Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o284. doi: 10.1107/S1600536810054346

rac-4-[4-Cyano-2-(hy­droxy­meth­yl)phen­yl]-4-(4-fluoro­phen­yl)-4-hy­droxy-N,N-dimethyl­butanaminium hemifumarate

En-Ju Wang a,*, Guang-Ying Chen a
PMCID: PMC3051490  PMID: 21522976

Abstract

In the title salt, C20H24FN2O2 +·0.5C4H2O4 2−, the fumarate anion is located on an inversion centre. In the cation, the two benzene rings are nearly perpendicular to each other, making a dihedral angle of 87.41 (10)°. The cation is linked to the anion by a bifurcated N—H⋯O hydrogen bond. Classical O—H⋯O and weak C—H⋯F hydrogen bonding is also present in the crystal structure. Three C atoms of the N,N-dimethyl­butanaminium moiety are disordered over two sites with refined site occupancies of 0.466 (14) and 0.534 (14).

Related literature

For a pharmacological study of the title compound, see: Pollock (2001). For the synthesis, see: Boegeso (1987).graphic file with name e-67-0o284-scheme1.jpg

Experimental

Crystal data

  • C20H24FN2O2 +·0.5C4H2O4 2−

  • M r = 400.44

  • Triclinic, Inline graphic

  • a = 8.3312 (9) Å

  • b = 8.8372 (11) Å

  • c = 15.0396 (13) Å

  • α = 92.236 (1)°

  • β = 102.681 (2)°

  • γ = 107.508 (2)°

  • V = 1023.64 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.50 × 0.48 × 0.47 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 7766 measured reflections

  • 4381 independent reflections

  • 3071 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.158

  • S = 1.06

  • 4381 reflections

  • 297 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054346/xu5099sup1.cif

e-67-0o284-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054346/xu5099Isup2.hkl

e-67-0o284-Isup2.hkl (214.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.85 2.655 (2) 165
O2—H2⋯O3 0.82 1.85 2.642 (3) 162
N1—H1A⋯O4i 0.91 2.30 3.152 (3) 155
N1—H1A⋯O3i 0.91 2.04 2.834 (3) 145
C2—H2A⋯F1ii 0.93 2.48 3.392 (3) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful for financial support from the Natural Science Foundation of Hainan Province, China (No. 808145)

supplementary crystallographic information

Comment

Rac-4-[4-Cyano-2-(hydroxymethyl)phenyl]-4-(4-fluorophenyl)-4-hydroxy-N,N-dimethylbutan-1-amine, known as citalopram diol, is a useful intermediate in the synthesis of citalopram that is an efficient antidepressant (Pollock, 2001). Ordinarily both of them are viscous oil and are very difficult to be crystallized. It is a strategy to combine them with all sorts of acid, so that crystal salt can be obtained. The crystal structure of fumaric acid salt of citalopram diol is reported here.

In the title salt, (C20H24N2O2F) +.0.5(C4H2O4)2- (I) (Fig. 1), each carboxylic anion of the fumaric acid is involved in two hydrogen bonds and there is an inversion center at the centroid position of fumaric acid, which generate a double chain of citalopram diol linked by fumaric acid molecules (Fig.2). There is a C—H···π interaction between fluorobenzene moiety and benzonitrile moiety (Fig. 3). The dihedral angle between the two aromatic rings is 87.349 (7)°. The distance from H9 to the centroid of aromatic ring of benzonitrile moiety is 2.8372 (8) Å).

Experimental

The compound was prepared according to the method of patent (Boegeso, 1987). The crystals suitable for single X-ray diffraction were obtained by slowly volatilizing the solution of a mixture of citalopram diol and fumaric acid (2:1 molar ratio) in ethanol.

Refinement

Hydroxyl H atoms and ammonium H atom were located in a difference Fourier maps and refined with constraints of N—H = 0.91 and O—H = 0.82 Å, Uiso(H) = 1.2Ueq(O,N). Other H atoms were positioned geometrically with C—H = 0.93-0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others. The C16, C17 and C18 atoms were disordered over two sites, occupancies were refined to 0.466 (14):0.534 (14).

Figures

Fig. 1.

Fig. 1.

The molecular configuration and atom numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The partial packing diagram of (I), showing a double chain of citalopram diol linked by fumaric acid molecules. Hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity.

Fig. 3.

Fig. 3.

The partial packing diagram of (I), showing the C—H···π and C—H···F interactions. For clarity, some H atoms not involved in the motifs shown have been omitted.

Crystal data

C20H24FN2O2+·0.5C4H2O42 Z = 2
Mr = 400.44 F(000) = 424
Triclinic, P1 Dx = 1.299 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3312 (9) Å Cell parameters from 5256 reflections
b = 8.8372 (11) Å θ = 1.5–25.2°
c = 15.0396 (13) Å µ = 0.10 mm1
α = 92.236 (1)° T = 293 K
β = 102.681 (2)° Block, colourless
γ = 107.508 (2)° 0.50 × 0.48 × 0.47 mm
V = 1023.64 (19) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3071 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
graphite θmax = 27.1°, θmin = 1.4°
φ and ω scans h = −10→10
7766 measured reflections k = −11→11
4381 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4116P] where P = (Fo2 + 2Fc2)/3
4381 reflections (Δ/σ)max = 0.001
297 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.20769 (19) 0.79749 (15) 0.86453 (10) 0.0671 (4)
N1 −0.2494 (2) −0.04111 (19) 0.61890 (12) 0.0480 (4)
H1A −0.2346 0.0452 0.5868 0.058*
N2 1.1468 (3) 0.2082 (3) 1.02194 (19) 0.0865 (8)
O1 0.38654 (19) 0.25106 (19) 0.66277 (9) 0.0536 (4)
H1 0.4688 0.3252 0.6562 0.080*
O2 0.6756 (2) 0.4911 (2) 0.67399 (11) 0.0690 (5)
H2 0.7266 0.4358 0.6545 0.104*
O3 0.7715 (2) 0.2781 (2) 0.58894 (13) 0.0765 (5)
O4 0.8536 (3) 0.1944 (2) 0.47374 (15) 0.0906 (6)
C1 0.5496 (2) 0.2512 (2) 0.81662 (12) 0.0382 (4)
C2 0.5520 (3) 0.1242 (2) 0.86801 (13) 0.0450 (4)
H2A 0.4472 0.0468 0.8671 0.054*
C3 0.7026 (3) 0.1076 (2) 0.92031 (14) 0.0479 (5)
H3 0.6992 0.0202 0.9532 0.057*
C4 0.8584 (3) 0.2230 (3) 0.92298 (14) 0.0482 (5)
C5 0.8597 (3) 0.3513 (3) 0.87273 (15) 0.0505 (5)
H5 0.9654 0.4280 0.8745 0.061*
C6 0.7095 (2) 0.3695 (2) 0.82005 (13) 0.0445 (4)
C7 0.3417 (2) 0.4110 (2) 0.78555 (12) 0.0374 (4)
C8 0.3553 (2) 0.4536 (2) 0.87729 (13) 0.0414 (4)
H8 0.3930 0.3925 0.9212 0.050*
C9 0.3138 (3) 0.5849 (2) 0.90451 (14) 0.0460 (5)
H9 0.3241 0.6138 0.9661 0.055*
C10 0.2568 (3) 0.6718 (2) 0.83815 (15) 0.0470 (5)
C11 0.2425 (3) 0.6358 (2) 0.74730 (15) 0.0510 (5)
H11 0.2047 0.6978 0.7040 0.061*
C12 0.2858 (3) 0.5040 (2) 0.72121 (14) 0.0477 (5)
H12 0.2773 0.4775 0.6595 0.057*
C13 0.3780 (2) 0.2592 (2) 0.75605 (12) 0.0405 (4)
C14 0.2230 (2) 0.1135 (2) 0.75868 (15) 0.0481 (5)
H14A 0.2482 0.0170 0.7430 0.058*
H14B 0.2064 0.1117 0.8205 0.058*
C15 0.0558 (3) 0.1151 (3) 0.69250 (17) 0.0589 (6)
H15A 0.0034 0.1812 0.7216 0.071*
H15B 0.0834 0.1619 0.6383 0.071*
C16 −0.0679 (8) −0.0449 (7) 0.6654 (7) 0.0476 (17) 0.466 (14)
H16A −0.0737 −0.1014 0.7192 0.057* 0.466 (14)
H16B −0.0279 −0.1029 0.6235 0.057* 0.466 (14)
C17 −0.3573 (14) −0.0310 (15) 0.6699 (7) 0.081 (3) 0.466 (14)
H17A −0.4580 −0.0138 0.6323 0.121* 0.466 (14)
H17B −0.3005 0.0565 0.7174 0.121* 0.466 (14)
H17C −0.3919 −0.1285 0.6971 0.121* 0.466 (14)
C18 −0.3287 (14) −0.1936 (14) 0.5463 (7) 0.072 (2) 0.466 (14)
H18A −0.3457 −0.2878 0.5774 0.109* 0.466 (14)
H18B −0.2506 −0.1931 0.5078 0.109* 0.466 (14)
H18C −0.4380 −0.1927 0.5093 0.109* 0.466 (14)
C16' −0.1003 (8) −0.0176 (9) 0.7010 (5) 0.0522 (17) 0.534 (14)
H16C −0.1343 0.0073 0.7560 0.063* 0.534 (14)
H16D −0.0713 −0.1157 0.7065 0.063* 0.534 (14)
C17' −0.4188 (10) −0.0984 (12) 0.6542 (6) 0.0696 (19) 0.534 (14)
H17D −0.5174 −0.1059 0.6051 0.104* 0.534 (14)
H17E −0.4126 −0.0232 0.7037 0.104* 0.534 (14)
H17F −0.4304 −0.2012 0.6755 0.104* 0.534 (14)
C18' −0.2597 (14) −0.1404 (10) 0.5439 (6) 0.069 (2) 0.534 (14)
H18D −0.2704 −0.2459 0.5609 0.104* 0.534 (14)
H18E −0.1566 −0.1009 0.5219 0.104* 0.534 (14)
H18F −0.3592 −0.1438 0.4964 0.104* 0.534 (14)
C19 1.0189 (3) 0.2131 (3) 0.97840 (17) 0.0611 (6)
C20 0.7315 (3) 0.5186 (3) 0.77151 (16) 0.0566 (6)
H20A 0.6673 0.5809 0.7936 0.068*
H20B 0.8532 0.5823 0.7882 0.068*
C21 0.8499 (3) 0.3012 (3) 0.52575 (16) 0.0546 (5)
C22 0.9421 (3) 0.4749 (3) 0.52195 (16) 0.0596 (6)
H22 0.9121 0.5504 0.5538 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0795 (9) 0.0485 (7) 0.0819 (9) 0.0300 (7) 0.0234 (7) 0.0074 (6)
N1 0.0391 (9) 0.0413 (9) 0.0524 (10) 0.0045 (7) −0.0009 (7) 0.0088 (7)
N2 0.0497 (13) 0.0901 (17) 0.1124 (19) 0.0268 (12) −0.0048 (12) 0.0306 (14)
O1 0.0550 (9) 0.0639 (10) 0.0372 (7) 0.0175 (7) 0.0052 (6) −0.0027 (6)
O2 0.0677 (11) 0.0855 (13) 0.0646 (10) 0.0316 (9) 0.0234 (8) 0.0325 (9)
O3 0.0687 (11) 0.0924 (13) 0.0771 (12) 0.0283 (10) 0.0276 (9) 0.0315 (10)
O4 0.0964 (15) 0.0679 (12) 0.1023 (15) 0.0192 (11) 0.0256 (12) −0.0067 (11)
C1 0.0357 (9) 0.0409 (10) 0.0369 (9) 0.0136 (8) 0.0053 (7) −0.0006 (7)
C2 0.0382 (10) 0.0433 (10) 0.0497 (11) 0.0112 (8) 0.0050 (8) 0.0046 (8)
C3 0.0468 (11) 0.0455 (11) 0.0516 (11) 0.0182 (9) 0.0067 (9) 0.0084 (9)
C4 0.0384 (10) 0.0575 (12) 0.0504 (11) 0.0216 (9) 0.0056 (8) 0.0052 (9)
C5 0.0344 (10) 0.0556 (12) 0.0601 (13) 0.0113 (9) 0.0117 (9) 0.0112 (10)
C6 0.0399 (10) 0.0489 (11) 0.0454 (10) 0.0149 (8) 0.0103 (8) 0.0078 (8)
C7 0.0307 (9) 0.0386 (9) 0.0388 (9) 0.0088 (7) 0.0031 (7) 0.0043 (7)
C8 0.0360 (10) 0.0474 (10) 0.0397 (10) 0.0149 (8) 0.0038 (8) 0.0082 (8)
C9 0.0408 (10) 0.0527 (11) 0.0425 (10) 0.0142 (9) 0.0078 (8) 0.0018 (8)
C10 0.0416 (11) 0.0369 (10) 0.0616 (13) 0.0114 (8) 0.0122 (9) 0.0057 (8)
C11 0.0540 (12) 0.0461 (11) 0.0522 (12) 0.0184 (9) 0.0066 (9) 0.0152 (9)
C12 0.0507 (12) 0.0506 (11) 0.0388 (10) 0.0158 (9) 0.0048 (8) 0.0082 (8)
C13 0.0369 (10) 0.0442 (10) 0.0367 (9) 0.0123 (8) 0.0026 (7) 0.0021 (7)
C14 0.0384 (10) 0.0422 (10) 0.0552 (12) 0.0099 (8) −0.0015 (9) 0.0037 (8)
C15 0.0396 (11) 0.0547 (13) 0.0701 (15) 0.0084 (9) −0.0033 (10) 0.0108 (10)
C16 0.038 (3) 0.049 (3) 0.052 (4) 0.015 (2) 0.001 (2) 0.001 (2)
C17 0.048 (5) 0.092 (7) 0.101 (6) 0.020 (4) 0.023 (4) −0.013 (5)
C18 0.058 (5) 0.082 (7) 0.054 (4) 0.004 (4) −0.005 (4) −0.011 (4)
C16' 0.039 (3) 0.059 (3) 0.047 (3) 0.006 (2) 0.002 (2) 0.009 (2)
C17' 0.040 (4) 0.073 (5) 0.090 (5) 0.007 (3) 0.019 (3) 0.006 (4)
C18' 0.078 (6) 0.059 (4) 0.059 (3) 0.006 (3) 0.019 (4) −0.012 (3)
C19 0.0466 (13) 0.0629 (14) 0.0733 (15) 0.0206 (11) 0.0077 (11) 0.0161 (11)
C20 0.0431 (11) 0.0581 (13) 0.0661 (14) 0.0117 (10) 0.0120 (10) 0.0216 (11)
C21 0.0453 (12) 0.0589 (13) 0.0558 (13) 0.0126 (10) 0.0071 (10) 0.0225 (11)
C22 0.0566 (14) 0.0654 (14) 0.0569 (13) 0.0211 (11) 0.0096 (10) 0.0180 (11)

Geometric parameters (Å, °)

F1—C10 1.367 (2) C10—C11 1.362 (3)
N1—C17 1.323 (9) C11—C12 1.386 (3)
N1—C18' 1.373 (8) C11—H11 0.9300
N1—C16' 1.504 (5) C12—H12 0.9300
N1—C16 1.531 (6) C13—C14 1.534 (3)
N1—C17' 1.566 (8) C14—C15 1.528 (3)
N1—C18 1.574 (10) C14—H14A 0.9700
N1—H1A 0.9100 C14—H14B 0.9700
N2—C19 1.136 (3) C15—C16 1.456 (6)
O1—C13 1.420 (2) C15—C16' 1.500 (6)
O1—H1 0.8200 C15—H15A 0.9700
O2—C20 1.425 (3) C15—H15B 0.9700
O2—H2 0.8200 C16—H16A 0.9700
O3—C21 1.257 (3) C16—H16B 0.9700
O4—C21 1.214 (3) C17—H17A 0.9600
C1—C2 1.391 (3) C17—H17B 0.9600
C1—C6 1.414 (3) C17—H17C 0.9600
C1—C13 1.540 (2) C18—H18A 0.9600
C2—C3 1.378 (3) C18—H18B 0.9600
C2—H2A 0.9300 C18—H18C 0.9600
C3—C4 1.380 (3) C16'—H16C 0.9700
C3—H3 0.9300 C16'—H16D 0.9700
C4—C5 1.386 (3) C17'—H17D 0.9600
C4—C19 1.441 (3) C17'—H17E 0.9600
C5—C6 1.384 (3) C17'—H17F 0.9600
C5—H5 0.9300 C18'—H18D 0.9600
C6—C20 1.514 (3) C18'—H18E 0.9600
C7—C12 1.386 (3) C18'—H18F 0.9600
C7—C8 1.387 (3) C20—H20A 0.9700
C7—C13 1.531 (3) C20—H20B 0.9700
C8—C9 1.379 (3) C21—C22 1.506 (3)
C8—H8 0.9300 C22—C22i 1.269 (4)
C9—C10 1.372 (3) C22—H22 0.9300
C9—H9 0.9300
C17—N1—C18' 134.8 (5) O1—C13—C1 109.05 (15)
C17—N1—C16' 93.0 (5) C7—C13—C1 110.65 (14)
C18'—N1—C16' 117.9 (5) C14—C13—C1 112.41 (15)
C17—N1—C16 119.4 (5) C15—C14—C13 112.24 (17)
C18'—N1—C16 92.2 (4) C15—C14—H14A 109.2
C16'—N1—C16 27.2 (2) C13—C14—H14A 109.2
C17—N1—C17' 24.3 (4) C15—C14—H14B 109.2
C18'—N1—C17' 110.8 (4) C13—C14—H14B 109.2
C16'—N1—C17' 106.5 (4) H14A—C14—H14B 107.9
C16—N1—C17' 128.0 (5) C16—C15—C16' 27.9 (2)
C17—N1—C18 111.7 (5) C16—C15—C14 111.9 (3)
C18'—N1—C18 23.5 (4) C16'—C15—C14 112.9 (3)
C16'—N1—C18 124.9 (6) C16—C15—H15A 109.2
C16—N1—C18 104.7 (5) C16'—C15—H15A 83.4
C17'—N1—C18 87.5 (4) C14—C15—H15A 109.2
C17—N1—H1A 106.8 C16—C15—H15B 109.2
C18'—N1—H1A 92.0 C16'—C15—H15B 129.4
C16'—N1—H1A 111.9 C14—C15—H15B 109.2
C16—N1—H1A 106.8 H15A—C15—H15B 107.9
C17'—N1—H1A 117.7 C15—C16—N1 111.9 (4)
C18—N1—H1A 106.8 C15—C16—H16A 109.2
C13—O1—H1 109.5 N1—C16—H16A 109.2
C20—O2—H2 109.5 C15—C16—H16B 109.2
C2—C1—C6 117.88 (17) N1—C16—H16B 109.2
C2—C1—C13 120.62 (16) H16A—C16—H16B 107.9
C6—C1—C13 121.48 (16) N1—C17—H17A 109.5
C3—C2—C1 123.02 (18) N1—C17—H17B 109.5
C3—C2—H2A 118.5 N1—C17—H17C 109.5
C1—C2—H2A 118.5 N1—C18—H18A 109.5
C2—C3—C4 118.84 (19) N1—C18—H18B 109.5
C2—C3—H3 120.6 N1—C18—H18C 109.5
C4—C3—H3 120.6 C15—C16'—N1 111.1 (4)
C3—C4—C5 119.35 (18) C15—C16'—H16C 109.4
C3—C4—C19 120.94 (19) N1—C16'—H16C 109.4
C5—C4—C19 119.7 (2) C15—C16'—H16D 109.4
C6—C5—C4 122.44 (19) N1—C16'—H16D 109.4
C6—C5—H5 118.8 H16C—C16'—H16D 108.0
C4—C5—H5 118.8 N1—C17'—H17D 109.5
C5—C6—C1 118.47 (18) N1—C17'—H17E 109.5
C5—C6—C20 116.23 (18) H17D—C17'—H17E 109.5
C1—C6—C20 125.30 (18) N1—C17'—H17F 109.5
C12—C7—C8 118.55 (17) H17D—C17'—H17F 109.5
C12—C7—C13 121.01 (16) H17E—C17'—H17F 109.5
C8—C7—C13 120.36 (16) N1—C18'—H18D 109.5
C9—C8—C7 121.12 (17) N1—C18'—H18E 109.5
C9—C8—H8 119.4 H18D—C18'—H18E 109.5
C7—C8—H8 119.4 N1—C18'—H18F 109.5
C10—C9—C8 118.15 (18) H18D—C18'—H18F 109.5
C10—C9—H9 120.9 H18E—C18'—H18F 109.5
C8—C9—H9 120.9 N2—C19—C4 178.8 (3)
C11—C10—F1 118.72 (18) O2—C20—C6 115.10 (19)
C11—C10—C9 123.02 (19) O2—C20—H20A 108.5
F1—C10—C9 118.24 (19) C6—C20—H20A 108.5
C10—C11—C12 118.06 (18) O2—C20—H20B 108.5
C10—C11—H11 121.0 C6—C20—H20B 108.5
C12—C11—H11 121.0 H20A—C20—H20B 107.5
C11—C12—C7 121.10 (18) O4—C21—O3 123.6 (2)
C11—C12—H12 119.5 O4—C21—C22 123.2 (2)
C7—C12—H12 119.5 O3—C21—C22 113.2 (2)
O1—C13—C7 111.63 (15) C22i—C22—C21 124.2 (3)
O1—C13—C14 103.90 (15) C22i—C22—H22 117.9
C7—C13—C14 109.04 (15) C21—C22—H22 117.9
C6—C1—C2—C3 −1.1 (3) C6—C1—C13—O1 61.9 (2)
C13—C1—C2—C3 177.22 (18) C2—C1—C13—C7 120.45 (18)
C1—C2—C3—C4 0.8 (3) C6—C1—C13—C7 −61.3 (2)
C2—C3—C4—C5 −0.5 (3) C2—C1—C13—C14 −1.7 (2)
C2—C3—C4—C19 178.5 (2) C6—C1—C13—C14 176.56 (17)
C3—C4—C5—C6 0.6 (3) O1—C13—C14—C15 −57.5 (2)
C19—C4—C5—C6 −178.4 (2) C7—C13—C14—C15 61.7 (2)
C4—C5—C6—C1 −0.9 (3) C1—C13—C14—C15 −175.25 (17)
C4—C5—C6—C20 178.1 (2) C13—C14—C15—C16 155.5 (5)
C2—C1—C6—C5 1.2 (3) C13—C14—C15—C16' −174.2 (5)
C13—C1—C6—C5 −177.17 (17) C16'—C15—C16—N1 68.1 (7)
C2—C1—C6—C20 −177.78 (19) C14—C15—C16—N1 166.0 (5)
C13—C1—C6—C20 3.9 (3) C17—N1—C16—C15 −86.9 (12)
C12—C7—C8—C9 0.3 (3) C18'—N1—C16—C15 126.9 (9)
C13—C7—C8—C9 −176.38 (17) C16'—N1—C16—C15 −71.4 (7)
C7—C8—C9—C10 0.7 (3) C17'—N1—C16—C15 −114.3 (9)
C8—C9—C10—C11 −1.2 (3) C18—N1—C16—C15 147.1 (9)
C8—C9—C10—F1 176.93 (17) C16—C15—C16'—N1 −69.9 (7)
F1—C10—C11—C12 −177.34 (18) C14—C15—C16'—N1 −163.8 (5)
C9—C10—C11—C12 0.8 (3) C17—N1—C16'—C15 −127.4 (10)
C10—C11—C12—C7 0.2 (3) C18'—N1—C16'—C15 86.9 (9)
C8—C7—C12—C11 −0.7 (3) C16—N1—C16'—C15 66.2 (7)
C13—C7—C12—C11 175.92 (18) C17'—N1—C16'—C15 −147.9 (8)
C12—C7—C13—O1 13.5 (2) C18—N1—C16'—C15 113.4 (9)
C8—C7—C13—O1 −169.91 (16) C3—C4—C19—N2 −164 (14)
C12—C7—C13—C14 −100.7 (2) C5—C4—C19—N2 15 (14)
C8—C7—C13—C14 75.9 (2) C5—C6—C20—O2 119.3 (2)
C12—C7—C13—C1 135.18 (18) C1—C6—C20—O2 −61.7 (3)
C8—C7—C13—C1 −48.3 (2) O4—C21—C22—C22i −14.6 (4)
C2—C1—C13—O1 −116.40 (18) O3—C21—C22—C22i 164.3 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.82 1.85 2.655 (2) 165
O2—H2···O3 0.82 1.85 2.642 (3) 162
N1—H1A···O4ii 0.91 2.30 3.152 (3) 155
N1—H1A···O3ii 0.91 2.04 2.834 (3) 145
C2—H2A···F1iii 0.93 2.48 3.392 (3) 167

Symmetry codes: (ii) x−1, y, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5099).

References

  1. Boegeso, K. P. (1987). US Patent 4 650 884.
  2. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Pollock, B. G. (2001). Expert Opin. Pharmacother. 2, 681–698. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054346/xu5099sup1.cif

e-67-0o284-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054346/xu5099Isup2.hkl

e-67-0o284-Isup2.hkl (214.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES