Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m163–m164. doi: 10.1107/S1600536811000419

Poly[(μ4-pyridine-2,3-dicarboxyl­ato)lead(II)]

Shie Fu Lush a, Fwu Ming Shen b,*
PMCID: PMC3051456  PMID: 21522843

Abstract

In the title coordination polymer, [Pb(C7H3NO4)]n, the PbII ion is eight-coordinated in a distorted square-anti­prismatic geometry formed by one pyridine N atom and seven carboxyl­ate O atoms from four pyridine-2,3-dicarboxyl­ate (pda) anions. In the pda anion, the dihedral angles between the pyridine ring and carboxyl­ate groups are 19.5 (6) and 73.3 (6)°. The carboxyl­ate groups of the pda anions bridge the Pb ions, forming a two-dimensional coordination polymer parallel to (100). Weak inter­molecular C—H⋯O hydrogen boning is present in the crystal structure.

Related literature

For the coordination modes of the pyridine-2,3-dicarboxyl­ate anion, see: Aghabozorg et al. (2007); Baruah et al. (2007); Li et al. (2006). For the biological activity of pyridine-2,3-dicarb­oxy­lic acid, see: Xiang et al. (2006); Yang et al. (2006); Zhang et al. (2008). For the inert lone-pair effect, see: Liat et al. (1998). For longer Pb—O bonds, see: Mao et al. (2006); Yang et al. (2010).graphic file with name e-67-0m163-scheme1.jpg

Experimental

Crystal data

  • [Pb(C7H3NO4)]

  • M r = 372.30

  • Monoclinic, Inline graphic

  • a = 11.6943 (9) Å

  • b = 4.5392 (4) Å

  • c = 14.1636 (12) Å

  • β = 90.046 (2)°

  • V = 751.84 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 22.42 mm−1

  • T = 297 K

  • 0.54 × 0.23 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.659, T max = 1.000

  • 4013 measured reflections

  • 1484 independent reflections

  • 1336 reflections with I > 2σ(I)

  • R int = 0.125

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.204

  • S = 1.13

  • 1484 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 4.56 e Å−3

  • Δρmin = −5.06 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000419/xu5124sup1.cif

e-67-0m163-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000419/xu5124Isup2.hkl

e-67-0m163-Isup2.hkl (73.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pb—N 2.651 (7)
Pb—O1i 2.816 (7)
Pb—O1ii 2.911 (6)
Pb—O2 2.592 (7)
Pb—O2i 2.566 (9)
Pb—O3iii 2.397 (9)
Pb—O3ii 2.754 (9)
Pb—O4ii 2.845 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3iii 0.93 2.57 3.164 (13) 122

Symmetry code: (iii) Inline graphic.

Acknowledgments

This work was supported financially by Yuanpei University, Taiwan.

supplementary crystallographic information

Comment

The pyridine-2,3-dicarboxylic acid (pdaH2) is a typical chealated-form ligand. Its biological importance has been described in several literatures (Xiang et al., 2006; Yang et al., 2006; Zhang et al., 2008). Pda shows diverse coordination modes, such as monodentate (Baruah et al., 2007), µ2-bridging (Aghabozorg et al., 2007), µ3-bridging (Li et al., 2006). Here we describe the title compound in which the pda is a µ4-bridging ligand (Fig. 1).

The structure of a coordination polymer [Pb(C7H3NO4)]n, the lead ion is eight-coordinated with a distorted square-antiprismatic geometry formed by one O-monodentate pda-2 ligand, one N,O-bidentate pda-2 ligand, one O,O'-bidentate pda-2 ligand and one O,O',O''-tridentate pda-2 ligand (Table 1). According to "inert-pair effect", the coordination number of PbII is variable, and the lengths of bonds to PbII vary in a wide range (Liat et al., 1998). Longer distance is observed between Pb and O1 (2.911 (6) Å); some long Pb—O weak bonds have also been reported in reported lead complexes (Mao et al., 2006; Yang et al., 2010). The carboxylate group of pda-2ligand bridges four PbII ion forming a 2-D framework is constructed.

There are no classic intermolecular hydrogen-bonding in the title compound, but intermolecular C—H···O weak interaction (Table 2) and ring···metal interaction help to stabilize the crystal structure, the Cg3 (Pb/O1—O2—C6)···Pb interaction is 3.877 Å (symmetry code: 1 - x,-1/2 + y,3/2 - z).

Experimental

An aqueous solution (5 ml) containing Pb(NO3)2 (0.164 g, 0.50 mmol) and 1,2-bis(4-pyridyl)ethane (0.0934 g, 0.50 mmol) was added to an aqueous solution (5 ml) of pyridine-2,3-dicarboxylic acid (0.0838 g, 0.50 mmol), and the mixture was stirred for 30 minutes and then filtered. The solution was placed in a 23 ml Teflon-lined reactor, heated at 423 K for 3 days, then cooled slowly to room temperature. The colorless transparent single crystals of the title compound were obtained in 45.67% yield (based on Pb).

Refinement

H atoms were positioned geometrically with C—H = 0.93 (aromatic), and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity.[Symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) x, -y - 1/2, z + 1/2; (iii) x, -y + 1/2].

Crystal data

[Pb(C7H3NO4)] F(000) = 664
Mr = 372.30 Dx = 3.289 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2856 reflections
a = 11.6943 (9) Å θ = 2.3–26.0°
b = 4.5392 (4) Å µ = 22.42 mm1
c = 14.1636 (12) Å T = 297 K
β = 90.046 (2)° Parallelepiped, colorless
V = 751.84 (11) Å3 0.54 × 0.23 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1484 independent reflections
Radiation source: fine-focus sealed tube 1336 reflections with I > 2σ(I)
graphite Rint = 0.125
Detector resolution: 9 pixels mm-1 θmax = 26.0°, θmin = 1.7°
ω scan h = −14→10
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −5→5
Tmin = 0.659, Tmax = 1.000 l = −17→17
4013 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1477P)2] where P = (Fo2 + 2Fc2)/3
1484 reflections (Δ/σ)max = 0.001
118 parameters Δρmax = 4.56 e Å3
0 restraints Δρmin = −5.06 e Å3

Special details

Experimental. Elemental analysis: calculated for C7H3NO4Pb: (Mr=372.29) C, 22.56; H, 0.81; N, 3.76%. Found:C,22.47; H, 0.89; N, 3.85%. IR data (cm-1): 3429(s), 1602(s), 1579(s), 1551(s), 1459(w), 1385(s), 1276(w), 1236(w), 1105(m), 871(m), 825(m), 779(m), 711(s), 700(m), 660(m), 603(w), 534(w), 443(w).
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb 0.60762 (4) 0.01636 (10) 0.85892 (3) 0.0213 (3)
O1 0.6007 (6) 0.3400 (19) 0.5591 (4) 0.035 (2)
O2 0.5381 (7) 0.120 (2) 0.6883 (5) 0.037 (3)
O3 0.6905 (9) −0.061 (2) 0.4106 (6) 0.032 (3)
O4 0.8222 (6) 0.2863 (17) 0.4294 (4) 0.038 (2)
N 0.7437 (6) −0.1315 (19) 0.7170 (5) 0.024 (2)
C1 0.7208 (12) −0.0178 (18) 0.6321 (9) 0.021 (4)
C2 0.7951 (11) −0.058 (3) 0.5526 (9) 0.021 (3)
C3 0.8932 (8) −0.216 (2) 0.5715 (6) 0.027 (3)
C4 0.9192 (9) −0.325 (3) 0.6603 (7) 0.038 (4)
C5 0.8383 (9) −0.288 (3) 0.7300 (6) 0.036 (3)
C6 0.6141 (8) 0.163 (3) 0.6231 (6) 0.023 (3)
C7 0.7687 (9) 0.068 (2) 0.4580 (7) 0.019 (3)
H3A 0.94410 −0.25180 0.52240 0.0320*
H4A 0.98820 −0.41980 0.67230 0.0450*
H5A 0.85060 −0.37490 0.78850 0.0430*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb 0.0207 (5) 0.0242 (5) 0.0189 (5) −0.0031 (1) −0.0051 (3) −0.0016 (1)
O1 0.035 (4) 0.045 (5) 0.026 (3) 0.015 (4) 0.007 (3) 0.012 (3)
O2 0.027 (4) 0.061 (6) 0.024 (3) 0.017 (5) 0.001 (3) 0.013 (4)
O3 0.039 (5) 0.031 (4) 0.027 (4) 0.006 (4) −0.022 (4) −0.013 (4)
O4 0.044 (4) 0.041 (5) 0.030 (3) −0.007 (4) −0.010 (3) 0.009 (3)
N 0.018 (4) 0.032 (5) 0.021 (3) 0.004 (3) −0.003 (3) 0.004 (3)
C1 0.018 (7) 0.028 (6) 0.017 (6) −0.002 (3) 0.000 (5) −0.001 (3)
C2 0.006 (5) 0.037 (5) 0.021 (5) 0.002 (4) −0.004 (4) −0.010 (5)
C3 0.023 (5) 0.032 (6) 0.026 (4) 0.006 (4) 0.003 (4) 0.003 (4)
C4 0.029 (6) 0.054 (8) 0.031 (5) 0.018 (6) −0.013 (4) 0.010 (5)
C5 0.041 (6) 0.046 (7) 0.021 (4) 0.009 (5) −0.009 (4) 0.011 (4)
C6 0.018 (5) 0.031 (5) 0.021 (4) 0.006 (4) −0.005 (3) 0.002 (4)
C7 0.008 (5) 0.030 (5) 0.019 (4) 0.006 (4) −0.007 (4) 0.004 (4)

Geometric parameters (Å, °)

Pb—N 2.651 (7) N—C1 1.336 (14)
Pb—O1i 2.816 (7) N—C5 1.327 (14)
Pb—O1ii 2.911 (6) C1—C2 1.435 (18)
Pb—O2 2.592 (7) C1—C6 1.499 (17)
Pb—O2i 2.566 (9) C2—C3 1.379 (16)
Pb—O3iii 2.397 (9) C2—C7 1.489 (16)
Pb—O3ii 2.754 (9) C3—C4 1.385 (14)
Pb—O4ii 2.845 (7) C4—C5 1.378 (14)
O1—C6 1.221 (13) C3—H3A 0.9300
O2—C6 1.297 (12) C4—H4A 0.9300
O3—C7 1.276 (14) C5—H5A 0.9300
O4—C7 1.240 (12)
O2—Pb—N 61.8 (2) Pbv—O1—C6 150.1 (7)
O1i—Pb—O2 99.5 (2) Pbiv—O1—Pbv 111.3 (2)
O2—Pb—O2i 71.1 (3) Pb—O2—C6 118.5 (6)
O2—Pb—O3iii 124.6 (3) Pb—O2—Pbiv 125.3 (3)
O1ii—Pb—O2 149.2 (2) Pbiv—O2—C6 99.5 (7)
O2—Pb—O3ii 101.2 (3) Pbvi—O3—C7 147.7 (8)
O2—Pb—O4ii 123.1 (2) Pbv—O3—C7 88.8 (6)
O2—Pb—C7ii 121.1 (3) Pbvi—O3—Pbv 123.4 (4)
O1i—Pb—N 139.5 (2) Pbv—O4—C7 85.5 (6)
O2i—Pb—N 91.4 (2) Pb—N—C1 117.7 (7)
O3iii—Pb—N 76.7 (3) Pb—N—C5 122.1 (6)
O1ii—Pb—N 144.3 (2) C1—N—C5 119.9 (9)
O3ii—Pb—N 102.6 (3) N—C1—C2 122.4 (11)
O4ii—Pb—N 79.4 (2) N—C1—C6 117.0 (10)
N—Pb—C7ii 97.8 (3) C2—C1—C6 120.5 (10)
O1i—Pb—O2i 48.2 (2) C1—C2—C3 114.7 (11)
O1i—Pb—O3iii 88.8 (3) C1—C2—C7 122.2 (11)
O1i—Pb—O1ii 68.73 (19) C3—C2—C7 123.1 (10)
O1i—Pb—O3ii 116.7 (3) C2—C3—C4 123.0 (10)
O1i—Pb—O4ii 135.08 (17) C3—C4—C5 117.2 (10)
O1i—Pb—C7ii 121.8 (2) N—C5—C4 122.6 (9)
O2i—Pb—O3iii 75.1 (3) O1—C6—O2 122.7 (10)
O1ii—Pb—O2i 113.1 (2) O1—C6—C1 122.0 (9)
O2i—Pb—O3ii 158.7 (3) O2—C6—C1 115.3 (10)
O2i—Pb—O4ii 153.8 (2) O3—C7—O4 123.8 (9)
O2i—Pb—C7ii 167.3 (2) O3—C7—C2 116.4 (9)
O1ii—Pb—O3iii 84.7 (3) Pbv—C7—O3 66.1 (6)
O3iii—Pb—O3ii 123.4 (3) O4—C7—C2 119.8 (9)
O3iii—Pb—O4ii 78.9 (3) Pbv—C7—O4 70.3 (5)
O3iii—Pb—C7ii 98.4 (3) Pbv—C7—C2 142.1 (7)
O1ii—Pb—O3ii 63.3 (2) C2—C3—H3A 119.00
O1ii—Pb—O4ii 67.22 (18) C4—C3—H3A 118.00
O1ii—Pb—C7ii 54.8 (2) C3—C4—H4A 121.00
O3ii—Pb—O4ii 46.7 (3) C5—C4—H4A 121.00
O3ii—Pb—C7ii 25.1 (3) N—C5—H5A 119.00
O4ii—Pb—C7ii 24.2 (2) C4—C5—H5A 119.00
Pbiv—O1—C6 89.5 (6)
N—Pb—O2—C6 −27.3 (8) O2—Pb—O4ii—C7ii 93.1 (6)
N—Pb—O2—Pbiv −155.1 (5) N—Pb—O4ii—C7ii 138.9 (6)
O1i—Pb—O2—C6 −169.0 (9) O2—Pb—C7ii—O3ii 41.3 (7)
O1i—Pb—O2—Pbiv 63.2 (4) O2—Pb—C7ii—O4ii −102.4 (5)
O2i—Pb—O2—C6 −129.5 (9) O2—Pb—C7ii—C2ii 144.2 (11)
O2i—Pb—O2—Pbiv 102.7 (4) N—Pb—C7ii—O3ii 102.9 (6)
O3iii—Pb—O2—C6 −73.9 (10) N—Pb—C7ii—O4ii −40.7 (6)
O3iii—Pb—O2—Pbiv 158.3 (4) N—Pb—C7ii—C2ii −154.2 (12)
O1ii—Pb—O2—C6 126.9 (9) Pbv—O1—C6—O2 −131.7 (11)
O1ii—Pb—O2—Pbiv −0.9 (7) Pbiv—O1—C6—C1 −175.5 (10)
O3ii—Pb—O2—C6 71.1 (9) Pbiv—O1—C6—O2 3.8 (11)
O3ii—Pb—O2—Pbiv −56.7 (4) Pbv—O1—C6—C1 49.0 (19)
O4ii—Pb—O2—C6 25.9 (10) Pbiv—O2—C6—C1 175.1 (8)
O4ii—Pb—O2—Pbiv −101.9 (4) Pb—O2—C6—C1 36.0 (13)
C7ii—Pb—O2—C6 54.5 (10) Pb—O2—C6—O1 −143.4 (9)
C7ii—Pb—O2—Pbiv −73.3 (5) Pbiv—O2—C6—O1 −4.2 (12)
O2—Pb—N—C1 15.4 (7) Pbvi—O3—C7—O4 136.7 (11)
O2—Pb—N—C5 −171.4 (9) Pbv—O3—C7—O4 −42.2 (10)
O1i—Pb—N—C1 85.5 (8) Pbvi—O3—C7—C2 −43.1 (19)
O1i—Pb—N—C5 −101.3 (8) Pbv—O3—C7—C2 138.0 (9)
O2i—Pb—N—C1 83.0 (7) Pbvi—O3—C7—Pbv 178.9 (15)
O2i—Pb—N—C5 −103.8 (9) Pbv—O4—C7—O3 40.7 (10)
O3iii—Pb—N—C1 157.4 (8) Pbv—O4—C7—C2 −139.5 (9)
O3iii—Pb—N—C5 −29.4 (9) C5—N—C1—C2 0.1 (16)
O1ii—Pb—N—C1 −142.1 (7) Pb—N—C1—C2 173.5 (8)
O1ii—Pb—N—C5 31.1 (10) Pb—N—C1—C6 −5.1 (12)
O3ii—Pb—N—C1 −80.8 (7) C1—N—C5—C4 4.1 (17)
O3ii—Pb—N—C5 92.4 (9) C5—N—C1—C6 −178.5 (10)
O4ii—Pb—N—C1 −121.6 (7) Pb—N—C5—C4 −169.0 (9)
O4ii—Pb—N—C5 51.6 (8) C6—C1—C2—C3 176.8 (10)
C7ii—Pb—N—C1 −105.8 (7) N—C1—C2—C3 −1.7 (16)
C7ii—Pb—N—C5 67.4 (9) N—C1—C2—C7 179.7 (10)
O2—Pb—O1i—C6i 51.7 (7) C6—C1—C2—C7 −1.9 (17)
O2—Pb—O1i—Pbvii −150.3 (3) N—C1—C6—O1 159.4 (10)
N—Pb—O1i—C6i −5.4 (8) N—C1—C6—O2 −20.0 (15)
N—Pb—O1i—Pbvii 152.5 (3) C2—C1—C6—O1 −19.2 (17)
O2—Pb—O2i—Pbi 14.6 (4) C2—C1—C6—O2 161.5 (10)
O2—Pb—O2i—C6i −120.6 (7) C1—C2—C3—C4 −0.7 (17)
N—Pb—O2i—Pbi −44.8 (4) C7—C2—C3—C4 177.9 (11)
N—Pb—O2i—C6i 179.9 (7) C1—C2—C7—O3 −74.7 (15)
O2—Pb—O3iii—C7iii 136.3 (13) C1—C2—C7—O4 105.5 (13)
N—Pb—O3iii—C7iii 95.1 (14) C1—C2—C7—Pbv 10 (2)
O2—Pb—O1ii—Pbvii 72.2 (6) C3—C2—C7—O3 106.7 (13)
O2—Pb—O1ii—C6ii −59.0 (14) C3—C2—C7—O4 −73.0 (15)
N—Pb—O1ii—Pbvii −149.1 (3) C3—C2—C7—Pbv −168.9 (8)
N—Pb—O1ii—C6ii 79.8 (14) C2—C3—C4—C5 4.5 (18)
O2—Pb—O3ii—C7ii −144.8 (6) C3—C4—C5—N −6.3 (18)
N—Pb—O3ii—C7ii −81.6 (6)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y−1/2, z+1/2; (iv) −x+1, y+1/2, −z+3/2; (v) x, −y+1/2, z−1/2; (vi) x, −y−1/2, z−1/2; (vii) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···O3iii 0.93 2.57 3.164 (13) 122

Symmetry codes: (iii) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5124).

References

  1. Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469. [DOI] [PMC free article] [PubMed]
  2. Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4518–4524.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2000). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Li, M., Xiang, J.-F., Yuan, L.-J., Wu, S.-M., Chen, S.-P. & Sun, J.-T. (2006). Cryst. Growth Des. 6, 2036–2040.
  7. Liat, S. L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.
  8. Mao, J.-G., Wang, Z. & Gearfield, A. (2006). Inorg. Chem. 41, 6106–6111.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Xiang, J.-F., Li, M., Wu, S.-M., Yuan, L.-J. & Sun, J.-T. (2006). Acta Cryst. E62, m1122–m1123.
  12. Yang, J., Dai, J. & Wang, X. (2010). Acta Cryst. E66, m1686. [DOI] [PMC free article] [PubMed]
  13. Yang, H., Zhang, Z.-H., Guo, J.-H. & Lu, Y.-C. (2006). Chin. J. Struct. Chem. 25, 689–693.
  14. Zhang, C.-X., Ma, C.-B., Wang, M. & Chen, C.-N. (2008). Chin. J. Struct. Chem. 27, 1370–1374.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811000419/xu5124sup1.cif

e-67-0m163-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811000419/xu5124Isup2.hkl

e-67-0m163-Isup2.hkl (73.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES