Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):o382. doi: 10.1107/S1600536811001085

6-Oxo-5-[(trifluoro­meth­yl)sulfon­yl]-1,2,4a,5,6,11b-hexa­hydro-1,3-dioxolo[4,5-j]phenanthridin-2-yl benzoate

Chunli Wu a,b,*, Pan Li b, Xiufang Shi b, Xiaotao Pan b, Jizhou Wu a
PMCID: PMC3051489  PMID: 21523058

Abstract

In the title compound, C22H16F3NO7S, the two benzene rings are almost perpendicular, the dihedral angle between their mean planes being 87.1 (1)°. The terminal O atom of the benzoate moiety is disordered over two positions with site occupancies of 0.244 (15) and 0.756 (15). The crystal structure is stablized by two types of weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

The title compound is an unexpected product in our recent synthesis route of phenanthridones alkaloids. It shows potent inhibitory activity against the MCF-7 cells, SK—N—SH cells and SPC-A-1 cells. For details of the synthesis, see: Banwell et al. (1995); Szántó et al. (2009a ,b ); Pampin et al. (2003). For a recent study on the anti­tumor activity of phenanthridones alkaloids, see: Matveenko et al. (2009).graphic file with name e-67-0o382-scheme1.jpg

Experimental

Crystal data

  • C22H16F3NO7S

  • M r = 495.42

  • Triclinic, Inline graphic

  • a = 5.3521 (5) Å

  • b = 15.5146 (16) Å

  • c = 15.5615 (14) Å

  • α = 114.351 (2)°

  • β = 95.145 (1)°

  • γ = 97.072 (1)°

  • V = 1154.07 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.45 × 0.33 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.913, T max = 0.962

  • 5980 measured reflections

  • 4008 independent reflections

  • 2079 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.163

  • S = 1.00

  • 4008 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001085/zq2082sup1.cif

e-67-0o382-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001085/zq2082Isup2.hkl

e-67-0o382-Isup2.hkl (196.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.51 3.341 (5) 149
C15—H15A⋯O2ii 0.97 2.48 3.202 (5) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Hongmin Liu (Zhengzhou University) for the single-crystal data analysis.

supplementary crystallographic information

Comment

This paper shows an unexpected product of our study about synthesis and structural characterization of phenanthridones alkaloids. The title compound was obtained under Banwell modification of the Bischler-Napieralski reaction (Banwell et al., 1995) of 1-benzoyloxy-4-(methoxycarbonylamino)-5-(3,4-methylenedioxyphenyl)cyclohex-2-ene. The formation of this product is probably due to the overuse of Tf2O (Pampin et al., 2003), which is confirmed when a smaller amount of Tf2O is used. What makes us excited is that the unexpected product shows potent inhibitory activity (Matveenko et al., 2009) against the MCF-7 cells (IC50 = 4.46µg/ml), SK—N—SH cells (IC50 = 1.89µg/ml) and SPC-A-1 cells (IC50 = 1.35µg/ml).

In the crystal structure of the title compound, the two benzene rings are almost perpendicular, the dihedral angle between the mean planes of the rings is 87.1 (1)°. The terminal O atom of the benzoate moiety is disordered over two positions with site-occupancies of 0.244 (15) and 0.756 (15). The environment of the N atom is essentially planar, and the bond angles C1—N1—C9, C9—N1—S1 and C1—N1—S1 around the N atom are 114.8 (3), 125.4 (2) and 119.7 (2)°, respectively. The molecules are linked into a framework by means of two types of weak C—H···O hydrogen bonds linking the CH2 group of the 1,3-dioxolane and one O atom of the sulfonyl group [H···O = 2.48 Å, C···O = 3.201 (6) Å and C—H···O = 131°] and one CH group of the C2-C7 cyclohexene ring and one O atom of the benzodioxole moiety [H···O = 2.51 Å, C···O = 3.342 (5) Å and C—H···O = 149°].

Experimental

1-Benzoyloxy-4-(methoxycarbonylamino)-5-(3,4-methylenedioxyphenyl)cyclohex-2-ene (0.46 mmol) and 4-DMAP (1.38 mmol) were dissolved in dry CH2Cl2 (12 ml) and cooled to 0°C. To this mixture was added a solution of triflic anhydride (3.68 mmol) in dry CH2Cl2 (2 ml) over a period of 15 min. The mixture was stirred overnight at ambient temperature. The reaction mixture was then washed with saturated NaHCO3 solution, 1M hydrochloric acid and saturated NaHCO3 solution, subsequently. The organic layer was evaporated, and the product was isolated by column chromatography on silica (eluent: petroleum ether/acetone = 5:1). Crystals suitable for X-ray analysis were grown by slow evaporation from acetone-ethanol solution at room temperature for two weeks.

1H NMR (400 MHz, CDCl3, ppm): 8.11–8.04 (m, 2H), 7.65–7.56 (m, 2H), 7.47 (t, J = 7.7 Hz, 2H), 6.87 (s, 1H), 6.20 (dt, J = 10.6, 2.2 Hz, 1H), 6.09 (s, 2H), 6.01 (dd, J = 10.9, 0.9 Hz, 1H), 5.91 (ddd, J = 9.5, 5.5, 2.8 Hz, 1H), 4.67 (ddd, J = 10.6, 5.5, 2.7 Hz, 1H), 3.57–3.47 (m, 1H), 3.05 (dd, J = 13.5, 4.7 Hz, 1H), 1.73 (td, J = 12.9, 10.2 Hz,1H).

13C NMR (101 MHz, CDCl3, ppm): 165.96, 163.58, 153.84, 147.76, 138.98, 133.38, 129.72, 129.46, 128.49, 125.65, 121.61, 109.76, 104.44, 102.54, 69.06, 63.96, 39.83, 30.84.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl)and Uiso(H) =1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Packing diagram.

Crystal data

C22H16F3NO7S Z = 2
Mr = 495.42 F(000) = 508
Triclinic, P1 Dx = 1.426 Mg m3
Hall symbol: -P 1 Melting point = 394–397 K
a = 5.3521 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 15.5146 (16) Å Cell parameters from 1287 reflections
c = 15.5615 (14) Å θ = 2.5–25.0°
α = 114.351 (2)° µ = 0.21 mm1
β = 95.145 (1)° T = 298 K
γ = 97.072 (1)° Needle, colorless
V = 1154.07 (19) Å3 0.45 × 0.33 × 0.19 mm

Data collection

Bruker SMART CCD area-detector diffractometer 4008 independent reflections
Radiation source: fine-focus sealed tube 2079 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→6
Tmin = 0.913, Tmax = 0.962 k = −12→18
5980 measured reflections l = −18→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0699P)2] where P = (Fo2 + 2Fc2)/3
4008 reflections (Δ/σ)max < 0.001
312 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.9593 (7) 0.7149 (3) 1.0563 (3) 0.0459 (9)
C2 1.0231 (6) 0.6470 (3) 0.9656 (3) 0.0419 (9)
C3 1.1954 (7) 0.5870 (3) 0.9721 (3) 0.0493 (10)
H3 1.2688 0.5923 1.0309 0.059*
C4 1.2502 (7) 0.5211 (3) 0.8890 (3) 0.0494 (10)
C5 1.1403 (8) 0.5127 (3) 0.8020 (3) 0.0535 (10)
C6 0.9739 (8) 0.5702 (3) 0.7929 (3) 0.0562 (11)
H6 0.9031 0.5633 0.7331 0.067*
C7 0.9146 (7) 0.6395 (3) 0.8768 (3) 0.0428 (9)
C8 0.7389 (7) 0.7092 (3) 0.8759 (2) 0.0443 (9)
H8 0.5712 0.6850 0.8859 0.053*
C9 0.8435 (7) 0.8052 (3) 0.9615 (2) 0.0447 (9)
H9 1.0261 0.8191 0.9598 0.054*
C10 0.7331 (8) 0.8881 (3) 0.9576 (3) 0.0548 (10)
H10 0.7630 0.9463 1.0118 0.066*
C11 0.5952 (8) 0.8810 (3) 0.8797 (3) 0.0629 (12)
H11 0.5412 0.9360 0.8806 0.075*
C12 0.5204 (8) 0.7912 (3) 0.7908 (3) 0.0546 (11)
H12 0.3471 0.7607 0.7889 0.066*
C13 0.7022 (7) 0.7217 (3) 0.7835 (2) 0.0516 (10)
H13A 0.8653 0.7460 0.7719 0.062*
H13B 0.6342 0.6600 0.7304 0.062*
C14 0.8693 (10) 0.9435 (3) 1.2227 (3) 0.0640 (12)
C15 1.3895 (9) 0.4010 (3) 0.7757 (3) 0.0738 (13)
H15A 1.3118 0.3353 0.7593 0.089*
H15B 1.5551 0.4007 0.7549 0.089*
C16 0.3455 (10) 0.7706 (4) 0.6349 (3) 0.0699 (13)
C17 0.3822 (9) 0.7953 (3) 0.5552 (3) 0.0614 (12)
C18 0.5931 (11) 0.8560 (4) 0.5573 (3) 0.0960 (17)
H18 0.7191 0.8823 0.6108 0.115*
C19 0.6226 (14) 0.8790 (5) 0.4820 (4) 0.126 (2)
H19 0.7670 0.9207 0.4848 0.152*
C20 0.4389 (15) 0.8404 (5) 0.4029 (4) 0.1021 (19)
H20 0.4556 0.8571 0.3524 0.122*
C21 0.2354 (15) 0.7787 (6) 0.3985 (4) 0.129 (3)
H21 0.1123 0.7510 0.3441 0.155*
C22 0.2078 (11) 0.7562 (5) 0.4739 (4) 0.120 (2)
H22 0.0653 0.7128 0.4695 0.144*
F1 1.0623 (6) 0.9185 (2) 1.2596 (2) 0.1122 (11)
F2 0.9669 (6) 1.0015 (2) 1.1873 (2) 0.1166 (11)
F3 0.7503 (7) 0.9915 (2) 1.2909 (2) 0.1170 (11)
N1 0.8220 (6) 0.7880 (2) 1.04998 (19) 0.0438 (8)
O1 1.0137 (5) 0.7125 (2) 1.13247 (18) 0.0606 (8)
O2 0.5759 (5) 0.77960 (19) 1.17672 (18) 0.0603 (7)
O3 0.4658 (5) 0.87827 (19) 1.09346 (18) 0.0568 (7)
O4 1.4169 (6) 0.4573 (2) 0.8761 (2) 0.0683 (8)
O5 1.2311 (6) 0.4429 (2) 0.7298 (2) 0.0800 (10)
O6 0.5276 (5) 0.8156 (2) 0.71026 (18) 0.0612 (8)
O7 0.145 (5) 0.763 (2) 0.6537 (16) 0.108 (3) 0.244 (15)
O7' 0.1783 (13) 0.7010 (8) 0.6301 (5) 0.108 (3) 0.756 (15)
S1 0.65022 (19) 0.83949 (7) 1.13126 (7) 0.0482 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.039 (2) 0.048 (2) 0.050 (2) −0.0061 (18) 0.0014 (18) 0.025 (2)
C2 0.038 (2) 0.039 (2) 0.056 (2) −0.0019 (18) 0.0043 (18) 0.030 (2)
C3 0.048 (2) 0.052 (2) 0.053 (2) 0.000 (2) 0.0002 (19) 0.032 (2)
C4 0.045 (2) 0.044 (2) 0.067 (3) 0.002 (2) 0.005 (2) 0.034 (2)
C5 0.066 (3) 0.035 (2) 0.061 (3) 0.007 (2) 0.014 (2) 0.020 (2)
C6 0.066 (3) 0.051 (3) 0.056 (3) 0.007 (2) 0.001 (2) 0.029 (2)
C7 0.042 (2) 0.038 (2) 0.050 (2) −0.0035 (17) 0.0004 (18) 0.0239 (19)
C8 0.042 (2) 0.045 (2) 0.051 (2) −0.0021 (18) 0.0014 (17) 0.0287 (19)
C9 0.042 (2) 0.045 (2) 0.052 (2) −0.0022 (18) 0.0057 (17) 0.028 (2)
C10 0.073 (3) 0.041 (2) 0.058 (2) 0.010 (2) 0.015 (2) 0.028 (2)
C11 0.078 (3) 0.057 (3) 0.075 (3) 0.020 (2) 0.020 (2) 0.045 (3)
C12 0.049 (2) 0.066 (3) 0.066 (3) 0.006 (2) 0.007 (2) 0.047 (2)
C13 0.054 (2) 0.056 (3) 0.051 (2) 0.005 (2) 0.0006 (18) 0.032 (2)
C14 0.077 (3) 0.056 (3) 0.051 (3) −0.004 (3) −0.001 (2) 0.022 (2)
C15 0.085 (3) 0.053 (3) 0.087 (3) 0.019 (3) 0.018 (3) 0.030 (3)
C16 0.059 (3) 0.090 (4) 0.064 (3) −0.003 (3) 0.001 (2) 0.043 (3)
C17 0.074 (3) 0.064 (3) 0.047 (2) 0.008 (3) 0.008 (2) 0.025 (2)
C18 0.111 (4) 0.105 (4) 0.069 (3) −0.026 (4) −0.008 (3) 0.051 (3)
C19 0.154 (6) 0.143 (6) 0.100 (4) −0.025 (5) 0.007 (4) 0.087 (5)
C20 0.149 (6) 0.111 (5) 0.069 (4) 0.035 (5) 0.033 (4) 0.054 (4)
C21 0.135 (6) 0.183 (7) 0.068 (4) −0.015 (6) −0.020 (4) 0.071 (5)
C22 0.110 (5) 0.165 (6) 0.082 (4) −0.038 (4) −0.019 (3) 0.075 (4)
F1 0.107 (2) 0.084 (2) 0.106 (2) −0.0041 (18) −0.0486 (18) 0.0218 (18)
F2 0.139 (3) 0.087 (2) 0.103 (2) −0.0575 (19) −0.0091 (19) 0.0465 (19)
F3 0.143 (3) 0.082 (2) 0.088 (2) 0.006 (2) 0.039 (2) −0.0010 (18)
N1 0.0518 (19) 0.0442 (18) 0.0435 (17) 0.0074 (16) 0.0085 (14) 0.0269 (15)
O1 0.0642 (18) 0.0707 (19) 0.0566 (17) 0.0096 (15) 0.0040 (14) 0.0384 (16)
O2 0.0625 (18) 0.0626 (18) 0.0740 (18) 0.0030 (14) 0.0240 (14) 0.0465 (16)
O3 0.0490 (16) 0.0614 (18) 0.0709 (17) 0.0112 (14) 0.0095 (13) 0.0386 (15)
O4 0.076 (2) 0.0545 (18) 0.078 (2) 0.0220 (17) 0.0068 (16) 0.0306 (17)
O5 0.114 (3) 0.063 (2) 0.0711 (19) 0.037 (2) 0.0161 (19) 0.0302 (18)
O6 0.0621 (18) 0.0702 (19) 0.0643 (17) −0.0017 (15) −0.0047 (14) 0.0483 (16)
O7 0.111 (3) 0.111 (7) 0.080 (4) −0.066 (5) −0.018 (3) 0.049 (5)
O7' 0.111 (3) 0.111 (7) 0.080 (4) −0.066 (5) −0.018 (3) 0.049 (5)
S1 0.0451 (6) 0.0471 (6) 0.0553 (6) −0.0005 (5) 0.0072 (5) 0.0271 (5)

Geometric parameters (Å, °)

C1—O1 1.211 (4) C13—H13B 0.9700
C1—N1 1.456 (4) C14—F3 1.294 (5)
C1—C2 1.472 (5) C14—F1 1.313 (5)
C2—C7 1.403 (5) C14—F2 1.315 (5)
C2—C3 1.414 (5) C14—S1 1.829 (4)
C3—C4 1.361 (5) C15—O4 1.425 (5)
C3—H3 0.9300 C15—O5 1.435 (5)
C4—C5 1.375 (5) C15—H15A 0.9700
C4—O4 1.379 (4) C15—H15B 0.9700
C5—C6 1.373 (5) C16—O7 1.14 (3)
C5—O5 1.377 (4) C16—O7' 1.287 (9)
C6—C7 1.402 (5) C16—O6 1.328 (5)
C6—H6 0.9300 C16—C17 1.464 (6)
C7—C8 1.521 (5) C17—C22 1.362 (6)
C8—C9 1.526 (5) C17—C18 1.367 (6)
C8—C13 1.527 (4) C18—C19 1.375 (6)
C8—H8 0.9800 C18—H18 0.9300
C9—C10 1.501 (5) C19—C20 1.367 (8)
C9—N1 1.518 (4) C19—H19 0.9300
C9—H9 0.9800 C20—C21 1.335 (8)
C10—C11 1.318 (5) C20—H20 0.9300
C10—H10 0.9300 C21—C22 1.370 (7)
C11—C12 1.479 (6) C21—H21 0.9300
C11—H11 0.9300 C22—H22 0.9300
C12—O6 1.453 (4) N1—S1 1.625 (3)
C12—C13 1.517 (5) O2—S1 1.422 (2)
C12—H12 0.9800 O3—S1 1.420 (2)
C13—H13A 0.9700
O1—C1—N1 120.4 (3) H13A—C13—H13B 108.2
O1—C1—C2 124.1 (3) F3—C14—F1 108.3 (4)
N1—C1—C2 115.5 (3) F3—C14—F2 108.1 (4)
C7—C2—C3 121.1 (3) F1—C14—F2 106.6 (4)
C7—C2—C1 122.3 (3) F3—C14—S1 110.0 (3)
C3—C2—C1 116.5 (3) F1—C14—S1 112.2 (3)
C4—C3—C2 117.7 (3) F2—C14—S1 111.4 (3)
C4—C3—H3 121.2 O4—C15—O5 107.9 (3)
C2—C3—H3 121.2 O4—C15—H15A 110.1
C3—C4—C5 121.2 (4) O5—C15—H15A 110.1
C3—C4—O4 128.8 (3) O4—C15—H15B 110.1
C5—C4—O4 110.0 (4) O5—C15—H15B 110.1
C6—C5—C4 122.9 (4) H15A—C15—H15B 108.4
C6—C5—O5 127.3 (4) O7—C16—O7' 44.0 (14)
C4—C5—O5 109.8 (3) O7—C16—O6 114.1 (11)
C5—C6—C7 117.6 (3) O7'—C16—O6 120.4 (4)
C5—C6—H6 121.2 O7—C16—C17 118.6 (12)
C7—C6—H6 121.2 O7'—C16—C17 124.5 (5)
C6—C7—C2 119.5 (3) O6—C16—C17 114.2 (4)
C6—C7—C8 122.4 (3) C22—C17—C18 117.0 (4)
C2—C7—C8 118.0 (3) C22—C17—C16 120.8 (5)
C7—C8—C9 107.3 (3) C18—C17—C16 122.2 (4)
C7—C8—C13 115.1 (3) C17—C18—C19 121.3 (5)
C9—C8—C13 111.2 (3) C17—C18—H18 119.4
C7—C8—H8 107.7 C19—C18—H18 119.4
C9—C8—H8 107.7 C20—C19—C18 119.8 (6)
C13—C8—H8 107.7 C20—C19—H19 120.1
C10—C9—N1 116.7 (3) C18—C19—H19 120.1
C10—C9—C8 113.9 (3) C21—C20—C19 119.6 (5)
N1—C9—C8 106.5 (3) C21—C20—H20 120.2
C10—C9—H9 106.3 C19—C20—H20 120.2
N1—C9—H9 106.3 C20—C21—C22 120.1 (6)
C8—C9—H9 106.3 C20—C21—H21 119.9
C11—C10—C9 122.0 (4) C22—C21—H21 119.9
C11—C10—H10 119.0 C17—C22—C21 122.1 (6)
C9—C10—H10 119.0 C17—C22—H22 118.9
C10—C11—C12 124.4 (4) C21—C22—H22 118.9
C10—C11—H11 117.8 C1—N1—C9 114.8 (3)
C12—C11—H11 117.8 C1—N1—S1 119.7 (2)
O6—C12—C11 108.2 (3) C9—N1—S1 125.4 (2)
O6—C12—C13 108.5 (3) C4—O4—C15 105.8 (3)
C11—C12—C13 111.4 (3) C5—O5—C15 105.8 (3)
O6—C12—H12 109.6 C16—O6—C12 118.9 (3)
C11—C12—H12 109.6 O3—S1—O2 120.49 (17)
C13—C12—H12 109.6 O3—S1—N1 109.04 (14)
C12—C13—C8 110.1 (3) O2—S1—N1 110.45 (15)
C12—C13—H13A 109.6 O3—S1—C14 105.4 (2)
C8—C13—H13A 109.6 O2—S1—C14 105.50 (19)
C12—C13—H13B 109.6 N1—S1—C14 104.7 (2)
C8—C13—H13B 109.6
O1—C1—C2—C7 166.9 (4) C22—C17—C18—C19 2.2 (9)
N1—C1—C2—C7 −13.0 (5) C16—C17—C18—C19 −179.4 (5)
O1—C1—C2—C3 −11.4 (5) C17—C18—C19—C20 −0.3 (10)
N1—C1—C2—C3 168.7 (3) C18—C19—C20—C21 −1.7 (10)
C7—C2—C3—C4 −0.7 (5) C19—C20—C21—C22 1.7 (11)
C1—C2—C3—C4 177.6 (3) C18—C17—C22—C21 −2.3 (9)
C2—C3—C4—C5 −0.5 (6) C16—C17—C22—C21 179.3 (6)
C2—C3—C4—O4 177.5 (3) C20—C21—C22—C17 0.3 (11)
C3—C4—C5—C6 1.1 (6) O1—C1—N1—C9 160.2 (3)
O4—C4—C5—C6 −177.2 (3) C2—C1—N1—C9 −19.9 (4)
C3—C4—C5—O5 178.6 (3) O1—C1—N1—S1 −23.1 (5)
O4—C4—C5—O5 0.3 (4) C2—C1—N1—S1 156.9 (3)
C4—C5—C6—C7 −0.5 (6) C10—C9—N1—C1 −172.6 (3)
O5—C5—C6—C7 −177.5 (4) C8—C9—N1—C1 59.0 (4)
C5—C6—C7—C2 −0.7 (5) C10—C9—N1—S1 10.9 (5)
C5—C6—C7—C8 178.2 (3) C8—C9—N1—S1 −117.6 (3)
C3—C2—C7—C6 1.3 (5) C3—C4—O4—C15 176.5 (4)
C1—C2—C7—C6 −176.9 (3) C5—C4—O4—C15 −5.4 (4)
C3—C2—C7—C8 −177.7 (3) O5—C15—O4—C4 8.3 (4)
C1—C2—C7—C8 4.1 (5) C6—C5—O5—C15 −177.7 (4)
C6—C7—C8—C9 −143.5 (3) C4—C5—O5—C15 4.9 (4)
C2—C7—C8—C9 35.4 (4) O4—C15—O5—C5 −8.2 (4)
C6—C7—C8—C13 −19.3 (5) O7—C16—O6—C12 43.6 (19)
C2—C7—C8—C13 159.7 (3) O7'—C16—O6—C12 −5.8 (8)
C7—C8—C9—C10 165.4 (3) C17—C16—O6—C12 −175.5 (3)
C13—C8—C9—C10 38.8 (4) C11—C12—O6—C16 −140.0 (4)
C7—C8—C9—N1 −64.5 (3) C13—C12—O6—C16 99.0 (4)
C13—C8—C9—N1 168.9 (3) C1—N1—S1—O3 −158.2 (3)
N1—C9—C10—C11 −136.4 (4) C9—N1—S1—O3 18.2 (3)
C8—C9—C10—C11 −11.5 (5) C1—N1—S1—O2 −23.6 (3)
C9—C10—C11—C12 3.9 (7) C9—N1—S1—O2 152.7 (3)
C10—C11—C12—O6 −143.0 (4) C1—N1—S1—C14 89.5 (3)
C10—C11—C12—C13 −23.8 (6) C9—N1—S1—C14 −94.2 (3)
O6—C12—C13—C8 169.2 (3) F3—C14—S1—O3 63.8 (4)
C11—C12—C13—C8 50.1 (4) F1—C14—S1—O3 −175.5 (3)
C7—C8—C13—C12 179.0 (3) F2—C14—S1—O3 −56.1 (4)
C9—C8—C13—C12 −58.8 (4) F3—C14—S1—O2 −64.7 (4)
O7—C16—C17—C22 −39.5 (19) F1—C14—S1—O2 56.0 (4)
O7'—C16—C17—C22 12.2 (10) F2—C14—S1—O2 175.4 (3)
O6—C16—C17—C22 −178.6 (5) F3—C14—S1—N1 178.7 (3)
O7—C16—C17—C18 142.1 (18) F1—C14—S1—N1 −60.6 (4)
O7'—C16—C17—C18 −166.1 (8) F2—C14—S1—N1 58.8 (4)
O6—C16—C17—C18 3.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O4i 0.93 2.51 3.341 (5) 149
C15—H15A···O2ii 0.97 2.48 3.202 (5) 131

Symmetry codes: (i) −x+3, −y+1, −z+2; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2082).

References

  1. Banwell, M. G., Bissett, B. D., Busato, S., Cowden, C. J., Hockless, D. C. R., Holman, J. W., Read, R. W. & Wu, A. W. (1995). J. Chem. Soc. Chem. Commun. pp. 2551–2553.
  2. Matveenko, M., Banwell, M. G., Joffe, M., Wan, S. & Fantino, E. (2009). Chem. Biodivers. 6, 685–691. [DOI] [PubMed]
  3. Pampin, M. C., Estevez, J. C., Estevez, R. J., Maestro, M. & Castedo, L. (2003). Tetrahedron, 59, 7231–7243.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Szántó, G., Hegedűs, L., Mattyasovszky, L., Simon, A., Simon, Á., Bitter, I., Tóth, G., Tőke, L. & Kádas, I. (2009a). Tetrahedron, 65, 8412–8417.
  8. Szántó, G., Hegedűs, L., Mattyasovszky, L., Simon, A., Simon, Á. & Kádas, I. (2009b). Tetrahedron Lett. 50, 2857–2859.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001085/zq2082sup1.cif

e-67-0o382-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001085/zq2082Isup2.hkl

e-67-0o382-Isup2.hkl (196.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES