Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o310. doi: 10.1107/S1600536811000183

2-Chloro-N-[4-(3-methyl-3-phenyl­cyclo­but­yl)-1,3-thia­zol-2-yl]-N′-(naphthalen-1-yl­methyl­idene)acetohydrazide

Ersin Inkaya a,*, Muharrem Dinçer a, Alaaddin Çukurovalı b, Engin Yılmaz c
PMCID: PMC3051444  PMID: 21522998

Abstract

In the mol­ecular structure of the title hydrazide derivative, C27H24ClN3OS, the acetohydrazide group is approximately planar, with a maximum deviation of 0.017 (3) Å. The dihedral angle between the naphthyl­ene system and the phenyl ring is 78.91 (18)°. The crystal structure is stabilized by one weak inter­molecular C—H⋯O hydrogen bond and two aliphatic C—H⋯π hydrogen-bonding associations.

Related literature

For the applications and bioactivity of hydrazide derivatives, see: Feng et al. (2006); Yang et al. (2007); Kamal et al. (2007); Masunari & Tavares (2007); Rando et al. (2002). For bond-length data, see: Demir et al. (2006).graphic file with name e-67-0o310-scheme1.jpg

Experimental

Crystal data

  • C27H24ClN3OS

  • M r = 474.00

  • Monoclinic, Inline graphic

  • a = 7.498 (5) Å

  • b = 12.823 (5) Å

  • c = 24.924 (5) Å

  • β = 92.185 (5)°

  • V = 2394.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.36 × 0.22 × 0.12 mm

Data collection

  • Stoe IPDS 2 CCD diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.797, T max = 0.961

  • 12524 measured reflections

  • 4206 independent reflections

  • 1375 reflections with I > 2σ(I)

  • R int = 0.135

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.156

  • S = 0.90

  • 4206 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000183/zs2087sup1.cif

e-67-0o310-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000183/zs2087Isup2.hkl

e-67-0o310-Isup2.hkl (201.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C12/C13/S1/C14/N1 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.41 3.243 (7) 148
C8—H7ACg1ii 0.96 2.94 3.748 (3) 143
C16—H16BCg2iii 0.97 2.93 3.740 (8) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-461).

supplementary crystallographic information

Comment

Hydrazide derivatives of various compounds are very important units in host–guest chemistry due to their special arrangement of donor-acceptor functional groups (Feng et al., 2006; Yang et al., 2007). Hydrazine derivatives have also been associated with remarkable anticancer (Kamal et al., 2007), antibacterial (Masunari & Tavares, 2007) and tuberculostatic (Rando et al., 2002) activities. The title compound, the hydrazide derivative C27H24N3OClS (I) has been synthesized and its crystal structure is reported here.

In the structure of (I) (Fig. 1) the phenyl and thiazole rings are cis-related with respect to the cyclobutane ring. The dihedral angle between the naphthylene fragment with the thiazole and phenyl rings are 35.76 (17)° and 78.91 (18)°, respectively. The cyclobutane ring is puckered, with a dihedral angle of 25.20 (5)° between the two three-membered halves of the ring. The dihedral angle between the acetohydrazide group and the thiazole ring is 32.28 (38)°. The C═O bond distance is 1.190 (6) Å comparing with a literature value of 1.187 (16) Å (Demir et al., 2006).

The crystal packing involves a weak intermolecular thiazole C13—H···O1 hydrogen bond (Table 1, Fig. 2) and intermoleculer C8—H···π (thiazole ring C12/C13/S1/C14/N1), C16—H···π (ring C22—C27) hydrogen-bonding associations (Fig. 3).

Experimental

The synthesis of the title compound was simply carried out in the following reaction (Fig. 4). A solution of 0.3975 gram (1 mmol) of N-[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-N-naphthalen -1-ylmethylenehydrazine was dissolved in 20 ml of dioxane containing 1 mmol triethylamine. To this solution, 90 µL (1 mmol) of chloroacetyl chloride solution in 20 ml 1,4-dioxane was added dropwise over a two hour period at room temperature with stirring. Mixture was stirred two hours more and then neutralized with 5% aqueous ammonia. The compound thus precipitated was filtered, washed with copious water and crystallized from ethanol, giving brown crystals (yield, 93%).

Refinement

The data was poor because of the weakly diffracting crystals which were not of good quality. Although a long exposure time (5 minute) was applied, the reflections were quite weak, resulting in a too low observed/unique reflection ratio. H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing the C—H···O hydrogen bonding. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.

Fig. 3.

Fig. 3.

Part of the crystal structure of the title compound, showing the C—H···π interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.

Fig. 4.

Fig. 4.

Reaction scheme for the title compound.

Crystal data

C27H24ClN3OS F(000) = 992
Mr = 474.00 Dx = 1.315 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 9611 reflections
a = 7.498 (5) Å θ = 1.6–27.3°
b = 12.823 (5) Å µ = 0.27 mm1
c = 24.924 (5) Å T = 296 K
β = 92.185 (5)° Prism, pale brown
V = 2394.6 (19) Å3 0.36 × 0.22 × 0.12 mm
Z = 4

Data collection

Stoe IPDS 2 CCD diffractometer 4206 independent reflections
Radiation source: fine-focus sealed tube 1375 reflections with I > 2σ(I)
plane graphite Rint = 0.135
rotation method scans θmax = 25.0°, θmin = 1.6°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −8→7
Tmin = 0.797, Tmax = 0.961 k = −15→15
12524 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0426P)2] where P = (Fo2 + 2Fc2)/3
4206 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.1715 (3) 0.89358 (11) 0.38214 (7) 0.1256 (8)
S1 0.0165 (3) 0.51892 (13) 0.27709 (7) 0.1101 (7)
N1 0.2484 (6) 0.4174 (3) 0.33380 (17) 0.0726 (14)
N2 0.1837 (6) 0.5845 (3) 0.37084 (17) 0.0721 (14)
N3 0.2157 (6) 0.5688 (3) 0.42568 (17) 0.0760 (15)
O1 0.1257 (7) 0.7154 (3) 0.31249 (16) 0.1143 (18)
C1 0.7867 (12) 0.1538 (6) 0.3653 (3) 0.127 (3)
H1 0.8339 0.1724 0.3327 0.153*
C2 0.8984 (11) 0.1442 (7) 0.4126 (4) 0.140 (3)
H2 1.0198 0.1577 0.4106 0.168*
C3 0.8345 (13) 0.1166 (6) 0.4591 (4) 0.110 (3)
H3 0.9116 0.1100 0.4891 0.132*
C4 0.6583 (13) 0.0977 (5) 0.4638 (3) 0.103 (2)
H4 0.6128 0.0789 0.4966 0.123*
C5 0.5461 (9) 0.1073 (4) 0.4178 (3) 0.091 (2)
H5 0.4248 0.0943 0.4208 0.109*
C6 0.6064 (11) 0.1348 (4) 0.3692 (3) 0.0798 (18)
C8 0.4959 (9) 0.0466 (4) 0.2850 (2) 0.103 (2)
H7A 0.6192 0.0327 0.2789 0.155*
H7B 0.4325 0.0570 0.2513 0.155*
H7C 0.4452 −0.0114 0.3034 0.155*
C7 0.4812 (9) 0.1451 (4) 0.3194 (2) 0.0763 (18)
C9 0.4947 (9) 0.2463 (4) 0.2867 (2) 0.0884 (19)
H9A 0.5475 0.2368 0.2521 0.106*
H9B 0.5516 0.3033 0.3064 0.106*
C10 0.2863 (9) 0.1759 (4) 0.3310 (2) 0.0788 (18)
H10A 0.2016 0.1192 0.3261 0.095*
H10B 0.2737 0.2093 0.3656 0.095*
C11 0.2862 (9) 0.2530 (4) 0.2835 (2) 0.0811 (18)
H11 0.2394 0.2187 0.2508 0.097*
C12 0.1991 (8) 0.3552 (4) 0.2899 (2) 0.0748 (18)
C13 0.0734 (9) 0.3984 (4) 0.2568 (2) 0.097 (2)
H13 0.0241 0.3657 0.2264 0.117*
C14 0.1626 (8) 0.5056 (4) 0.3315 (2) 0.0730 (17)
C15 0.1622 (8) 0.6881 (4) 0.3572 (2) 0.082 (2)
C16 0.1878 (8) 0.7630 (4) 0.4043 (2) 0.0866 (19)
H16A 0.3040 0.7515 0.4217 0.104*
H16B 0.0976 0.7497 0.4303 0.104*
C17 0.2259 (8) 0.4801 (4) 0.4471 (2) 0.0809 (19)
H17 0.2139 0.4198 0.4265 0.097*
C18 0.2573 (8) 0.4748 (4) 0.5056 (2) 0.0760 (17)
C19 0.2719 (9) 0.5651 (5) 0.5343 (3) 0.108 (3)
H19 0.2600 0.6288 0.5167 0.129*
C20 0.3046 (11) 0.5631 (6) 0.5900 (3) 0.135 (3)
H20 0.3144 0.6255 0.6089 0.162*
C21 0.3222 (10) 0.4714 (7) 0.6168 (3) 0.123 (3)
H21 0.3454 0.4713 0.6537 0.148*
C22 0.3057 (8) 0.3774 (5) 0.5892 (2) 0.0807 (18)
C23 0.2711 (8) 0.3776 (4) 0.5329 (2) 0.0745 (17)
C24 0.2565 (8) 0.2805 (4) 0.5059 (2) 0.092 (2)
H24 0.2392 0.2786 0.4687 0.111*
C25 0.2679 (10) 0.1900 (5) 0.5343 (3) 0.106 (2)
H25 0.2522 0.1270 0.5163 0.127*
C26 0.3021 (10) 0.1887 (6) 0.5893 (3) 0.115 (3)
H26 0.3126 0.1257 0.6076 0.138*
C27 0.3200 (9) 0.2792 (7) 0.6158 (3) 0.106 (2)
H27 0.3424 0.2779 0.6527 0.127*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.187 (2) 0.0619 (9) 0.1246 (15) −0.0055 (11) −0.0343 (14) 0.0081 (10)
S1 0.1371 (17) 0.1007 (12) 0.0888 (12) 0.0283 (12) −0.0443 (12) −0.0148 (10)
N1 0.097 (4) 0.059 (3) 0.061 (3) 0.004 (3) −0.011 (3) −0.002 (2)
N2 0.106 (4) 0.058 (3) 0.052 (3) 0.011 (3) −0.002 (3) 0.003 (2)
N3 0.107 (4) 0.069 (3) 0.051 (3) −0.006 (3) −0.009 (3) 0.004 (2)
O1 0.190 (5) 0.081 (3) 0.069 (3) 0.020 (3) −0.018 (3) 0.014 (2)
C1 0.104 (7) 0.186 (8) 0.093 (6) −0.001 (6) 0.000 (6) −0.024 (5)
C2 0.092 (7) 0.232 (10) 0.097 (6) −0.001 (6) 0.000 (6) −0.026 (7)
C3 0.111 (8) 0.120 (6) 0.097 (6) 0.024 (6) −0.013 (6) −0.029 (5)
C4 0.123 (7) 0.086 (4) 0.097 (6) −0.002 (5) −0.018 (5) 0.005 (4)
C5 0.112 (6) 0.079 (4) 0.080 (5) −0.007 (4) −0.014 (5) 0.003 (4)
C6 0.096 (6) 0.067 (4) 0.077 (5) 0.006 (4) 0.001 (4) −0.017 (4)
C8 0.129 (6) 0.091 (4) 0.089 (5) 0.017 (4) −0.008 (4) −0.029 (4)
C7 0.094 (6) 0.068 (4) 0.067 (4) 0.004 (3) 0.000 (4) −0.011 (3)
C9 0.106 (6) 0.083 (4) 0.077 (4) −0.005 (4) 0.010 (4) −0.016 (4)
C10 0.099 (6) 0.071 (3) 0.067 (4) −0.004 (4) 0.002 (4) −0.003 (3)
C11 0.110 (6) 0.064 (4) 0.069 (4) 0.000 (4) −0.005 (4) −0.007 (3)
C12 0.105 (5) 0.059 (3) 0.060 (4) −0.006 (3) 0.002 (4) −0.006 (3)
C13 0.128 (6) 0.096 (4) 0.067 (4) 0.004 (4) −0.023 (4) −0.013 (4)
C14 0.108 (5) 0.063 (4) 0.046 (3) −0.003 (4) −0.013 (3) 0.003 (3)
C15 0.112 (6) 0.064 (4) 0.069 (4) 0.007 (3) −0.008 (4) 0.008 (3)
C16 0.114 (6) 0.061 (3) 0.084 (4) 0.006 (3) −0.010 (4) 0.008 (3)
C17 0.126 (6) 0.067 (4) 0.048 (4) −0.013 (4) −0.012 (3) 0.011 (3)
C18 0.100 (5) 0.067 (4) 0.060 (4) −0.009 (3) −0.005 (3) −0.003 (3)
C19 0.166 (8) 0.077 (4) 0.077 (5) −0.001 (4) −0.025 (5) −0.007 (4)
C20 0.198 (9) 0.118 (6) 0.087 (6) −0.016 (6) −0.029 (6) −0.023 (5)
C21 0.163 (8) 0.145 (7) 0.061 (5) −0.014 (6) −0.021 (5) −0.007 (5)
C22 0.089 (5) 0.107 (5) 0.046 (4) 0.000 (4) −0.003 (3) 0.012 (4)
C23 0.082 (5) 0.079 (4) 0.063 (4) −0.006 (3) −0.002 (3) 0.006 (3)
C24 0.126 (6) 0.078 (4) 0.071 (4) 0.008 (4) −0.010 (4) 0.012 (4)
C25 0.145 (7) 0.082 (5) 0.091 (5) 0.006 (4) −0.003 (5) 0.021 (4)
C26 0.128 (7) 0.108 (6) 0.108 (7) 0.008 (5) 0.005 (5) 0.037 (5)
C27 0.107 (6) 0.138 (6) 0.073 (5) 0.010 (5) −0.006 (4) 0.032 (5)

Geometric parameters (Å, °)

Cl1—C16 1.766 (5) C10—C11 1.541 (7)
S1—C13 1.686 (6) C10—H10A 0.9700
S1—C14 1.720 (5) C10—H10B 0.9700
N1—C14 1.301 (6) C11—C12 1.476 (7)
N1—C12 1.392 (6) C11—H11 0.9800
N2—C15 1.379 (6) C12—C13 1.349 (7)
N2—N3 1.393 (5) C13—H13 0.9300
N2—C14 1.412 (6) C15—C16 1.523 (7)
N3—C17 1.257 (5) C16—H16A 0.9700
O1—C15 1.190 (6) C16—H16B 0.9700
C1—C6 1.380 (9) C17—C18 1.470 (7)
C1—C2 1.425 (9) C17—H17 0.9300
C1—H1 0.9300 C18—C19 1.364 (7)
C2—C3 1.321 (9) C18—C23 1.422 (7)
C2—H2 0.9300 C19—C20 1.403 (8)
C3—C4 1.353 (9) C19—H19 0.9300
C3—H3 0.9300 C20—C21 1.356 (8)
C4—C5 1.401 (8) C20—H20 0.9300
C4—H4 0.9300 C21—C22 1.391 (8)
C5—C6 1.356 (8) C21—H21 0.9300
C5—H5 0.9300 C22—C23 1.417 (7)
C6—C7 1.532 (8) C22—C27 1.425 (8)
C8—C7 1.532 (6) C23—C24 1.418 (7)
C8—H7A 0.9600 C24—C25 1.361 (7)
C8—H7B 0.9600 C24—H24 0.9300
C8—H7C 0.9600 C25—C26 1.384 (8)
C7—C9 1.539 (7) C25—H25 0.9300
C7—C10 1.552 (7) C26—C27 1.340 (8)
C9—C11 1.565 (8) C26—H26 0.9300
C9—H9A 0.9700 C27—H27 0.9300
C9—H9B 0.9700
C13—S1—C14 89.2 (3) C9—C11—H11 110.0
C14—N1—C12 110.4 (4) C13—C12—N1 113.8 (5)
C15—N2—N3 113.2 (4) C13—C12—C11 126.9 (5)
C15—N2—C14 120.6 (4) N1—C12—C11 119.3 (5)
N3—N2—C14 126.0 (4) C12—C13—S1 111.8 (4)
C17—N3—N2 123.5 (4) C12—C13—H13 124.1
C6—C1—C2 118.2 (8) S1—C13—H13 124.1
C6—C1—H1 120.9 N1—C14—N2 123.4 (4)
C2—C1—H1 120.9 N1—C14—S1 114.8 (4)
C3—C2—C1 121.9 (8) N2—C14—S1 121.8 (4)
C3—C2—H2 119.1 O1—C15—N2 122.4 (5)
C1—C2—H2 119.1 O1—C15—C16 123.6 (5)
C2—C3—C4 120.8 (8) N2—C15—C16 114.1 (5)
C2—C3—H3 119.6 C15—C16—Cl1 110.6 (4)
C4—C3—H3 119.6 C15—C16—H16A 109.5
C3—C4—C5 118.2 (8) Cl1—C16—H16A 109.5
C3—C4—H4 120.9 C15—C16—H16B 109.5
C5—C4—H4 120.9 Cl1—C16—H16B 109.5
C6—C5—C4 122.9 (7) H16A—C16—H16B 108.1
C6—C5—H5 118.5 N3—C17—C18 117.9 (5)
C4—C5—H5 118.5 N3—C17—H17 121.0
C5—C6—C1 118.0 (6) C18—C17—H17 121.0
C5—C6—C7 122.0 (7) C19—C18—C23 119.4 (5)
C1—C6—C7 119.9 (7) C19—C18—C17 119.1 (5)
C7—C8—H7A 109.5 C23—C18—C17 121.5 (5)
C7—C8—H7B 109.5 C18—C19—C20 120.8 (6)
H7A—C8—H7B 109.5 C18—C19—H19 119.6
C7—C8—H7C 109.5 C20—C19—H19 119.6
H7A—C8—H7C 109.5 C21—C20—C19 120.9 (6)
H7B—C8—H7C 109.5 C21—C20—H20 119.6
C6—C7—C8 109.1 (5) C19—C20—H20 119.6
C6—C7—C9 116.8 (5) C20—C21—C22 120.2 (6)
C8—C7—C9 113.0 (5) C20—C21—H21 119.9
C6—C7—C10 115.1 (5) C22—C21—H21 119.9
C8—C7—C10 113.7 (5) C21—C22—C23 119.9 (6)
C9—C7—C10 88.0 (4) C21—C22—C27 122.1 (6)
C7—C9—C11 89.2 (5) C23—C22—C27 118.0 (6)
C7—C9—H9A 113.8 C22—C23—C24 118.5 (5)
C11—C9—H9A 113.8 C22—C23—C18 118.9 (5)
C7—C9—H9B 113.8 C24—C23—C18 122.7 (5)
C11—C9—H9B 113.8 C25—C24—C23 119.9 (5)
H9A—C9—H9B 111.0 C25—C24—H24 120.0
C11—C10—C7 89.7 (5) C23—C24—H24 120.0
C11—C10—H10A 113.7 C24—C25—C26 122.2 (7)
C7—C10—H10A 113.7 C24—C25—H25 118.9
C11—C10—H10B 113.7 C26—C25—H25 118.9
C7—C10—H10B 113.7 C27—C26—C25 119.2 (7)
H10A—C10—H10B 110.9 C27—C26—H26 120.4
C12—C11—C10 118.3 (5) C25—C26—H26 120.4
C12—C11—C9 119.2 (5) C26—C27—C22 122.2 (6)
C10—C11—C9 87.4 (4) C26—C27—H27 118.9
C12—C11—H11 110.0 C22—C27—H27 118.9
C10—C11—H11 110.0
C15—N2—N3—C17 174.5 (6) C15—N2—C14—N1 149.7 (6)
C14—N2—N3—C17 −1.6 (9) N3—N2—C14—N1 −34.4 (9)
C6—C1—C2—C3 0.9 (12) C15—N2—C14—S1 −31.5 (8)
C1—C2—C3—C4 −1.0 (13) N3—N2—C14—S1 144.4 (5)
C2—C3—C4—C5 0.6 (12) C13—S1—C14—N1 0.5 (5)
C3—C4—C5—C6 −0.2 (10) C13—S1—C14—N2 −178.4 (5)
C4—C5—C6—C1 0.1 (10) N3—N2—C15—O1 −176.4 (6)
C4—C5—C6—C7 −179.9 (5) C14—N2—C15—O1 0.0 (10)
C2—C1—C6—C5 −0.4 (10) N3—N2—C15—C16 3.1 (7)
C2—C1—C6—C7 179.5 (6) C14—N2—C15—C16 179.4 (5)
C5—C6—C7—C8 −100.5 (7) O1—C15—C16—Cl1 −4.2 (9)
C1—C6—C7—C8 79.6 (7) N2—C15—C16—Cl1 176.3 (4)
C5—C6—C7—C9 129.9 (6) N2—N3—C17—C18 −179.0 (5)
C1—C6—C7—C9 −50.1 (8) N3—C17—C18—C19 0.8 (9)
C5—C6—C7—C10 28.7 (8) N3—C17—C18—C23 −179.8 (6)
C1—C6—C7—C10 −151.2 (6) C23—C18—C19—C20 1.6 (10)
C6—C7—C9—C11 −135.0 (6) C17—C18—C19—C20 −179.0 (7)
C8—C7—C9—C11 97.2 (5) C18—C19—C20—C21 −0.1 (13)
C10—C7—C9—C11 −17.8 (4) C19—C20—C21—C22 −0.8 (13)
C6—C7—C10—C11 136.9 (5) C20—C21—C22—C23 0.2 (11)
C8—C7—C10—C11 −96.2 (5) C20—C21—C22—C27 −178.8 (8)
C9—C7—C10—C11 18.1 (4) C21—C22—C23—C24 179.5 (6)
C7—C10—C11—C12 −139.8 (5) C27—C22—C23—C24 −1.4 (9)
C7—C10—C11—C9 −17.8 (4) C21—C22—C23—C18 1.2 (9)
C7—C9—C11—C12 139.1 (5) C27—C22—C23—C18 −179.7 (6)
C7—C9—C11—C10 17.9 (4) C19—C18—C23—C22 −2.1 (9)
C14—N1—C12—C13 −1.6 (7) C17—C18—C23—C22 178.5 (6)
C14—N1—C12—C11 177.6 (5) C19—C18—C23—C24 179.7 (6)
C10—C11—C12—C13 −127.6 (7) C17—C18—C23—C24 0.3 (9)
C9—C11—C12—C13 128.4 (6) C22—C23—C24—C25 2.9 (9)
C10—C11—C12—N1 53.3 (8) C18—C23—C24—C25 −178.9 (6)
C9—C11—C12—N1 −50.8 (7) C23—C24—C25—C26 −3.2 (11)
N1—C12—C13—S1 2.0 (7) C24—C25—C26—C27 1.8 (12)
C11—C12—C13—S1 −177.2 (5) C25—C26—C27—C22 −0.3 (12)
C14—S1—C13—C12 −1.4 (5) C21—C22—C27—C26 179.2 (8)
C12—N1—C14—N2 179.4 (5) C23—C22—C27—C26 0.2 (10)
C12—N1—C14—S1 0.5 (6)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C12/C13/S1/C14/N1 and C22–C27 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C13—H13···O1i 0.93 2.41 3.243 (7) 148.
C8—H7A···Cg1ii 0.96 2.94 3.748 (3) 143
C16—H16B···Cg2iii 0.97 2.93 3.740 (8) 142

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2087).

References

  1. Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298–o299.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Feng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem. 24, 1200–1208.
  5. Kamal, A., Khan, N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013. [DOI] [PubMed]
  6. Masunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229–4236. [DOI] [PubMed]
  7. Rando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., do Amaral, A. T., Ferreira, E. I. & Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557–560. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  11. Yang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett. 48, 3505–3509.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000183/zs2087sup1.cif

e-67-0o310-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000183/zs2087Isup2.hkl

e-67-0o310-Isup2.hkl (201.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES