum S. L. Postmenopausal osteoporosis. A heterogeneous disorder as assessed by histomorphometric analysis of Iliac crest bone from untreated patients. Am J Med. 1982 Feb;72(2):193–202. doi: 10.1016/0002-9343(82)90810-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES